Histological Identification of Lipids

Total Page:16

File Type:pdf, Size:1020Kb

Histological Identification of Lipids Histological Identification of Lipids Dr. Kumari Aditi, Assistant Professor, PG Department of Zoology, MU Lipids fall in the category of heterogeneous biomolecules that are characterized by properties such as varying solubility in chemical solvents, presence/absence of charge etc. For histochemical detection of lipids in tissue samples, several chromogenic or colour producing dyes and stains are employed widely. We can visualize lipid deposits in histological sections using these specific dyes. Four lipid-specific dyes namely Sudan Black B, Sudan III, Sudan IV and Nile Blue Sulphate are described below. 1. Sudan Black B (SBB) Synonym: Solvent black 3, Fat Black HB SBB are fat-soluble diazo dye primarily used for the staining of neutral lipids and triglycerides. SBB is a member of azobenzenes, a bis(azo) compound and a member of perimidines (Figure 1). This stain is also used for the visualization of a wide variety of lipids such as phospholipids and intracellular lipids such as sterols. Black Sudan B is not lipid specific like other Sudan dyes and can also be used for chromosome staining, visualizing Golgi apparatus and leukocyte granules. The dyes of the Sudan family form a group of solvent-soluble lipid dyes also known as lysochromes or lipid-soluble dyes. SBB is slightly basic in nature, so it will easily bind to acidic groups in lipids and can also stain phospholipids. Staining pattern of SBB is very similar to myeloperoxidase reaction, with better staining of granulocytes such as eosinophils and faint staining of monocytes. SBB does not stain B or T lymphocytes. SBB is effectively used in the detection of hematological pathologies. SBB is highly sensitive and specific for lipid staining. It can also stain lipids in formalin fixed tissue sections; however, it is not suitable for paraffin embedded 1 tissue sections. Sudan Black B stains phospholipids Gray and Neutral fats Blue- black (Figure 2). Cell nucleus can be stained in red colour using Nuclear Fast Red when using SBB. Source: https://pubchem.ncbi.nlm.nih.gov/compound/Sudan-black-B Figure 1: Chemical structure of Sudan Black B Dye Source: https://psl-equip.com/product/fat-stain-kit-sudan-black-b-250-ml/ Figure 2: Fat staining by Sudan Black B (arrowheads) 2 2. Sudan III Synonyms: Solvent red 23, Cerasin Red Sudan III is a member of azobenzenes, a bis(azo) compound and a member of naphthols (Figure 3). It is also a lysochrome or lipid-soluble dye predominantly used for demonstrating triglycerides in frozen tissue sections. Exceptionally, Sudan III may also stain some protein bound lipids in paraffin sections. Sudan III acts as a fluorochrome besides a histological lipid-specific dye. It also acts as a carcinogen. For use in histochemistry, a saturated solution of SUDAN III in isopropanol is prepared and tissue is counterstained in acid alum hematoxylin (approx. 0.1%) for 5 min. Lipids appear yellow-orange in colour upon staining with Sudan III (Figure 4). Nuclei will appear blue and cytoplasm will appear green. Since lysochrome dyes like SUDAN III are soluble in non-polar solvents, including xylene and toluene, and also in ethanol, these solvents must not be applied to the sections after lipids have been stained or the dye will dissolve out. Source: https://pubchem.ncbi.nlm.nih.gov/compound/Sudan-III#section=Structures Figure 3: Chemical structure of Sudan III dye 3 Figure 4: Sudan III staining of triglycerides 3. Sudan IV Synonyms: Solvent Red 24, Scarlet Red Sudan IV is a red β-naphthol disazo dye. Its basic structure is same as Sudan III with two extra methyl groups (Figure 5). Because of these groups, Sudan IV is deeper and more intense in color (Figure 6). With hydroxyl group present at ortho position, it has similar physical properties to Sudan III and is soluble in lipid. Sudan IV is also a lysochrome dye used widely for staining triglycerides in frozen tissue