The Araceae of Borneo-The Genera

Total Page:16

File Type:pdf, Size:1020Kb

The Araceae of Borneo-The Genera P. C. BOYCE, S. Y. WONG, A. P. J. TING, S. E. LOW, S. L. LOW, K. K. NG, l. H. 001, 2010 3 The Araceae of Borneo-The Genera Peter C. Boyce Visiting Scientist Pusat Pengajian Sains Kajihayat [School Of Biological Sciences] Universiti Sains Malaysia 11800 USM, Polau Pinang, Malaysia [email protected] Wong Sin Yeng, April Ting Pei Jen, Low Shook Eng, and Low Shook ling Department of Plant Science & Environmental Ecology Faculty of Resource Science & Technology Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia [email protected]; [email protected]; [email protected]; shookling5052@ho~com Ng Kiaw Kiaw and Ooi 1m Bin School of Biological Sciences Universiti Sains Malaysia 11800 Penang, Malaysia [email protected]; [email protected] ABSTRACT flora for Borneo quite likely exceeds 1,000 species, with barely one third of these A summary of the aroids of Borneo of the described. Borneo is an aroid habitat of rank of genus and above is offered. 36 global significance, and arguably one of the genera are listed, of which 35 are indige­ richest and diverse on the planet. World nous, and one (Typhonium Schott) genu­ and Bornean taxonomy and ecology are inely naturalized. Of the 35 indigenous briefly outlined, along with a summary of genera, eight (Aridarnm Ridl., Bakoa the history of aroid fieldwork in Borneo. P.C.Boyce & S.Y.Wong, Bucephalandra The most recent key literature is cited, and Schott, Ooia S.Y.Wong & P.C.Boyce, Ped­ keys to Bornean aroid taxa of genus and icellarnm M.Hotta, Phymatarnm M.Hotta, above are presented. Most genera are Pichinia S.Y.Wong & P.C.Boyce, and illustrated. Schottariella P.C.Boyce & S.Y.Wong) are Bornean endemics. Four additional genera PREAMBLE (Caladium Vent., Dieffenbachia Schott, Syngonium Schott, and Xanthosoma The aroid flora of Borneo is one of the Schott) are listed as adventives. The aroid richest on the planet, comprising at least flora of Borneo currently stands at 670 670 species (Boyce, Croat & Wong, unpub. indigenous species, of which more than data), of which approximately 40% remain 40% are undescribed novelties, and with to be described. Remarkably, these data are this figure based significantly on our based significantly on our understanding of understanding of the flora of Sarawak, the flora of Sarawak, Sabah and Brunei (Le. Sabah and Brunei (Le. less than one third less than one third of the total landmass). of the total landmass). Kalimantan, com­ Kalimantan, comprising more than 70% of prising more than 70% of the land area of the land area of Borneo, remains very Borneo remains very poorly known, and poorly known, and undoubtedly harbors undoubtedly harbors a great many novel a great many novel species. We estimate species. It is estimated that the total aroid that the total aroid flora for Borneo quite 4 AROIDEANA, Vol. 33 likely exceeds 1,000 species, with barely Europe until he and his family were one third of these described. In short, murdered during a local uprising at the Borneo is an aroid habitat of global start of the Bandjermasin War. significance, and arguably one of the Englishman Hugh Low (later Sir Hugh richest and most diverse on the planet. Low) came from a significant family of nurserymen in Clapton, north London, and mSTORY OF AROID RESEARCH initially arrived in Sarawak, Borneo in early FIElDWORK IN BORNEO 1845 on a commission from the Honorable East Indian Company, soon resigned and Over the past almost two centuries became secretary to James Brooke (the first Borneo has been witness to numerous of Sarawak's 'White Rajahs'). He later expeditions which undertook significant explored the Sarawak river and many of sampling of biodiversity, as well as many its tributaries before traveling to Labuan in specifically plant-related excursions, usual­ modem-day Sabah, where he was to be ly by individuals. Thus our knowledge of based from 1848-1877, and from where he the aroids of Borneo, such as it is, is based made many excursions, including the first in part on data and samples gathered by European ascent of Mt. Kinabalu. Although field naturalists with varying levels of Low's main interest was orchids, during his interest in the family. travels he collected numerous aroids, many Among the earliest collecting in Borneo of which he shipped living to the family pertinent to aroids was that by the Dutch company in England. botanist Pieter Willem Korthals (1807- In terms of land area covered the most 1892). Korthals arrived