Multiple Cryptic Species in the Blue-Spotted Maskray

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Cryptic Species in the Blue-Spotted Maskray G Model CRASS3-3466; No. of Pages 10 C. R. Biologies xxx (2016) xxx–xxx Contents lists available at ScienceDirect Comptes Rendus Biologies ww w.sciencedirect.com Taxonomy/Taxinomie Multiple cryptic species in the blue-spotted maskray (Myliobatoidei: Dasyatidae: Neotrygon spp.): An update Espe`ces cryptiques multiples chez la pastenague masque´e a` points bleus (Myliobatoidei : Dasyatidae : Neotrygon spp.) : actualisation a, b c d Philippe Borsa *, Kang-Ning Shen , Irma S. Arlyza , Thierry B. Hoareau a Institut de recherche pour le de´veloppement (IRD), Oceans department, Marseille, France b Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan c Lembaga Ilmu Pengetahuan Indonesia (LIPI), Pusat Penelitian Oseanografi (P2O), Jakarta, Indonesia d Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Pretoria, South Africa A R T I C L E I N F O A B S T R A C T Article history: Previous investigations have uncovered divergent mitochondrial clades within the blue- Received 4 April 2016 spotted maskray, previously Neotrygon kuhlii (Mu¨ ller and Henle). The hypothesis that the Accepted after revision 19 July 2016 blue-spotted maskray may consist of a complex of multiple cryptic species has been Available online xxx proposed, and four species have been recently described or resurrected. To test the multiple cryptic species hypothesis, we investigated the phylogenetic relationships and Keywords: coalescence patterns of mitochondrial sequences in a sample of 127 new individuals from Parapatric distribution the Indian Ocean and the Coral Triangle region, sequenced at both the CO1 and cytochrome Neotrygon kuhlii b loci. The maximum-likelihood (ML) tree of concatenated CO1 + cytochrome b gene Neotrygon trigonoides sequences, rooted by the New Caledonian maskray N. trigonoides, yielded 9 strongly Indo-West Pacific supported, main clades. Puillandre’s ABGD algorithm detected gaps in nucleotide distance Coral Triangle consistent with the ML phylogeny. The general mixed Yule-coalescent algorithm partitioned the dataset into putative species generally consistent with the ML phylogeny. Nuclear markers generally confirmed that distinct mitochondrial clades correspond to genetically isolated lineages. The nine main lineages identified by ML analysis were geographically distributed in a parapatric fashion, indicating reproductive isolation. The hypothesis of multiple cryptic species is thus validated. ß 2016 Acade´mie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/). R E´ S U M E´ Mots cle´s : Des recherches ante´rieures ont montre´ des clades mitochondriaux divergents chez la raie Distribution parapatrique masque´e a` points bleus, pre´ce´demment appele´e Neotrygon kuhlii (Mu¨ ller et Henle). Neotrygon kuhlii L’hypothe`se d’un complexe d’espe`ces cryptiques chez la raie masque´e a` points bleus a e´te´ Neotrygon trigonoides propose´e ; trois espe`ces ont e´te´ re´cemment de´crites et une quatrie`me, ressuscite´e. Afin de Indo-Pacifique ouest tester l’hypothe`se d’espe`ces cryptiques multiples, nous e´tudions les relations phyloge´- Triangle du corail ne´tiques et les patrons de coalescence des se´quences mitochondriales d’un e´chantillon de 127 individus de l’oce´an Indien et de la re´gion du Triangle du corail, se´quence´s * Corresponding author. Institut de recherche pour le de´veloppement (IRD), UMR 250 ‘‘E´ cologie marine tropicale des oce´ans Pacifique et Indien’’, c/o Indonesian Biodiversity Research Center, Universitas Udayana, Jl Raya Sesetan Gang Markisa, 80322 Denpasar, Indonesia. E-mail addresses: [email protected], [email protected] (P. Borsa). http://dx.doi.org/10.1016/j.crvi.2016.07.004 1631-0691/ß 2016 Acade´mie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). Please cite this article in press as: P. Borsa, et al., Multiple cryptic species in the blue-spotted maskray (Myliobatoidei: Dasyatidae: Neotrygon spp.): An update, C. R. Biologies (2016), http://dx.doi.org/10.1016/j.crvi.2016.07.004 G Model CRASS3-3466; No. of Pages 10 2 P. Borsa et al. / C. R. Biologies xxx (2016) xxx–xxx simultane´ment aux locus CO1 et cytochrome b. L’arbre de maximum de vraisemblance (ML) des se´quences partielles concate´ne´es des ge`nes CO1 et cytochrome b, racine´ par la raie masque´e de Nouvelle-Cale´donie N. trigonoides, montre neuf clades principaux ` fortement soutenus. A l’aide de l’algorithme ABGD de Puillandre, des lacunes dans la distribution des distances nucle´otidiques sont de´tecte´es, qui s’ave`rent ge´ne´ralement cohe´rentes avec la phyloge´nie de ML. L’algorithme mixte de Yule-coalescent (GYMC) partitionne l’ensemble de donne´es en un certain nombre d’espe`ces putatives, dont la de´limitation est ge´ne´ralement cohe´rente avec la phyloge´nie de ML. Les marqueurs nucle´aires confirment, en ge´ne´ral, que les clades mitochondriaux distincts caracte´risent des ligne´es ge´ne´tiquement isole´es. Les neuf ligne´es principales identifie´es par l’analyse de ML montrent une distribution parapatrique, ce qui indique qu’elles sont reproductivement isole´es. L’hypothe`se d’espe`ces cryptiques multiples est donc valide´e. ß 2016 Acade´mie des sciences. Publie´ par Elsevier Masson SAS. Cet article est publie´ en Open Access sous licence CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/ 4.0/). 1. Introduction and on the population genetic structure and phylogeo- graphy of the blue-spotted maskray [18,19]. Additional Taxonomic studies of sharks and rays have led to an mitochondrial clades have been uncovered within the upsurge in new species descriptions within the last decade blue-spotted maskray [15,17,19]. These clades have a ([1,2]; and references therein). In particular, it appears that parapatric-like distribution [19]. Meanwhile, molecular the number of species in the Coral Triangle region has been markers have advanced the systematics of species in the considerably under-estimated until recently [1]. Mean- genus Neotrygon: cryptic species have been uncovered while, grave concern has been expressed over the risk of within N. ningalooensis and N. picta [17], and the New extinction in shallow-water species from a number of Caledonian maskray N. trigonoides (Castelnau, 1873) [20] shark and ray families including Dasyatidae or stingrays. has been resurrected [16,21]. The hypothesis that the Overfishing of stingrays is particularly severe in the Coral blue-spotted maskray may itself consist of a complex of Triangle region [3–5] and management is urgently needed. multiple species has been raised repeatedly [14,15,17,22] Species are the fundamental units in many studies of and was also discussed by us [19,23]. We emphasized that biogeography, community ecology and conservation ecol- the parapatric-like population structure uncovered in the ogy. Both conservation and fisheries management require Coral Triangle region ‘‘points to incipient speciation, where that species be clearly identified and populations be some degree of reproductive isolation has been achieved but delineated [6]. ecological compatibility has not yet been reached’’. Recently, This paper focuses on the blue-spotted maskray, Last et al. [24] described three new species (N. australiae, previously Neotrygon kuhlii (Mu¨ ller and Henle, 1841) N. caeruleopunctata, N. orientale) previously under [7], a stingray species that inhabits Indo-West Pacific N. kuhlii and resurrected a fourth one, N. varidens (Garman coral reefs, lagoons and slopes [8]. The blue-spotted 1885) [25]. Diagnostic morphological differences be- maskray is heavily exploited in Southeast Asia, but its tween the species were proposed but no in-depth catch rate and mortality rates are poorly known and its assessment of inter-specific against infra-specific diffe- population trends are unknown [9,10]. Authors have rences was included [24]. distinguished the ‘‘Java’’ (Java Sea) form of blue-spotted In the present paper, we compile all CO1 and maskray from the ‘‘Bali’’ (Kedonganan) form, based on cytochrome b gene sequences