How to Construct and Use a Simple Device to Prevent the Formation of Precipitates When Using Sudan Black B for Histology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gst Gram Staining Learning Objectives the Student Will Use Aseptic Techniques in the Safe Inoculation of Various Forms of Media
GSt Gram Staining Learning Objectives The student will Use aseptic techniques in the safe inoculation of various forms of media. Follow oral and written instructions and manage time in the lab efficiently. Use the bright field light microscope to view microbes under oil immersion, make accurate observations and appropriate interpretations and store the microscope according to lab procedures. Properly prepare a bacterial smear for accurate staining and describe the chemical basis for simple staining and negative staining. Background/Theory Differential staining distinguishes organisms based on their interactions with multiple stains. In other words, two organisms may appear to be different colors. Differential staining techniques commonly used in clinical settings include Gram staining, acid-fast staining, endospore staining, flagella staining, and capsule staining. This link to the OpenStax Microbiology text provides more detail on these differential staining techniques. (OpenStax CNX, 2018) The Gram stain is a differential staining procedure that involves multiple steps. It was developed by Danish microbiologist Hans Christian Gram in 1884 as an effective method to distinguish between bacteria containing the two most common types of cell walls. (OpenStax CNX, 2018) One type consists of an inner plasma membrane and a thick outer layer of peptidoglycan. The other type consists of a double phospholipid Figure 1 Simplified structures of Gram negative cells (left) and Gram positive bilayer with a thin layer of cells (right) peptidoglycan between the two. The Gram Staining technique remains one of the most frequently used staining techniques. The steps of the Gram stain procedure are listed below and illustrated in Figure. (OpenStax CNX, 2018) 1. -
The Morphology, Androgenic Function, Hyperplasia, and Tumors of the Human Ovarian Hilus Cells * William H
THE MORPHOLOGY, ANDROGENIC FUNCTION, HYPERPLASIA, AND TUMORS OF THE HUMAN OVARIAN HILUS CELLS * WILLIAM H. STERNBERG, M.D. (From the Department of Pathology, School of Medicine, Tulane University of Louisiana and the Charity Hospital of Louisiana, New Orleans, La.) The hilus of the human ovary contains nests of cells morphologically identical with testicular Leydig cells, and which, in all probability, pro- duce androgens. Multiple sections through the ovarian hilus and meso- varium will reveal these small nests microscopically in at least 8o per cent of adult ovaries; probably in all adult ovaries if sufficient sections are made. Although they had been noted previously by a number of authors (Aichel,l Bucura,2 and von Winiwarter 3"4) who failed to recog- nize their significance, Berger,5-9 in 1922 and in subsequent years, pre- sented the first sound morphologic studies of the ovarian hilus cells. Nevertheless, there is comparatively little reference to these cells in the American medical literature, and they are not mentioned in stand- ard textbooks of histology, gynecologic pathology, nor in monographs on ovarian tumors (with the exception of Selye's recent "Atlas of Ovarian Tumors"10). The hilus cells are found in clusters along the length of the ovarian hilus and in the adjacent mesovarium. They are, almost without excep- tion, found in contiguity with the nonmyelinated nerves of the hilus, often in intimate relationship to the abundant vascular and lymphatic spaces in this area. Cytologically, a point for point correspondence with the testicular Leydig cells can be established in terms of nuclear and cyto- plasmic detail, lipids, lipochrome pigment, and crystalloids of Reinke. -
The Suitability of Certain Stains 3R Studying Lignification in Balsam Fir, Ibies Balsamea (L.) Mill