at Banjarmasin, in extensive explorations ever of Borneo what is now South Eastern Kalimantan remain those of Anton Willem Nieuwen­ Selatan in late July 1836, and explored the huis (1864-1953), a surgeon in the Dutch region until mid-December of the same East Indian Army, and later Prof. of year. His collections were deposited in the Ethnology of the Dutch East Indies. Nieu­ Leiden Herbarium, Netherlands, with in­ wenhuis traveled extenSively through what complete sets sent to Buitenzorg Herbari­ is now Kalimantan between 1896 and 1934. um (now Herbarium Bogoriense) in Java, His expeditions are especially notable for and to various herbaria in Europe. the quantity of living plants, collected Next on the scene was Yorkshireman mainly by his European assistants, particu­ James Motley (1822-1859) who went to larly Johann ('Hans') Gottfried Hallier Labuan (an island in the Bay of Brunei, (1868-1932) and later Gustaaf Adolf Fre­ between modem Brunei and the Malaysian derik Molengraaf (1860-1942), and Indo­ state of Sabah) in 1849 to pioneer coal nesian mantris, and sent to Buitenzorg mining and other enterprises for the (Bogor) Botanical Gardens, Java, to be Eastern Archipelago Company. Although cultivated. These living collections signifi­ Motley did not have a good relationship cantly assisted Alderwerelt and Engler in with Hugh Low, the other naturalist in their studies. Nieuiwenhuis' herbarium Labuan at the time, he corresponded with collections were deposited in Bogor and numerous botanists, especially William Leiden. Jackson Hooker at Kew Gardens and Despite the preceding activities, it can notably Heinrich Wilhelm Schott in Vienna. still be fairly said that the history of After Motley quit the Eastern Archipelago intensive systematic aroid research in Bor­ Company in 1853 he spent time on neo begins with the extraordinary activities Singapore and in exploring the coast of ofItalian naturalist Odorado Beccari (1843- Sumatera, before being employed as su­ 1920). While best remembered for his work perintendent of the private Julia Hermina on palms (Arecaceae), a group in which he coal mine at Bangkal south-east of Banjar­ specialized throughout most of his adult masin. From here he continued to send life, through his prodigious collecting plant material, including living aroids, to activities, Beccari made significant contri- p. C. BOYCE, S. Y. WONG, A. P. J. TI G , S. E. LOW, S. L. LOW, K. K. NG, I. H. 001, 2010 5 Plate 1. Lemnoideae. A. Lemna aequinoctialis Welw. B. SpiTOcle/a poly rrbiza (1.) Schleid. Note the multiple roots emerging from each plant body and the reddish coloration. C. Minute W'o/Ifia glohosa (Roxb.) Hartog & Plas surrounding Spiracle/a po/yrrhiza. D. Lemna minor L. 6 AROlDEAi\)A, Vol. 33 Plate 2. Potheae: Pothos L. A & B: Pathos atropurp urascens M.Hotta. A: Note the diagnostic large, inflated, lavender spathes. B. Spadix detail s w ith the tepals clearly visible aro und each fl ower. C: Pathos min:thilis Merr. C. Freshly opened inflo rescence. Over the next few days the spadix wil l extend to double the pictured length . D: Pathos insignis Eng!. P. C. BOYCE, S. Y. WONG, A. P. J. TING, S. E. LOW, S. L. LOW, K. K. NG, I. H. 001, 2010 7 butions to numerous other plant families, administering the often enormous areas in particular the aroids (Araceae), for which under their jurisdiction and exploring the family he is famous for introducing to abundant wildlife. Charles Hose, sent to Europe the Titan Arum (Amorphophallus Sarawak as a trainee cadet under the Rajah titanum (Becc.) Becc.) from Sumatera in Sir Charles Brook, arrived in Sarawak in 1878. The imagination-capturing nature of 1884 and was in 1888 stationed in Baram, in this indisputably remarkable plant has, the even now remote N.E. ofthe state. Hose somewhat regrettably, overshadowed Bec­ was eventually to spend over 25 years in cari's exemplary aroid work in Sarawak, Sarawak, of which 20 years was spent in when through general collecting from Baram. Among Hose's remarkable feats 1865-1868 he made the first significant were the exploration of the Hose Moun­ gatherings of the extraordinarily rich aroid tains, the range that separates the valleys of flora of N.W. Borneo at a time when the Rejang and Baram rivers, and the first virtually every aroid he touched was new extensive exploration of the limestone to science. systems of Niah, among much else. Al­ The bulk of Beccari's Bornean aroid though not specifically an aroid collector, material was worked up by Engler, primar­ the very nature of Hose's fieldwork