published thus far for the differences in size at birth and male size at maturity and blue-spotted maskray and we add new sequences from treated them as different species [9]. Molecular popula- samples collected in the western Indian Ocean and tion genetics offer the concepts and the practical tools for throughout the Indo-Malay archipelago, to construct a delineating populations, diagnosing closely related spe- robust mitochondrial phylogeny and establish an updated cies, and detecting cryptic species. Cryptic species are distribution of the clades previously uncovered in the defined as lineages with a substantial amount of genetic Coral Triangle region [14,15,17,19]. We assess whether distinctiveness and no detectable morphological diffe- the different clades, including those recently resurrected rences [11–13]. Ward et al. ([14]: 60–62) have noted that or erected as new species [24] correspond to evolutionary at the CO1 locus, ‘‘the D. kuhlii group showed considerable significant units that deserve the status of separate within species diversity . with four subgroups. One was species. the sole specimen from Australia (Queensland), one from the six specimens taken from Kedonganan fish market on Bali 2. Materials and methods (Indonesia), one from the five specimens from Muara Angke fish market at Jakarta, Java (Indonesia) and one from the 2.1. Ethics in sampling and information sharing three specimens from the Penghu Islands (Taiwan). Average distances among and within these four groups were 2.80% All specimens examined for the present study were and 0.18% respectively’’. Subsequent genetic studies in the independently captured by commercial fishers prior to genus Neotrygon have focused on its phylogeny [15–17], being sub-sampled for DNA. Some of the sampling Please cite this article in press as: P.
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Species Bathytoshia Brevicaudata (Hutton, 1875)
    FAMILY Dasyatidae Jordan & Gilbert, 1879 - stingrays SUBFAMILY Dasyatinae Jordan & Gilbert, 1879 - stingrays [=Trygonini, Dasybatidae, Dasybatidae G, Brachiopteridae] GENUS Bathytoshia Whitley, 1933 - stingrays Species Bathytoshia brevicaudata (Hutton, 1875) - shorttail stingray, smooth stingray Species Bathytoshia centroura (Mitchill, 1815) - roughtail stingray Species Bathytoshia lata (Garman, 1880) - brown stingray Species Bathytoshia multispinosa (Tokarev, in Linbergh & Legheza, 1959) - Japanese bathytoshia ray GENUS Dasyatis Rafinesque, 1810 - stingrays Species Dasyatis chrysonota (Smith, 1828) - blue stingray Species Dasyatis hastata (DeKay, 1842) - roughtail stingray Species Dasyatis hypostigma Santos & Carvalho, 2004 - groovebelly stingray Species Dasyatis marmorata (Steindachner, 1892) - marbled stingray Species Dasyatis pastinaca (Linnaeus, 1758) - common stingray Species Dasyatis tortonesei Capapé, 1975 - Tortonese's stingray GENUS Hemitrygon Muller & Henle, 1838 - stingrays Species Hemitrygon akajei (Muller & Henle, 1841) - red stingray Species Hemitrygon bennettii (Muller & Henle, 1841) - Bennett's stingray Species Hemitrygon fluviorum (Ogilby, 1908) - estuary stingray Species Hemitrygon izuensis (Nishida & Nakaya, 1988) - Izu stingray Species Hemitrygon laevigata (Chu, 1960) - Yantai stingray Species Hemitrygon laosensis (Roberts & Karnasuta, 1987) - Mekong freshwater stingray Species Hemitrygon longicauda (Last & White, 2013) - Merauke stingray Species Hemitrygon navarrae (Steindachner, 1892) - blackish stingray Species
    [Show full text]
  • Phylogeography of the Indowest Pacific Maskrays