sections. The colour imparted by Sudan IV is because of the solubility of dye in lipids and it does not involve any chemical bonding. Sudan IV may also stain some protein bound lipids in paraffin sections. Sudan IV has been used in industries to colour oils, wax, shoe-polish, wood stains etc. Sudan IV also acts as a carcinogen. For histological staining, a saturated solution of Sudan IV is prepared and used in tissues. Source: http://www.chemspider.com/ImageView.aspx?id=11252033 Figure 5: Chemical structure of Sudan IV dye 4 Source: Porzionato, A. et al, 2013 Figure 6: SUDAN IV staining of fats in tissue (orange-red) 4. Nile Blue Sulphate Synonym: Nile Blue sulfate, Nile Blue A sulfate Nile blue sulphate is a basic oxazine dye (Figure 7) and is useful for staining fats. For dye preparation, 1% acid-hydrolysed Nile blue is prepared by boiling 200 ml of Nile Blue Sulphate with 10 ml of 1% H2SO4 for 4 hr with heating at controlled temperature. Nile blue sulfate can be used for staining both tissue lipid and extracted lipid. It is also used to distinguish melanins and lipofuscins. Nile blue sulphate is soluble in water and ethyl alcohol. It can also stain PHB (Poly-p3-hydroxybutyrate) granules in bacteria. PHB granules display bright orange fluorescence upon staining with Nile blue Sulfate. The dye is quite stable and does not fade easily from cells by decolouring procedures. Polar lipids such as phospholipids are coloured intense blue by the oxazine base of the dye whereas neutral lipids such as triglycerides, steroids and cholesteryl esters are stained red by its oxazone derivative. Free fatty acids are coloured Magneta-red due to a blend of red (oxazone) and blue (oxazine) staining. Aqueous solution of nile blue sulphate contains blue cation of the dye and also forms fluorescent red oxazone (Nile Red) by oxidation and a non- 5 fluorescent orange-red imino base. So, we can clearly distinguish phospholipids from the other main lipid classes in tissue sections by using nile blue sulphate dye. Source: https://pubchem.ncbi.nlm.nih.gov/compound/Nile-Blue-A-sulfate#section=2D-Structure Figure 7: Chemical structure of Nile Blue Sulphate *** 6 .
Recommended publications
  • The Morphology, Androgenic Function, Hyperplasia, and Tumors of the Human Ovarian Hilus Cells * William H
    THE MORPHOLOGY, ANDROGENIC FUNCTION, HYPERPLASIA, AND TUMORS OF THE HUMAN OVARIAN HILUS CELLS * WILLIAM H. STERNBERG, M.D. (From the Department of Pathology, School of Medicine, Tulane University of Louisiana and the Charity Hospital of Louisiana, New Orleans, La.) The hilus of the human ovary contains nests of cells morphologically identical with testicular Leydig cells, and which, in all probability, pro- duce androgens. Multiple sections through the ovarian hilus and meso- varium will reveal these small nests microscopically in at least 8o per cent of adult ovaries; probably in all adult ovaries if sufficient sections are made. Although they had been noted previously by a number of authors (Aichel,l Bucura,2 and von Winiwarter 3"4) who failed to recog- nize their significance, Berger,5-9 in 1922 and in subsequent years, pre- sented the first sound morphologic studies of the ovarian hilus cells. Nevertheless, there is comparatively little reference to these cells in the American medical literature, and they are not mentioned in stand- ard textbooks of histology, gynecologic pathology, nor in monographs on ovarian tumors (with the exception of Selye's recent "Atlas of Ovarian Tumors"10). The hilus cells are found in clusters along the length of the ovarian hilus and in the adjacent mesovarium. They are, almost without excep- tion, found in contiguity with the nonmyelinated nerves of the hilus, often in intimate relationship to the abundant vascular and lymphatic spaces in this area. Cytologically, a point for point correspondence with the testicular Leydig cells can be established in terms of nuclear and cyto- plasmic detail, lipids, lipochrome pigment, and crystalloids of Reinke.