The suitability of certain stains 3r studying lignification in balsam fir, ibies balsamea (L.) Mill Kutscha and Gray Technical bulletin 53 March 1972 Life Sciences and Agriculture Experiment Station Cover photo: Safranin and aniline blue, showing blue unlignified cambium (top of photo) and contrasting red lignified tissue (lower part of photo). Imma ture, secondary walls appear blue-blue green and can be seen approximately five to eight cells down from the cambial region. Section of FAA-killed and celloidm embedded compression wood sample collected July 6, 1966; X 320. ABSTRACT An investigation was conducted to examine the suitability of ten staining reactions for studying lignification in balsam fir, Abies balsamea (L.) Mill. Two experiments were carried out on material collected on two different dates. In each experiment slides of fresh, FAA-killed and FAA-killed celloldin-embedded material of normal and compression wood were stained and evaluated. No significant difference in staining reactions was found between material collected on different dates. In each experiment, the embedded material showed somewhat superior results compared with the fresh and FAA-killed material with at least half of the stains. No marked difference was observed between normal and compression wood. This study emphasized the need for considsring each of the ten staining reactions on an individual basis, since each has particular ad vantages and disadvantages as emphasized throughout the study. Stain ing schedules were prepared and tables compiled to determine -
Lysochrome Dyes Sudan Dyes, Oil Red Fat Soluble Dyes Used for Biochemical Staining of Triglycerides, Fatty Acids, and Lipoproteins Product Description
FT-N13862 Lysochrome dyes Sudan dyes, Oil red Fat soluble dyes used for biochemical staining of triglycerides, fatty acids, and lipoproteins Product Description Name : Sudan IV Other names: Sudan R, C.I. Solvent Red 24, C.I. 26105, Lipid Crimson, Oil Red, Oil Red BB, Fat Red B, Oil Red IV, Scarlet Red, Scarlet Red N.F, Scarlet Red Scharlach, Scarlet R Catalog Number : N13862, 100g Structure : CAS: [85-83-6] Molecular Weight : MW: 380.45 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =513-529nm(red);Sol(EtOH):0.09% S:22/23/24/25 Name : Sudan III Other names: Rouge Sudan ; rouge Ceresin ; CI 26100; CI Solvent Red 23 Catalog Number : 08002A, 25g Structure : CAS:[85-86-9] Molecular Weight : MW: 352.40 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =503-510nm(red);Sol(EtOH):0.15% S:24/25 Name : Sudan Black B Other names: Sudan Black; Fat Black HB; Solvent Black 3; C.I. 26150 Catalog Number : 279042, 50g AR7910, 100tests stain for lipids granules Structure : CAS: [4197-25-5] S:22/23/24/25 Molecular Weight : MW: 456.54 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs=596-605nm(blue-black) Name : Oil Red O Other names: Solvent Red 27, Sudan Red 5B, C.I. 26125 Catalog Number : N13002, 100g Structure : CAS: [1320-06-5 ] Molecular Weight : MW: 408.51 λabs = 513-529 nm (red); Sol(EtOH): 0.09%abs =518(359)nm(red);Sol(EtOH): moderate; Sol(water): Insoluble S:22/23/24/25 Storage: Room temperature (Z) P.1 FT-N13862 Technical information & Directions for use A lysochrome is a fat soluble dye that have high affinity to fats, therefore are used for biochemical staining of triglycerides, fatty acids, and lipoproteins. -
Revisions Inserts Rev from Rev to JOB
BALTSO0191 Version 11.0 Template 4 Revisions Inserts Rev from Rev to JOB # 06 07 52-17 Notes: 1. BD Catalog Number: 212525, 212526, 212527, 212528, 212531, 212532, 212539, 212542, 212543, 212544, 212545 2. Blank (Sheet) Size: Length: 25.5” Width: 22” 3. Number of Pages: 28 Number of Sheets: 1 4. Page Size: Length: 8.5” Width: 5.5” Final Folded Size: 4.25” x 5.5” 5. Ink Colors: No. of Colors: 2 PMS#: 032 Red; Standard Black 6. Printed two sides: Yes X No 7. Style (see illustrations below): # 5 W W W W W W W 8. Vendor Printed X Online/In House Printed Web 9. See specication control no. N/A for material information. 10. Graphics are approved by Becton, Dickinson and Company. Supplier has the responsibility for using the most current approved revision level. Label Design COMPANY CONFIDENTIAL. THIS DOCUMENT IS THE PROPERTY OF BECTON, DICKINSON AND Becton, Dickinson and Company Proofer COMPANY AND IS NOT TO BE USED OUTSIDE THE COMPANY WITHOUT WRITTEN PERMISSION. 7 Loveton Circle Sparks, MD 21152 USA Checked By Category and Description Sheet: 1 of 29 Part Number: Package Insert, 8820191JAA Gram Stain Kits and Reagents Scale: N/A A B Gram Stain Kits and Reagents English: pages 1 – 5 Italiano: pagine 14 – 18 8820191JAA(07) Français : pages 5 – 9 Español: páginas 19 – 23 2017-09 Deutsch: Seiten 10 – 14 Contact your local BD representative for instructions. / Свържете се с местния представител на BD за инструкзии. / Pokyny vám poskytne místní zástupce společnosti BD. / Kontakt den lokale BD repræsentant for at få instruktioner. -