    Phylogeography of the Indo-West Pacific maskrays (Dasyatidae, Neotrygon): a complex example of chondrichthyan radiation in the Cenozoic Melody Puckridge1,2, Peter R. Last2, William T. White2 & Nikos Andreakis3 1Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001, Australia 2Wealth from Oceans Flagship, CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, TAS 7000, Australia 3Australian Institute of Marine Science, PMB No. 3, Townsville, QLD 4810, Australia Keywords Abstract Biodiversity hotspot, cryptic species, marine speciation, maskray, Neotrygon, Maskrays of the genus Neotrygon (Dasyatidae) have dispersed widely in the phylogeography. Indo-West Pacific being represented largely by an assemblage of narrow-ranging coastal endemics. Phylogenetic reconstruction methods reproduced nearly iden- Correspondence tical and statistically robust topologies supporting the monophyly of the genus Melody Puckridge, IMAS, University of Neotrygon within the family Dasyatidae, the genus Taeniura being consistently Tasmania, Private Bag 129, Hobart TAS 7001, basal to Neotrygon, and Dasyatis being polyphyletic to the genera Taeniurops Australia. Tel: +613-6232-5222; Fax: +613- and Pteroplatytrygon. The Neotrygon kuhlii complex, once considered to be an 6226-2973; E-mail: [email protected] assemblage of color variants of the same biological species, is the most derived Funding Information and widely dispersed subgroup of the genus. Mitochondrial (COI, 16S) and This study received financial support through nuclear (RAG1) phylogenies used in synergy with molecular dating identified the University of Tasmania, the paleoclimatic fluctuations responsible for periods of vicariance and dispersal Commonwealth Environment Research promoting population fragmentation and speciation in Neotrygon. Signatures of Facilities (CERF) Marine Biodiversity Hub and population differentiation exist in N.
    [Show full text]
  • Rhodes Journal of Biological Science Published by the Students of the Department of Biology at Rhodes College
    Rhodes Journal of Biological Science Published by the Students of the Department of Biology at Rhodes College VOLUME XXXVI SPRING 2021 About this Issue Statement of Purpose The Rhodes Journal of Biological Science is a student-edited publication that recognizes the scientific achievements of Rhodes students. Volume XXXVI marks the fifteenth year since Mark Stratton and Dr. David Kesler brought the journal back into regular publication in 2006. Founded as a scholarly forum for student research and scientific ideas, the journal aims to maintain and stimulate the tradition of independent study among Rhodes College students. We hope that in reading the journal, other students will be encouraged to pursue scientific investigations and research. Editorial Staff……………………………………………………………………………………………...………………………. 2 Review Article: Understanding the Mystery of Peto’s Paradox to Treat Human Cancer Deja Walls ……..……………………………………………………………………………………...……………...……………..3 Research Article: Impact of a Colorful Enrichment Item versus a White Enrichment Item in Rhinoptera bonasus and Dasyatis americana Meredith Bacue and Gretta Hotz…………………………………...……………………………………………………………10 Editorial: Distribution of Spotted Lanternfly (Lycorma delicatula) in Relation to Distribution of their Preferred Host Plant, Tree of Heaven (Ailanthus altissima) Meredith Bacue …………………………………………………………………………………...………………………………15 Editorial: The Future of Single Cell Sequencing in Cancer Research Jake Friske……………………………………………………………………….………………...………………………………17 Editorial: The Impact of the Covid-19
    [Show full text]
  • Pacific Currents | Summer 2009 Pre-Registration and Pre-Payment Required on All Programs Unless Noted
    summer 2009 | volume 12 | number 4 member magazine of the aquarium of the pacific Learn about these graceful and magnificent animals that keep our ocean healthy! Focus on Sustainability GLOBAL WARMING’S EVIL TWIN One aspect of global climate change that has received far less attention than many others, but may be among the most important to ocean life, is ocean acidification. By Jerry R. Schubel EARLY EVERYONE has heard of global warming, and most believe that it is happening and that humans are a major driving force because of our use of fossil fuels. The AA N O more expansive term is global climate change, which OFT/N includes an array of effects caused by warming. These include sea R level rise, coral bleaching, loss of biodiversity, an increase in the frequency and intensity of tropical storms, and so