    [Show full text]
  • Lysochrome Dyes Sudan Dyes, Oil Red Fat Soluble Dyes Used for Biochemical Staining of Triglycerides, Fatty Acids, and Lipoproteins Product Description
    FT-N13862 Lysochrome dyes Sudan dyes, Oil red Fat soluble dyes used for biochemical staining of triglycerides, fatty acids, and lipoproteins Product Description Name : Sudan IV Other names: Sudan R, C.I. Solvent Red 24, C.I. 26105, Lipid Crimson, Oil Red, Oil Red BB, Fat Red B, Oil Red IV, Scarlet Red, Scarlet Red N.F, Scarlet Red Scharlach, Scarlet R Catalog Number : N13862, 100g Structure : CAS: [85-83-6] Molecular Weight : MW: 380.45 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =513-529nm(red);Sol(EtOH):0.09% S:22/23/24/25 Name : Sudan III Other names: Rouge Sudan ; rouge Ceresin ; CI 26100; CI Solvent Red 23 Catalog Number : 08002A, 25g Structure : CAS:[85-86-9] Molecular Weight : MW: 352.40 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =503-510nm(red);Sol(EtOH):0.15% S:24/25 Name : Sudan Black B Other names: Sudan Black; Fat Black HB; Solvent Black 3; C.I. 26150 Catalog Number : 279042, 50g AR7910, 100tests stain for lipids granules Structure : CAS: [4197-25-5] S:22/23/24/25 Molecular Weight : MW: 456.54 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs=596-605nm(blue-black) Name : Oil Red O Other names: Solvent Red 27, Sudan Red 5B, C.I. 26125 Catalog Number : N13002, 100g Structure : CAS: [1320-06-5 ] Molecular Weight : MW: 408.51 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =518(359)nm(red);Sol(EtOH): moderate; Sol(water): Insoluble S:22/23/24/25 Storage: Room temperature (Z) P.1 FT-N13862 Technical information & Directions for use A lysochrome is a fat soluble dye that have high affinity to fats, therefore are used for biochemical staining of triglycerides, fatty acids, and lipoproteins.
    [Show full text]
  • An Improved Method of Staining Lipides : - Acetic- Carbol - Sudan
    . Onderstepoort J ournal of Vetet·inary Science and Animal l ndustrJJ, Volu-me 19, Nmnbers 1 and 2, Jamwry and April, 1944. Printed in the Union of South Africa by the Government Printer, Pretoria. An Improved Method of Staining Lipides : - Acetic- Carbol - Sudan. By CECIL JACKSON, Section of Anatomy, Onderstepoort. INTRODUCTION. THE literature on the microscopical demonstration of fats and fat-like substances is largely a record of dissatisfaction with previous methods. It is noteworthy how many authors, investigating the lipides of normal or patho­ logical tissues, have felt impelled to turn their attention to imprpvement of technique. Some of these have gone_ further and have become absorbed in the problem of fat-staining for its own sake and apart from the difficulties they originally encountered. 'l'he technique of Sudan staining is essentially a physico-chemical prqblem and histologist§ or pathologists venturing into this realm have sometimes had to run the gauntlet of expert criticism. This danger may act as a deterrent to investigation; but it is comforting to reflect that a successful technique will stand up to a lot of argument about its rationale: a good method will remain, irrespective of the ability of its author to defend or explain the theory underlying it, Many attempts have been made, either to modify the methods of using existing dyes or to introduce new dyes in the hope of securing improvement in fat staining. Thus we have seen " Sudan III ", " Scharlach R ", and " Sudan IV " successively become _the favourite or at least the most highly recommended substances; and there are a number of technical variations depending on the solvents used or on the -procedure of making the dilutions from stock solutions.