An Improved Method of Staining Lipides : - Acetic- Carbol - Sudan
. Onderstepoort J ournal of Vetet·inary Science and Animal l ndustrJJ, Volu-me 19, Nmnbers 1 and 2, Jamwry and April, 1944. Printed in the Union of South Africa by the Government Printer, Pretoria. An Improved Method of Staining Lipides : - Acetic- Carbol - Sudan. By CECIL JACKSON, Section of Anatomy, Onderstepoort. INTRODUCTION. THE literature on the microscopical demonstration of fats and fat-like substances is largely a record of dissatisfaction with previous methods. It is noteworthy how many authors, investigating the lipides of normal or patho logical tissues, have felt impelled to turn their attention to imprpvement of technique. Some of these have gone_ further and have become absorbed in the problem of fat-staining for its own sake and apart from the difficulties they originally encountered. 'l'he technique of Sudan staining is essentially a physico-chemical prqblem and histologist§ or pathologists venturing into this realm have sometimes had to run the gauntlet of expert criticism. This danger may act as a deterrent to investigation; but it is comforting to reflect that a successful technique will stand up to a lot of argument about its rationale: a good method will remain, irrespective of the ability of its author to defend or explain the theory underlying it, Many attempts have been made, either to modify the methods of using existing dyes or to introduce new dyes in the hope of securing improvement in fat staining. Thus we have seen " Sudan III ", " Scharlach R ", and " Sudan IV " successively become _the favourite or at least the most highly recommended substances; and there are a number of technical variations depending on the solvents used or on the -procedure of making the dilutions from stock solutions. -
GRAM STAIN REAGENTS - for in Vitro Use Only - Catalogue No
GRAM STAIN REAGENTS - For in vitro use only - Catalogue No. SG51-55 Our Gram-Stain Reagents are intended to be The last step is the application of a counterstain. The used as a differential stain for the microscopic most common counterstain is safranin, which colors examination of bacterial cultures and laboratory decolorized cells pink. An alternate counterstain is basic specimens. fuchsin, which gives the decolorized cells more of a Gram staining is the single most useful test in bright pink or fuchsia coloration. The basic fuchsin the microbiology laboratory given its simplicity and counterstain works particularly well for anaerobic ability to differentiate bacteria into two main bacteria, but poorly for Legionella and Bordetella groups: gram-positive organisms and gram negative species. organisms. Hans Christian Joachim Gram first devised the original procedure in the late 19 th century, and although modifications have since been Formulation per Litre made, the basic principles and results remain the same. Our formulation is often referred to as the SG51 Gram Crystal Violet Hucker Modification. The staining spectrum includes almost all Crystal Violet ................................................ 20.0 g bacteria, many fungi, and parasites such as Ammonium Oxalate ....................................... 8.0 g Trichomonas , Strongyloides , and protozoan cysts. Methanol ................................................. 200.0 mL The notable exceptions include intracellular pathogens such as Chlamydia and Rickettsia , and SG52 Gram Iodine those organisms lacking a true cell wall such as Mycobacterium , Mycoplasma , and Ureaplasma . Iodine Crystals .............................................. 3.33 g The differential properties of the staining Potassium Iodide ........................................... 6.67 g process are attributed to the differences in composition between gram-positive and gram- SG53 Gram Decolorizer negative cell walls. -
A Method for Staining Whole Brains for Gross and Macroscopic Study by W
