Phylogeny, Bioactivity, and Physiology of Unique Bacterial Isolates from Hawaiian Marine Sponges from Hawaii Island: Insights Into the Bacteria-Sponge Relationship
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2005 Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight Richard Robert Ruzicka Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Ruzicka, Richard Robert, "Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight" (2005). Electronic Theses and Dissertations. 705. https://digitalcommons.georgiasouthern.edu/etd/705 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. SPONGE COMMUNITY STRUCTURE AND ANTI-PREDATOR DEFENSES ON TEMPERATES REEFS OF THE SOUTH ATLANTIC BIGHT by RICHARD ROBERT RUZICKA III Under the Direction of Daniel F. Gleason ABSTRACT The interaction between predation and anti-predator defenses of prey is important in shaping community structure in all ecosystems. This study examined the relationship between sponge predation and the distribution of sponge anti-predator defenses on temperate reefs in the South Atlantic Bight. Significant differences in the distribution of sponge species, sponge densities, and densities of sponge predators were documented across two adjacent reef habitats. Significant differences also occurred in the distribution of sponge chemical and structural defenses with chemical deterrence significantly greater in sponges associated with the habitat having higher predation intensity. Structural defenses, although effective in some instances, appear to be inadequate against spongivorous predators thereby restricting the distribution of sponge species lacking chemical defenses to habitats with lower predation intensity. -
The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. -
Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
HABITAT TYPE and ASSOCIATED BIOLOGICAL ASSEMBLAGES – Shellfish Beds Sculpins, Rockfish, Perch and Herring
HABITAT TYPE AND ASSOCIATED BIOLOGICAL ASSEMBLAGES – Shellfish Beds sculpins, rockfish, perch and herring. Hard substrates are arenaria. Sutton (1978) also delineated beds of the rough an important feeding habitat for harbor seals, including piddock (Zirfaea pilsbryi), a native clam that bores into from the Golden Gate east to Treasure Island, northwest soft rock or clays, as a potential species for sport harvest, to Tiburon Peninsula, and southward to Yerba Buena and suggested that there may be significant subtidal beds Island (Goals Project 2000, Green et al. 2006). Also, of the native bentnose clam (Macoma nasuta), which was many harbor seal haul-out sites are located in close commonly harvested by Native Americans. Some studies proximity to subtidal hard substrate including Point refer in passing to beds of the exotic freshwater Asiatic Bonita, Castro Rocks, Yerba Buena Island, and Angel clam (Corbicula fluminea; harvested for food or bait), Island (Goals Project 2000). Sea lions also feed in deep, native California mussel (Mytilus californianus), bay marine waters of San Francisco Bay; however, they feed mussel (consisting of the native M. trossulus, the exotic M. mostly on seasonally abundant herring associated with galloprovincialis, and their hybrids), exotic ribbed hard structures and eel grass beds in the Central Bay, and horsemussel (Geukensia demissa), native ghost shrimp on spawning salmonids that are migrating up the Bay (Neotrypaea californica), and the blue mud shrimp across multiple habitats to freshwater tributaries. Pacific (Upogebia pugettensis). Jones & Stokes (1977) and Sutton herring is a major prey item for many marine mammal (1978) implied that the ribbed horsemussel might be a species that are drawn to the Bay, including harbor sport-harvested species in the San Francisco Bay. -
Brevibacterium Sandarakinum Sp. Nov., Isolated from a Wall of an Indoor Environment
This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The View metadata, citation and similar papers at core.ac.uk brought to you by CORE Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://ijs.sgmjournals.org,provided by Giessener Elektronische and is freely Bibliothek available without a subscription 24 months after publication. First published in: Int J Syst Evol Microbiol, 2009. 60(4) 909-913. doi:10.1099/ijs.0.014100-0 Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment Peter Ka¨mpfer,1 Jenny Scha¨fer,1 Nicole Lodders1 and Hans-Ju¨rgen Busse2 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Peter Ka¨mpfer Germany [email protected] 2Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, giessen.de Austria A Gram-stain-positive, rod-shaped, non-endospore-forming, orange-pigmented (coloured) actinobacterium (01-Je-003T) was isolated from the wall of an indoor environment primarily colonized with moulds. -
Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region
Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region July 2009 Executive Summary Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region Pursuant to section 305(b)(2) of the Magnuson-Stevens Fishery Conservation and Management Act of 1976 (16 U.S.C. §1855(b)), the United States Army Corps of Engineers (USACE) and the United States Environmental Protection Agency (USEPA), as the federal lead and co-lead agencies, respectively, submit this Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region. This document provides an assessment of the potential effects of the on-going dredging and dredged material placement activities of all federal and non-federal maintenance dredging projects in the action area (see Figure 1.1 located on page 3). The SF Bay LTMS program area spans 11 counties, including: Marin, Sonoma, Napa, Solano, Sacramento, San Joaquin, Contra Costa, Alameda, Santa Clara, San Mateo and San Francisco counties. It does not include the mountainous or inland areas far removed from navigable waters. The geographic scope of potential impacts included in this consultation (action area) comprises the estuarine waters of the San Francisco Bay region, portions of the Sacramento-San Joaquin Delta (Delta) west of Sherman Island and the western portion of the Port of Sacramento and Port of Stockton deep water ship channels. It also includes the wetlands and shallow intertidal areas that form a margin around the Estuary and the tidal portions of its tributaries. -
Becker Et Al. 2014
Biological Conservation 176 (2014) 199–206 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki) ⇑ Matthew H. Becker a, , Corinne L. Richards-Zawacki b, Brian Gratwicke c, Lisa K. Belden a a Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA b Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA c Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA article info abstract Article history: For many threatened vertebrates, captivity may be the only option for species survival. Maintaining Received 11 February 2014 species in captivity prior to reintroduction presents many challenges, including the need to preserve Received in revised form 21 April 2014 genetic diversity and mitigation of disease risks. Recent studies suggest that captivity can alter the suite Accepted 28 May 2014 of symbiotic microbes that play important roles in host health. The Panamanian golden frog (Atelopus zeteki) has not been seen in its native habitat in Panamá since 2009. Along with habitat loss and illegal collecting, the lethal disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendro- Keywords: batidis (Bd), is responsible for the severe decline of this species. Prior to the spread of Bd into golden frog Amphibians habitat, conservation organizations collected golden frogs and placed them in captive survival assurance Captive management Batrachochytrium dendrobatidis colonies. The skin of amphibians is host to a diverse resident bacterial community, which acts as a Probiotic defense mechanism in some amphibians to inhibit pathogens. -
Chapter 9. State of Deep-Sea Coral and Sponge Ecosystems of the U.S
State of Deep‐Sea Coral and Sponge Ecosystems of the Northeast United States Chapter 9 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Packer DB, Nizinski MS, Bachman MS, Drohan AF, Poti M, Kinlan BP (2017) State of Deep‐Sea Coral and Sponge Ecosystems of the Northeast United States. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 62 p. Available online: http://deepseacoraldata.noaa.gov/library. An octopus hides in a rock wall dotted with cup coral and soft coral in Welker Canyon off New England. Courtesy of the NOAA Office of Ocean Exploration and Research. STATE OF DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE NORTHEAST UNITED STATES STATE OF DEEP-SEA CORAL AND SPONGE David B. Packer1*, ECOSYSTEMS OF THE Martha S. NORTHEAST UNITED Nizinski2, Michelle S. STATES Bachman3, Amy F. Drohan1, I. Introduction Matthew Poti4, The Northeast region extends from Maine to North Carolina ends at and Brian P. the U.S. Exclusive Economic Zone (EEZ). It encompasses the 4 continental shelf and slope of Georges Bank, southern New Kinlan England, and the Mid‐Atlantic Bight to Cape Hatteras as well as four New England Seamounts (Bear, Physalia, Mytilus, and 1 NOAA Habitat Ecology Retriever) located off the continental shelf near Georges Bank (Fig. Branch, Northeast Fisheries Science Center, 1). Of particular interest in the region is the Gulf of Maine, a semi‐ Sandy Hook, NJ enclosed, separate “sea within a sea” bounded by the Scotian Shelf * Corresponding Author: to the north (U.S. -
Thalassomonas Agarivorans Sp. Nov., a Marine Agarolytic Bacterium Isolated from Shallow Coastal Water of An-Ping Harbour, Taiwan