    [Show full text]
  • Student Safety Sheets Dyes, Stains & Indicators
    Student safety sheets 70 Dyes, stains & indicators Substance Hazard Comment Solid dyes, stains & indicators including: DANGER: May include one or more of the following Acridine orange, Congo Red (Direct dye 28), Crystal violet statements: fatal/toxic if swallowed/in contact (methyl violet, Gentian Violet, Gram’s stain), Ethidium TOXIC HEALTH with skin/ if inhaled; causes severe skin burns & bromide, Malachite green (solvent green 1), Methyl eye damage/ serious eye damage; may cause orange, Nigrosin, Phenolphthalein, Rosaniline, Safranin allergy or asthma symptoms or breathing CORR. IRRIT. difficulties if inhaled; may cause genetic defects/ cancer/damage fertility or the unborn child; causes damages to organs/through prolonged or ENVIRONMENT repeated exposure. Solid dyes, stains & indicators including Alizarin (1,2- WARNING: May include one or more of the dihydroxyanthraquinone), Alizarin Red S, Aluminon (tri- following statements: harmful if swallowed/in ammonium aurine tricarboxylate), Aniline Blue (cotton / contact with skin/if inhaled; causes skin/serious spirit blue), Brilliant yellow, Cresol Red, DCPIP (2,6-dichl- eye irritation; may cause allergic skin reaction; orophenolindophenol, phenolindo-2,6-dichlorophenol, HEALTH suspected of causing genetic PIDCP), Direct Red 23, Disperse Yellow 7, Dithizone (di- defects/cancer/damaging fertility or the unborn phenylthiocarbazone), Eosin (Eosin Y), Eriochrome Black T child; may cause damage to organs/respiratory (Solochrome black), Fluorescein (& disodium salt), Haem- HARMFUL irritation/drowsiness or dizziness/damage to atoxylin, HHSNNA (Patton & Reeder’s indicator), Indigo, organs through prolonged or repeated exposure. Magenta (basic Fuchsin), May-Grunwald stain, Methyl- ene blue, Methyl green, Orcein, Phenol Red, Procion ENVIRON. dyes, Pyronin, Resazurin, Sudan I/II/IV dyes, Sudan black (Solvent Black 3), Thymol blue, Xylene cyanol FF Solid dyes, stains & indicators including Some dyes may contain hazardous impurities and Acid blue 40, Blue dextran, Bromocresol green, many have not been well researched.
    [Show full text]
  • How to Construct and Use a Simple Device to Prevent the Formation of Precipitates When Using Sudan Black B for Histology
    Acta Botanica Brasilica 29(4): 489-498. 2015. doi: 10.1590/0102-33062015abb0093 How to construct and use a simple device to prevent the formation of precipitates when using Sudan Black B for histology João Marcelo Santos de Oliveira1 Received: April 17, 2015. Accepted: July 1, 2015 ABSTRACT The present work aims to demonstrate the stages of fabrication and use of a simple device to avoid the formation or fixa- tion of precipitates from Sudan Black B solution on tissues. The device consists of four coverslip fragments attached to a histology slide, which serve as points of support for the histological slide under analysis. To work properly, the histology slide with the sections should be placed with the sections facing downwards the device. A small space between the device and the histology slide is thereby created by the height of the coverslip fragments. When Sudan Black B is applied, the solution is maintained within the edges of the device and evaporation is minimized by the small space, thereby reducing the consequent formation of precipitates. Furthermore, by placing the sections facing downward the device, any sporadically formed precipitates are prevented from settling on and fixing to the sectioned tissues or organs. By avoiding the formation of precipitates, plant cells, tissues and organs can be better observed, diagnosed and photomicrographically recorded. Keywords: histochemical tests, histology, lipids, plant anatomy, Sudan Black B Introduction for organic solvents, printer ink, varnishes, resins, oils, fats, waxes, cosmetics and contact lenses. Sudan reagents, including the traditional Sudan III, IV Lansink (1968) isolated two pure fractions of Sudan and Sudan Black B (SBB), are widely utilized to determine Black B, in addition to impurities, and denominated them lipids (Horobin 2002) in animals, plants and hydrophobic SBB-I and SBB-II.