in ily in the Bullettino della Reale Societa botanically unexplored areas netted many Toscana di Orticultura (Engler, 1879a), the novel collections. These were later worked Botanische JahrbUcher fur Systematik, up by Rendle (1901). Pjlanzengeschichte und Pjlanzengeogra­ The next person to visit Borneo, specif­ phie (Engler, 1881), and in Beccari's Malesia ically Sarawak, with a particular interest in (Engler, 1883), with additional taxa and aroids was Henry Nicholas Ridley (1855- notes appearing in Monographiae Phaner­ 1956). Ridley, a prodigiously productive ogamarum (Engler, 1879b), and Das Pflan­ botanist, made a series of visits to Borneo zenreich (Engler, 1912). Beccari himself between 1893 and 1915 and through the wrote up several aroid species (Beccari, resulting publications (in particular Ridley, 1879, 1882).
Recommended publications
  • Interior Plants: Selection and Care
    AZ1025 Interior Plants: Selection and Care 5/98 ELIZABETH D AVISON Some may be purchased at relatively low cost from garden Lecturer, Plant Sciences centers or from garden catalogs. Their readings of Low, Medium and High can give “ballpark figures,” and they can eliminate much of the guesswork in selecting plants (originally authored by Dr. Charles Sacamano, Extension that are adapted to light levels in a given location. Horticulture Specialist, and Dr. Douglas A. Bailey, If sunlight is the major light source you may determine Assistant Professor, Plant Sciences) which category your indoor location falls into by using the following descriptions: Almost any indoor environment is more pleasant and High Light: areas within four feet of large south-east or attractive when living plants are a part of the setting. In west facing windows. apartments, condominiums and single family residences, plants add warmth, personality and year-round beauty. Medium Light: locations in a range of four to eight feet Shopping centers, hotels and resorts take full advantage of from south and east windows and west windows that the colorful, relaxed atmosphere created by green growing do not receive direct sun. things. Offices, banks and other commercial buildings rely Low Light: areas more than eight feet from windows as in on interior plants to humanize the work environment and the center of a room, a hallway or an inside wall. increase productivity. Northern exposures often fall into this category, even There are other important, often overlooked functions close to the window. Many locations that receive only performed by indoor plants. These include directing or artificial light are also low light situations.
    [Show full text]
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • 2007 Vol. 10, Issue 1
    Department of Botany & the U.S. National Herbarium TheThe PlantPlant PressPress New Series - Vol. 10 - No. 1 January-March 2007 Botany Profile Taking Aim at the GSPC Targets By Gary A. Krupnick and W. John Kress n 2002, the Convention on Biologi- are the contributions that the Department The data and images of more than cal Diversity (CBD), a global treaty has made towards achieving the 16 targets 95,000 type specimens of algae, Isigned by 188 countries addressing since the Strategy’s inception in 2002. lichens, bryophytes, ferns, gymno- the conservation and sustainable use of sperms and angiosperms are available on biological diversity, adopted the Global Understanding and Documenting Plant USNH’s Type Specimen Register at Strategy for Plant Conservation (GSPC), Diversity <http://ravenel.si.edu/botany/types/>. A the first CBD document that defines Target 1: A widely accessible working multi-DVD set containing images of specific targets for conserving plant list of known plant species, as a step 89,000 vascular type specimens from diversity. The 16 targets are grouped towards a complete world flora USNH has been produced and distrib- under five major headings: (a) under- uted to institutions around the world. In standing and documenting plant diversity; One of the Department’s core mis- addition, data from 778,054 specimen (b) conserving plant diversity; (c) using sions is to discover and describe plant life records have been inventoried in the plant diversity sustainably; (d) promoting in marine and terrestrial environments. EMu catalogue software. education and awareness about plant Thus, one primary objective is to conduct In addition, USNH is a partner in diversity; and (e) building capacity for field work in poorly known areas of high producing the Global Working Check- the conservation of plant diversity.