[ 134 ] A METHOD FOR STAINING WHOLE BRAINS FOR GROSS AND MACROSCOPIC STUDY BY W. HEWITT Department of Anatomy, St Thomas's Hospital Medical School, London A number of staining techniques are available for the macroscopic examination of thick slices of brain. Examples are those of Mulligan (1931) or Tompsett (1955), which stain the grey matter; or those of Waldman & Michaels (1954) or Brody & Wirth (1957), which colour the white matter with sudan stains. In all of these only the surface of a previously cut slice is stained and surface staining has a number of disadvantages. The techniques of Mulligan (1931) and Tompsett (1955) require a painstaking removal of the membranes and blood vessels, before sections are cut, to prevent smearing of the grey and white matter. Even then success is by no means always assured. Surface-stained brain slices will also be spoilt, by exposure ofunstained areas underneath, if accidentally knocked or chipped. Moreover, the section originally made may not be the one desired and it is not possible to pare away the surface to the desired level. Apart from these disadvantages, it can be useful to stain a whole brain so that when it is sectioned the grey and white matter can be clearly distinguished. For these reasons a technique has been developed for staining a whole brain using sudan stains. This was devised before the writer was aware of the staining methods of Waldman & Michaels (1954) and Brody & Wirth (1957); it is in fact based on a different principle. METHOD The brains can be fixed in either 70 % alcohol or, for preference, 10 % formaldehyde. -
Sudan Dyes and Other Illegal Dyes
Sudan dyes and other illegal dyes Analysis in spices and food Sudan dyes, e.g. Sudan I to IV, Sudan In October 2004, the governmental Orange G, Sudan Red B, Sudan Red G, chemical institute “Bergisches Land” in Sudan Red 7B, and Sudan Black B as Wuppertal, Germany, reported the well as other dyes like 4-(Dimethylamino)- identification of two prohibited colours: azobenzene (Butter Yellow) and Para Butter Yellow and Para Red in bell pepper Red are basically synthetically produced powder and curry. azo dyes. Their degradation products are In February 2005, Great Britain experi- considered to be carcinogens and enced an extensive Rapid Alert action teratogens. Due to this fact, the EU does cycle. Due to the widespread use of one not permit the use of these colours as batch of chilli powder contaminated with food additives. However, in some Sudan I, batches of different products like countries, these dyes are still occasionally Worcester sauce, pizzas, pot noodles and used in order to intensify the colour of bell seafood sauces were subjected to com- pepper and chilli powder. plete recalls. Background Another recent concern is the discovery of the natural colour annatto in food and During 2003, the EU-Rapid Alert System spice mixes. Annatto (E 160b) is permit- (RASFF) issued a series of notifications ted by the EU for use in a variety of foods concerning the presence of Sudan dyes and beverages but not in spices and in chilli products and others such as spice mixtures. Its main colouring constit- spices, mixtures of spices, tomato uent is Bixin, with Norbixin being present sauces, pastas and sausages. -
Application of Standard Micro-Anatomical Staining Methods to Epoxy Resin-Embedded Sections
J Clin Pathol: first published as 10.1136/jcp.22.5.589 on 1 September 1969. Downloaded from J. clin. Path. (1969), 22, 589-592 Application of standard micro-anatomical staining methods to epoxy resin-embedded sections S. R. APARICIO AND P. MARSDEN From the Department ofPathology, School of Medicine, Leeds SYNOPSIS Staining of semi-thin sections of osmium-fixed epoxy resin (Epon or Araldite)-embedded tissues with haematoxylin and acid dyes as counterstains (eosin or phloxin) was successfully achieved after intense oxidation using hydrogen peroxide as the oxygen donor. Results are closely similar to those obtained with paraffin sections (haematoxylin and eosin): nuclei stain blue, cytoplasm and extracellular structures (eg, collagen, elastica, basement membranes) stain with varying shades of red. Preliminary studies show that similarly good results, comparable with standard paraffin- embedded histological materials, can be obtained, using H202 pretreatment, with Weigert's iron haematoxylin, Mallory's phosphotungstic