    [Show full text]
  • A Method for Staining Whole Brains for Gross and Macroscopic Study by W
    [ 134 ] A METHOD FOR STAINING WHOLE BRAINS FOR GROSS AND MACROSCOPIC STUDY BY W. HEWITT Department of Anatomy, St Thomas's Hospital Medical School, London A number of staining techniques are available for the macroscopic examination of thick slices of brain. Examples are those of Mulligan (1931) or Tompsett (1955), which stain the grey matter; or those of Waldman & Michaels (1954) or Brody & Wirth (1957), which colour the white matter with sudan stains. In all of these only the surface of a previously cut slice is stained and surface staining has a number of disadvantages. The techniques of Mulligan (1931) and Tompsett (1955) require a painstaking removal of the membranes and blood vessels, before sections are cut, to prevent smearing of the grey and white matter. Even then success is by no means always assured. Surface-stained brain slices will also be spoilt, by exposure ofunstained areas underneath, if accidentally knocked or chipped. Moreover, the section originally made may not be the one desired and it is not possible to pare away the surface to the desired level. Apart from these disadvantages, it can be useful to stain a whole brain so that when it is sectioned the grey and white matter can be clearly distinguished. For these reasons a technique has been developed for staining a whole brain using sudan stains. This was devised before the writer was aware of the staining methods of Waldman & Michaels (1954) and Brody & Wirth (1957); it is in fact based on a different principle. METHOD The brains can be fixed in either 70 % alcohol or, for preference, 10 % formaldehyde.
    [Show full text]
  • Sudan Dyes and Other Illegal Dyes
    Sudan dyes and other illegal dyes Analysis in spices and food Sudan dyes, e.g. Sudan I to IV, Sudan In October 2004, the governmental Orange G, Sudan Red B, Sudan Red G, chemical institute “Bergisches Land” in Sudan Red 7B, and Sudan Black B as Wuppertal, Germany, reported the well as other dyes like 4-(Dimethylamino)- identification of two prohibited colours: azobenzene (Butter Yellow) and Para Butter Yellow and Para Red in bell pepper Red are basically synthetically produced powder and curry. azo dyes. Their degradation products are In February 2005, Great Britain experi- considered to be carcinogens and enced an extensive Rapid Alert action teratogens. Due to this fact, the EU does cycle. Due to the widespread use of one not permit the use of these colours as batch of chilli powder contaminated with food additives. However, in some Sudan I, batches of different products like countries, these dyes are still occasionally Worcester sauce, pizzas, pot noodles and used in order to intensify the colour of bell seafood sauces were subjected to com- pepper and chilli powder. plete recalls. Background Another recent concern is the discovery of the natural colour annatto in food and During 2003, the EU-Rapid Alert System spice mixes. Annatto (E 160b) is permit- (RASFF) issued a series of notifications ted by the EU for use in a variety of foods concerning the presence of Sudan dyes and beverages but not in spices and in chilli products and others such as spice mixtures. Its main colouring constit- spices, mixtures of spices, tomato uent is Bixin, with Norbixin being present sauces, pastas and sausages.