    [Show full text]
  • CGGJ Vansteenis
    BIBLIOGRAPHY : ALGAE 3957 X. Bibliography C.G.G.J. van Steenis (continued from page 3864) The entries have been split into five categories: a) Algae — b) Fungi & Lichens — c) Bryophytes — d) Pteridophytes — e) Spermatophytes 8 General subjects. — Books have been marked with an asterisk. a) Algae: ABDUS M & Ulva a SALAM, A. Y.S.A.KHAN, patengansis, new species from Bang- ladesh. Phykos 19 (1980) 129-131, 4 fig. ADEY ,w. H., R.A.TOWNSEND & w„T„ BOYKINS, The crustose coralline algae (Rho- dophyta: Corallinaceae) of the Hawaiian Islands. Smithson„Contr„ Marine Sci. no 15 (1982) 1-74, 47 fig. 10 new) 29 new); to subfamilies and genera (1 and spp. (several key genera; keys to species„ BANDO,T„, S.WATANABE & T„NAKANO, Desmids from soil of paddyfields collect- ed in Java and Sumatra. Tukar-Menukar 1 (1982) 7-23, 4 fig. 85 species listed and annotated; no novelties. *CHRISTIANSON,I.G., M.N.CLAYTON & B.M.ALLENDER (eds.), B.FUHRER (photogr.), Seaweeds of Australia. A.H.& A.W.Reed Pty Ltd., Sydney (1981) 112 pp., 186 col.pl. Magnificent atlas; text only with the phyla; ample captions; some seagrasses included. CORDERO Jr,P.A„ Studies on Philippine marine red algae. Nat.Mus.Philip., Manila (1981) 258 pp., 28 pi., 1 map, 265 fig. Thesis (Kyoto); keys and descriptions of 259 spp„, half of them new to the Philippines; 1 new species. A preliminary study of the ethnobotany of Philippine edible sea- weeds, especially from Ilocos Norte and Cagayan Provinces. Acta Manillana A 21 (31) (1982) 54-79. Chemical analysis; scientific and local names; indication of uses and storage.
    [Show full text]
  • Araceae), with P
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326850; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taxonomic revision of the threatened African genus Pseudohydrosme Engl. (Araceae), with P. ebo, a new, Critically Endangered species from Ebo, Cameroon. Martin Cheek¹, Barthelemy Tchiengue2, Xander van der Burgt¹ ¹Science, Royal Botanic Gardens, Kew, Richmond, Surrey, U.K. 2 IRAD-Herbier National Camerounais, Yaoundé, BP 1601, Cameroon Corresponding author: Martin Cheek¹ Email address: [email protected] ABSTRACT This is the first revision in nearly 130 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Sister to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2–3-locular ovary (not unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (not exposed, far exceeding the spathe), stipitate fruits and viviparous (vegetatively apomictic) roots (not sessile, roots non-viviparous). Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Littoral, Cameroon, the first addition to the genus since the nineteenth century, and which extends the range of the genus 450 km north from Gabon, into the Cross-Sanaga biogeographic area.