International Journal of Systematic and Evolutionary Microbiology (2006), 56, 1245–1250 DOI 10.1099/ijs.0.64130-0 Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas Wen Dar Jean,1 Wung Yang Shieh2 and Tung Yen Liu2 Correspondence 1Center for General Education, Leader University, No. 188, Sec. 5, An-Chung Rd, Tainan, Wung Yang Shieh Taiwan [email protected] 2Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan A marine agarolytic bacterium, designated strain TMA1T, was isolated from a seawater sample collected in a shallow-water region of An-Ping Harbour, Taiwan. It was non-fermentative and Gram-negative. Cells grown in broth cultures were straight or curved rods, non-motile and non-flagellated. The isolate required NaCl for growth and exhibited optimal growth at 25 6C and 3 % NaCl. It grew aerobically and was incapable of anaerobic growth by fermenting glucose or other carbohydrates. Predominant cellular fatty acids were C16 : 0 (17?5 %), C17 : 1v8c (12?8 %), C17 : 0 (11?1 %), C15 : 0 iso 2-OH/C16 : 1v7c (8?6 %) and C13 : 0 (7?3 %). The DNA G+C content was 41?0 mol%. Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Thalassomonas in the family Colwelliaceae. The name Thalassomonas agarivorans sp. nov. is proposed for the novel species, with TMA1T (=BCRC 17492T=JCM 13379T) as the type strain. Alteromonas-like bacteria in the class Gammaproteobacteria however, they are not exclusively autochthonous in the comprise a large group of marine, heterotrophic, polar- marine environment, since some reports have shown that flagellated, Gram-negative rods that are mainly non- they also occur in freshwater, sewage and soil (Agbo & Moss, fermentative aerobes. -
Dddy Is a Bacterial Dimethylsulfoniopropionate Lyase Representing a New Cupin Enzyme Superfamily with Unknown Primary Function
bioRxiv preprint doi: https://doi.org/10.1101/161257; this version posted July 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. DddY is a bacterial dimethylsulfoniopropionate lyase representing a new cupin enzyme superfamily with unknown primary function Lei Lei, Uria Alcolombri & Dan S Tawfik Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel. * Correspondence to: [email protected] Abstract Dimethylsulfide (DMS) is released at rates of >107 tons annually and plays a key role in the oceanic sulfur cycle and ecology. Marine bacteria, algae, and possibly other organisms, release DMS via cleavage of dimethylsulfoniopropionate (DMSP). Different genes encoding proteins with DMSP lyase activity are known belonging to different superfamilies and exhibiting highly variable levels of DMSP lyase activity. DddY shows the highest activity among all reported bacterial lyases yet is poorly characterized. Here, we describe the characterization of recombinant DddY is from different marine bacteria. We found that DddY activity demands a transition metal ion cofactor. DddY also shares two sequence motifs with other bacterial lyases assigned as cupin-like enzymes, DddQ, DddL, DddK, and DddW. These cupin motif residues are essential for DddY activity, as for the other cupin DMSP lyases, and all these enzymes are characterized by a common metal- chelator inhibitor (TPEN). Analysis of all sequences carrying these cupin motifs defined a superfamily: Cupin-DLL (DMSP lyases and lyase-like). The DMSP lyase families are sporadically distributed suggesting that DMSP lyases evolved within this superfamily independently along multiple lineages. -
Comparative Analyses of Whole-Genome Protein Sequences
www.nature.com/scientificreports OPEN Comparative analyses of whole- genome protein sequences from multiple organisms Received: 7 June 2017 Makio Yokono 1,2, Soichirou Satoh3 & Ayumi Tanaka1 Accepted: 16 April 2018 Phylogenies based on entire genomes are a powerful tool for reconstructing the Tree of Life. Several Published: xx xx xxxx methods have been proposed, most of which employ an alignment-free strategy. Average sequence similarity methods are diferent than most other whole-genome methods, because they are based on local alignments. However, previous average similarity methods fail to reconstruct a correct phylogeny when compared against other whole-genome trees. In this study, we developed a novel average sequence similarity method. Our method correctly reconstructs the phylogenetic tree of in silico evolved E. coli proteomes. We applied the method to reconstruct a whole-proteome phylogeny of 1,087 species from all three domains of life, Bacteria, Archaea, and Eucarya. Our tree was automatically reconstructed without any human decisions, such as the selection of organisms. The tree exhibits a concentric circle-like structure, indicating that all the organisms have similar total branch lengths from their common ancestor. Branching patterns of the members of each phylum of Bacteria and Archaea are largely consistent with previous reports. The topologies are largely consistent with those reconstructed by other methods. These results strongly suggest that this approach has sufcient taxonomic resolution and reliability to infer phylogeny, from phylum to strain, of a wide range of organisms. Te reconstruction of phylogenetic trees is a powerful tool for understanding organismal evolutionary processes. Molecular phylogenetic analysis using ribosomal RNA (rRNA) clarifed the phylogenetic relationship of the three domains, bacterial, archaeal, and eukaryotic1. -
Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.