    [Show full text]
  • Application of Standard Micro-Anatomical Staining Methods to Epoxy Resin-Embedded Sections
    J Clin Pathol: first published as 10.1136/jcp.22.5.589 on 1 September 1969. Downloaded from J. clin. Path. (1969), 22, 589-592 Application of standard micro-anatomical staining methods to epoxy resin-embedded sections S. R. APARICIO AND P. MARSDEN From the Department ofPathology, School of Medicine, Leeds SYNOPSIS Staining of semi-thin sections of osmium-fixed epoxy resin (Epon or Araldite)-embedded tissues with haematoxylin and acid dyes as counterstains (eosin or phloxin) was successfully achieved after intense oxidation using hydrogen peroxide as the oxygen donor. Results are closely similar to those obtained with paraffin sections (haematoxylin and eosin): nuclei stain blue, cytoplasm and extracellular structures (eg, collagen, elastica, basement membranes) stain with varying shades of red. Preliminary studies show that similarly good results, comparable with standard paraffin- embedded histological materials, can be obtained, using H202 pretreatment, with Weigert's iron haematoxylin, Mallory's phosphotungstic acid haematoxylin, Alcian blue, PAS reaction, Sudan III, Sudan black, oil red, Gomori's aldehyde fuchsin, and Baker's acid haematein. Staining of semi-thin sections of osmium-fixed, since Epon and Araldite became universally adopted copyright. epoxy resin-embedded tissues was developed in as embedding media. the last decade, mainly using basic aniline dyes This communication reports a simple and efficient in neutral or alkaline solutions (Bencosme, Stone, method of obtaining haematoxylin-eosin and haema- Latta, and Madden, 1959; Moore, Mumaw, and toxylin-phloxin epoxy resin preparations identical Schoenberg, 1960; Richardson, Jarett, and Finke, in colour contrast with paraffin sections. 1960; Trump, Smuckler, and Benditt, 1961; Grimley, Albrecht, and Michelitch, 1965; Lee and Hopper, MATERIAL AND METHODS 1965; Aoki and Gutierrez, 1967; Aparicio and Mars- http://jcp.bmj.com/ den, 1969; Huber, Parker, and Odland, A variety of tissues (human brain, peripheral nerve, 1968).
    [Show full text]
  • Fingerprint Source Book Chapter 3 Finger Mark Development
    Fingerprint Source Book – Chapter 3: Finger mark development techniques within scope of ISO 17025 3.7 Powder suspensions 1. History 1.1 During the development of the small particle reagent in the late 1970s, many other particulates were investigated as constituents in the formulation, including amorphous carbon and graphite and the oxides of the magnetic elements cobalt and iron [1]. All of these gave good results, but none were as consistent as molybdenum disulphide and therefore were not pursued as systems for operational use. 1.2 In a significant development that appears to have been overlooked at the time, Haque and co-workers developed an alternative ‘small particle suspension’ based on iron oxide (Fe3O4) in 1989, and stated that this gave better results than the molybdenum disulphide-based small particle reagent in terms of sensitivity and contrast [2]. The new formulation was also noted to work on wetted surfaces, and to enhance further marks previously developed by powdering. This formulation does not appear to have entered widespread use for non-porous surfaces and was not developed further. 1.3 In the mid-1990s similar formulations were developed by researchers at the National Identification Centre, Tokyo Metropolitan Police, who were investigating simple methods for developing fingerprints deposited on the adhesive side of tapes [3]. This was noted by an American police officer on secondment in Japan and after experimentation with black powder suspensions he contacted the Lightning Powder Company, which developed the ‘Sticky-Side Powder’ product now sold commercially, consisting of a pre-mixed powder that was blended with Kodak Photoflo surfactant and distilled water.
    [Show full text]
  • Histochemical Studies on Two Milliped Species1-2
    HISTOCHEMICAL STUDIES ON TWO MILLIPED SPECIES1-2 RAYMOND C. BOWEN Department of Biology, The Cleveland State University, Cleveland, Ohio ABSTRACT Histological and histochemical tests give similar results for the midguts of Floridobolus penneri (Causey, 1957) and Narceus gordanus (Chamberlin, 1943). The peritrophic mem- brane is composed of basic proteins and acid mucopolysaccharides. The epithelium contains basic proteins and large lipid concentrations, including glycolipids, phospholipids, and fatty acids. The luminal epithelial border gives reactions for protein-bound amino groups, tyrosine and phenolic compounds, and neutral fats. Protein-bound amino groups, glycoproteins, acid mucopolysaccharides, and bound lipids are found in the collagenous basement membrane. The circular and longitudinal muscle layers contain basic proteins, tyrosine and phenols, and bound fats. A large glycogen concentration occurs within the sheath membrane. This region, which is primarily basic protein, also gives positive reactions for protein-bound groups and both tyrosine and phenols. Little work has been done on the internal anatomy of diplopods. Early anatomical studies included investigations by Verhoeff (1914), Randow (1924), Attems (1926), Hefner (1929), and Miley (1930). Most biochemical analyses have included the whole animal and not particular organs or tissues. Siddiqui, et al. (1944) isolated dimethylglyoxime from a species of Indian diplopod. Bergmann (1949) reported that Ueno and Yamasaki had isolated a sterol from the saponifiable matter of millipeds.