    [Show full text]
  • Giant Swamp Taro, a Little-Known Asian-Pacific Food Crop Donald L
    36 TROPICAL ROOT CROPS SYMPOSIUM Martin, F. W., Jones, A., and Ruberte, R. M. A improvement of yams, Dioscorea rotundata. wild Ipomoea species closely related to the Nature, 254, 1975, 134-135. sweet potato. Ec. Bot. 28, 1974,287-292. Sastrapradja, S. Inventory, evaluation and mainte­ Mauny, R. Notes historiques autour des princi­ nance of the genetic stocks at Bogor. Trop. pales plantes cultiVl!es d'Afrique occidentale. Root and Tuber Crops Tomorrow, 2, 1970, Bull. Inst. Franc. Afrique Noir 15, 1953, 684- 87-89. 730. Sauer, C. O. Agricultural origins and dispersals. Mukerjee, I., and Khoshoo, T. N. V. Genetic The American Geogr. Society, New York, 1952. evolutionary studies in starch yielding Canna Sharma, A. K., and de Deepesh, N. Polyploidy in edulis. Gen. Iber. 23, 1971,35-42. Dioscorea. Genetica, 28, 1956, 112-120. Nishiyama. I. Evolution and domestication of the Simmonds, N. W. Potatoes, Solanum tuberosum sweet potato. Bot. Mag. Tokyo, 84, 1971, 377- (Solanaceae). In Simmonds, N. W., ed., Evolu­ 387. tion of crop plants. Longmans, London, 279- 283, 1976. Nishiyama, I., Miyazaki, T., and Sakamoto, S. Stutervant, W. C. History and ethnography of Evolutionary autoploidy in the sweetpotato some West Indian starches. In Ucko, J. J., and (Ipomea batatas (L). Lam.) and its preogenitors. Dimsley, G. W., eds., The domestication of Euphytica 24, 1975, 197-208. plants and animals. Duckworth, London, 177- Plucknett, D. L. Edible aroids, A locasia, Colo­ 199, 1969. casia, Cyrtosperma, Xanthosoma (Araceae). In Subramanyan, K. N., Kishore, H., and Misra, P. Simmonds, N. W., ed., Evolution of crop plants. Hybridization of haploids of potato in the plains London, 10-12, 1976.
    [Show full text]
  • Hapaline Benthamiana Question Number Question Answer Score 1.01 Is the Species Highly Domesticated? N 0
    Australia/New Zealand Weed Risk Assessment adapted for United States. Data used for analysis published in: Gordon, D.R. and C.A. Gantz. 2008. Potential impacts on the horticultural industry of screening new plants for invasiveness. Conservation Letters 1: 227-235. Available at: http://www3.interscience.wiley.com/cgi-bin/fulltext/121448369/PDFSTART Hapaline benthamiana Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to U.S. climates (USDA hardiness zones; 0-low, 1- 2 intermediate, 2-high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) n 0 2.04 Native or naturalized in regions with an average of 11-60 inches of annual y 1 precipitation 2.05 Does the species have a history of repeated introductions outside its ? natural range? 3.01 Naturalized beyond native range n -1 3.02 Garden/amenity/disturbance weed n 0 3.03 Weed of agriculture n 0 3.04 Environmental weed n 0 3.05 Congeneric weed n 0 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems 4.09 Is a shade tolerant plant at some stage of its life cycle 4.1 Grows on one or more of the following soil types: alfisols, entisols, or
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • An Electronic Checklist of the New World Chafers (Coleoptera: Scarabaeidae: Melolonthinae)
    AN ELECTRONIC CHECKLIST OF THE NEW WORLD CHAFERS (COLEOPTERA: SCARABAEIDAE: MELOLONTHINAE) Version 3 ARTHUR V. EVANS Research Associate, Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC; Department of Recent Invertebrates, Virginia Museum of Natural History, Martinsville, VA; Department of Biology, Virginia Commonwealth University, Richmond, VA; c/o1600 Nottoway Ave., Richmond, VA 23227, USA; [email protected] and ANDREW B. T. SMITH Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, ON, K1P 6P4, Canada; [email protected] INTRODUCTION The following is a checklist of all Melolonthinae (Coleoptera: Scarabaeidae) found in the New World. It has been modified from Evans (2003), Evans and Smith (2005), and Smith and Evans (2005) and has been updated to 13 March 2009. Included in this checklist are all of the available names given for New World Melolonthinae (both valid and invalid). Tribes are listed in traditional order (pseudo-phylogenetically) with genera, species, and subspecies listed alphabetically within. Under each valid generic name the subgenera and synonymies are listed as are type species and, in some cases, citations for keys, checklists, and bibliographies. Listed under each valid species are synonymies, distributional data by country, and citations for new combinations and spellings. A complete bibliography is included in the “References” section of all papers mentioned in the checklist. The purpose of this checklist is to present accurate and complete information for all the names of Melolonthinae in the New World. The taxonomy herein is based on the current literature (even if we have unpublished data contradicting what has been published) and the nomenclature carefully follows the International Code of Zoological Nomenclature.