acid haematoxylin, Alcian blue, PAS reaction, Sudan III, Sudan black, oil red, Gomori's aldehyde fuchsin, and Baker's acid haematein. Staining of semi-thin sections of osmium-fixed, since Epon and Araldite became universally adopted copyright. epoxy resin-embedded tissues was developed in as embedding media. the last decade, mainly using basic aniline dyes This communication reports a simple and efficient in neutral or alkaline solutions (Bencosme, Stone, method of obtaining haematoxylin-eosin and haema- Latta, and Madden, 1959; Moore, Mumaw, and toxylin-phloxin epoxy resin preparations identical Schoenberg, 1960; Richardson, Jarett, and Finke, in colour contrast with paraffin sections. 1960; Trump, Smuckler, and Benditt, 1961; Grimley, Albrecht, and Michelitch, 1965; Lee and Hopper, MATERIAL AND METHODS 1965; Aoki and Gutierrez, 1967; Aparicio and Mars- http://jcp.bmj.com/ den, 1969; Huber, Parker, and Odland, A variety of tissues (human brain, peripheral nerve, 1968). -
Histochemical Studies on Two Milliped Species1-2
HISTOCHEMICAL STUDIES ON TWO MILLIPED SPECIES1-2 RAYMOND C. BOWEN Department of Biology, The Cleveland State University, Cleveland, Ohio ABSTRACT Histological and histochemical tests give similar results for the midguts of Floridobolus penneri (Causey, 1957) and Narceus gordanus (Chamberlin, 1943). The peritrophic mem- brane is composed of basic proteins and acid mucopolysaccharides. The epithelium contains basic proteins and large lipid concentrations, including glycolipids, phospholipids, and fatty acids. The luminal epithelial border gives reactions for protein-bound amino groups, tyrosine and phenolic compounds, and neutral fats. Protein-bound amino groups, glycoproteins, acid mucopolysaccharides, and bound lipids are found in the collagenous basement membrane. The circular and longitudinal muscle layers contain basic proteins, tyrosine and phenols, and bound fats. A large glycogen concentration occurs within the sheath membrane. This region, which is primarily basic protein, also gives positive reactions for protein-bound groups and both tyrosine and phenols. Little work has been done on the internal anatomy of diplopods. Early anatomical studies included investigations by Verhoeff (1914), Randow (1924), Attems (1926), Hefner (1929), and Miley (1930). Most biochemical analyses have included the whole animal and not particular organs or tissues. Siddiqui, et al. (1944) isolated dimethylglyoxime from a species of Indian diplopod. Bergmann (1949) reported that Ueno and Yamasaki had isolated a sterol from the saponifiable matter of millipeds. -
DIFFERENTIAL STAINING, Part I
DIFFERENTIAL STAINING, Part I Differential staining is a procedure that takes advantage of differences in the physical and chemical properties of different groups of bacteria. It allows us to differentiate between different kinds of bacterial cells or different parts of a bacterial cell. I. GRAM STAIN The most commonly used differential stain is the Gram stain, first described in 1884 by Christian Gram, a Danish physician. The Gram reaction divides bacteria into two groups, those which are Gram-positive and those which are Gram-negative. Those organisms which retain the primary stain (crystal violet) are stained purple and are designated Gram-positive; those which lose the crystal violet and are subsequently stained by a safranin counterstain appear red and are designated Gram-negative. The conventional Gram-stain technique is described in the Procedure part of this handout; however, it is important to recognize early on that two aspects of the procedure are crucial: 1. The crystal violet treatment must precede iodine treatment. Iodine acts as a mordant, i.e., it increases the affinity of the cells for the crystal violet. Iodine alone has no bacterial staining capabilities. 2. Decolorization must be short and precise. Too long an exposure to 95% alcohol will decolorize Gram-positive as well as Gram-negative cells. The Gram stain has been used as a taxonomic tool for many years, aiding in the classification and identification of bacterial cells. However, it is also useful in a broader sense, as there appears to be a close correlation between the Gram reaction and many other morphological and physiological characteristics of bacterial cells.