    [Show full text]
  • STAINING TECHNIQUES — Staining Is an Auxiliary Technique Used in Microscopy to Enhance Contrast in the Microscopic Image
    STAINING TECHNIQUES Staining is an auxiliary technique used in microscopy to enhance contrast in the microscopic image. Stains or dyes are used in biology and medicine to highlight structures in biological tissues for viewing with microscope. Cell staining is a technique that can be used to better visualize cells and cell components under a microscope. Using different stains, it is possible to stain preferentially certain cell components, such as a nucleus or a cell wall, or the entire cell. Most stains can be used on fixed, or non-living cells, while only some can be used on living cells; some stains can be used on either living or non-living cells. In biochemistry, staining involves adding a class specific (DNA, lipids, proteins or carbohydrates) dye to a substrate to qualify or quantify the presence of a specific compound. Staining and fluorescence tagging can serve similar purposes Purposes of Staining The most basic reason that cells are stained is to enhance visualization of the cell or certain cellular components under a microscope. Cells may also be stained to highlight metabolic processes or to differentiate between live and dead cells in a sample. Cells may also be enumerated by staining cells to determine biomass in an environment of interest. Stains may be used to define and examine bulk tissues (e.g. muscle fibers or connective tissues), cell populations (different blood cells) or organelles within individual cells. Biological staining is also used to mark cells in flow cytometry, flag proteins or nucleic acids on gel electrophoresis Staining is not limited to biological materials, it can also be used to study the morphology (form) of other materials e.g.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0259332 A1 Hassan Et Al
    US 20140259332A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0259332 A1 Hassan et al. (43) Pub. Date: Sep. 18, 2014 (54) BREACH OR CONTAMINATION (52) U.S. Cl. INDICATING ARTICLE CPC .................................... A62B 17006 (2013.01) USPC 2/457; 2/168; 428/492; 428/521; 428/423.1; (71) Applicant: Ansell Limited, Richmond (AU) 264/255; 156/156 (72) Inventors: Noorman Bin Abu Hassan, Shah Alam (MY); Michael S. Zedalis, Mendham, NJ (US); Dave Narasimhan, (57) ABSTRACT Flemington, NJ (US) (73) Assignee: Ansell Limited, Richmond (AU) Provided among other things is a breach or contamination indicating elastomeric article for indicating a breach or con (21) Appl. No.: 14/204,513 tamination by a selected chemical or group of chemicals, the article having an exterior and interior and comprising: (a) an (22) Filed: Mar 11, 2014 interior elastomeric layer selected to resist permeation by the selected chemical(s), which interior layer is colored; and (b) Related U.S. Application Data a contiguous or dis-contiguous indicating layer comprising (60) Provisional application No. 61/777,307, filed on Mar. solid particles of hydrophobic dye effective to provide 12, 2013. enhanced color on contacting hexane, cyclohexane, Xylene, s ethyl ether, butyl acetate, MIBK, methanol, acetonitrile and Publication Classification acetic acid; wherein the distribution of the indicating layer provides for a visually noticeable color change against the (51) Int. Cl. background of the colored interior elastomeric layer upon a A62B 7/00 (2006.01) breach or contamination event by a selected chemical. 14 16 18 12 Patent Application Publication Sep.
    [Show full text]