    [Show full text]
  • The Geography of Diversification in Mutualistic Ants: a Gene's-Eye View Into the Neogene History of Sundaland Rain Forests
    Molecular Ecology (2007) doi:10.1111/j.l365-294X.2007.03294.x The geography of diversification in mutualistic ants: a gene's-eye view into the Neogene history of Sundaland rain forests S.-P. QUEK,*S. J. DAVIES4**P. S. ASHTON,t§T. ITINOf and N. E. PIERCE* *Museum of Comparative Zoology and iOrganismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA, \Centerfor Tropical Forest Science — Arnold Arboretum Asia Program, 22 Divinity Avenue, Cambridge, MA 02138, USA, %Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK, fShinshu University, Department of Biology, Faculty of Science, 3-1-1 Asahi, Matsumoto Nagano 390-8621, Japan Abstract We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diver- sification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast.
    [Show full text]
  • 11Th Flora Malesina Symposium, Brunei Darussalm, 30 June 5 July 2019 1
    11TH FLORA MALESINA SYMPOSIUM, BRUNEI DARUSSALM, 30 JUNE 5 JULY 2019 1 Welcome message The Universiti Brunei Darussalam is honoured to host the 11th International Flora Malesiana Symposium. On behalf of the organizing committee it is my pleasure to welcome you to Brunei Darussalam. The Flora Malesiana Symposium is a fantastic opportunity to engage in discussion and sharing information and experience in the field of taxonomy, ecology and conservation. This is the first time that a Flora Malesiana Symposium is organized in Brunei Darissalam and in the entire island of Borneo. At the center of the Malesian archipelago the island of Borneo magnifies the megadiversity of this region with its richness in plant and animal species. Moreover, the symposium will be an opportunity to inspire and engage the young generation of taxonomists, ecologists and conservationists who are attending it. They will be able to interact with senior researchers and get inspired with new ideas and develop further collaboration. In a phase of Biodiversity crisis, it is pivotal the understanding of plant diversity their ecology in order to have a tangible and successful result in the conservation action. I would like to thank the Vice Chancellor of UBD for supporting the symposium. In the last 6 months the organizing committee has worked very hard for making the symposium possible, to them goes my special thanks. I would like to extend my thanks to all the delegates and the keynote speakers who will make this event a memorable symposium. Dr Daniele Cicuzza Chairperson of the 11th International Flora Malesiana Symposium UBD, Brunei Darussalam 11TH FLORA MALESINA SYMPOSIUM, BRUNEI DARUSSALM, 30 JUNE 5 JULY 2019 2 Organizing Committee Adviser Media and publicity Dr.
    [Show full text]
  • A New Website for Araceae Taxonomy On
    148 AROIDEANA, Vol. 31 A New Website for Araceae Taxonomy on www.cate-araceae.org A. Haigh, L Lay, S. J. Mayo, L Reynolds, and M. Sellaro Royal Botanic Gardens Kew, Richmond, Surrey 1W9 3AE, U.K. [email protected]; [email protected]; [email protected]; reynoldslm8@ yahoo.com; [email protected] J. Bogner Augsburger Str. 43a D - 86368 Gersthofen, Germany [email protected] P. C. Boyce Lot 12, Hillsdale Jalan Puncak Borneo Kota Padawan Kuching 93250 Sarawak, Malaysia [email protected] Thomas B. Croat, Michael H. Grayum, R. Keating, and C. Kostelac Missouri Botanical Garden P.O. Box 299, St. Louis, MO 63166 [email protected]; [email protected]; Richard.keating@ mobot.org; [email protected] A. Hay National Herbarium of New South Wales Royal Botanic Gardens Mrs Macquaries Road Sydney, New South Wales 2000, Australia ajmhay@hotmaiLcom W. Hetterscheid Wageningen University Botanic Garden Generaa1 Foulkesweg 37 6703 BL Wageningen, Netherlands [email protected] M.Mora Department of Biological Sciences Box 870345 The University of Alabama Tuscaloosa, AL 35487-0345, U.S.A. [email protected] Wong Sin Yeng [email protected] A. HAIGH ET Ai., 2008 149 ABSTRACT visions that there is great potential to make traditional taxonomy a much more excit­ The development and current progress ing, collective and dynamic activity than of the Cate-Araceae website is described ever before. But one common discovery and its relation to the aroid community that most E-Taxonomy websites make early discussed in the context of rapidly devel­ on is that without an interested community, oping initiatives to migrate traditional ready to focus on the web-delivered descriptive taxonomy onto the internet (E­ information, it is difficult to create the Taxonomy).
    [Show full text]