on. One aspect of HOPC RUSS global climate change that has received far less attention than many Planktonic snails known as pteropods (Limacina helicina) are at high risk from ocean acidification, as the surface seawater of the polar regions is projected to become others, but may be among the most important to ocean life, is referred corrosive to their shells within decades. to by some scientists as “Global Warming’s Evil Twin.” The evil twin robs many animals with calcareous skeletons—both internal and external—of their ability to secrete calcium carbonate shells from sea Since increasing acidity lowers carbonate ion concentration—a water. The evil twin is ocean acidification. component of calcium carbonate used by many organisms to build Most of the carbon dioxide that is added to the atmosphere from their shells, skeletons, and coral reef structures—those organisms, the burning of fossil fuels remains in the atmosphere for an average including plankton (such as pteropods and coccolithophores), of about a century and then is transferred into the ocean where it benthos (such as clams, oysters, and mussels), and coral reefs, remains, on average, for a thousand years or longer.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • Neotrygon Vali, a New Species Maskray Complex
    RESEARCH 18(60), July - September, 2017 RESEARCH ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Neotrygon vali, a new species of the blue-spotted maskray complex (Myliobatoidei: Dasyatidae) Philippe Borsa☼ Institut de recherche pour le développement (IRD), UMR 250 “Ecologie marine tropicale des océans Pacifique et Indien”, BP A5, 98848 Nouméa, New Caledonia ☼Corresponding author: UMR 250 entroPI c/o Borea, IRD centre d’Occitanie – La Valette, 911 avenue Agropolis, 34394 Montpellier cedex, France, Email: [email protected] Article History Received: 10 May 2017 Accepted: 28 June 2017 Published: July-September 2017 Citation Philippe Borsa. Neotrygon vali, a new species of the blue-spotted maskray complex (Myliobatoidei: Dasyatidae). Species, 2017, 18(60), 146-153 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT The blue-spotted maskray from Guadalcanal Island (Solomon archipelago) is distinct by its colour patterns from Neotrygon kuhlii with which it was previously confused, and belongs to a genetic lineage clearly separate from all other known species in the genus Neotrygon. It is here described as a new species, Neotrygon vali sp. nov., on the basis of its nucleotide sequence at the cytochrome 146 146 146 oxidase 1 (CO1) gene locus. It is diagnosed from all other known species in the genus Neotrygon by the possession of nucleotide T PagePage Page at nucleotide site 420 and nucleotide G at nucleotide site 522 of the CO1 gene. © 2017 Discovery Publication. All Rights Reserved. www.discoveryjournals.com OPEN ACCESS RESEARCH ARTICLE Keywords: New species, CO1 gene, Molecular diagnosis, Taxonomy 1.
    [Show full text]
  • Dasyatidae 1479
    click for previous page Myliobatiformes: Dasyatidae 1479 DASYATIDAE Stingrays by P.R. Last and L.J.V. Compagno iagnostic characters: Small to very large batoids (adults between 40 and 500 cm total length, and D18 to at least 192 cm disc width) with large, oval, circular, or rhomboidal discs, and moderately stout to slender, more or less elongated, whip-like tails mostly longer than disc length. Body usually with denticles, thorns, and tubercles on the dorsal surface of disc and tail; their size, density and distribution varies with growth, sex, and species. Trunk depressed and flattened, not shark-like. Tail moderately depressed or cylindrical, without lateral folds on sides, abruptly narrower than trunk; usually 1 to 4 prominent barbed stings (stinger or stinging spine) on dorsal surface of tail well behind pelvic fins (absent or vestigial in Urogymnus, and often cut or broken off captured individuals by fishers to protect themselves); no electric organs in tail. Head forming part of disc, broad and depressed, not greatly elevated; snout short or moderately elongated (mostly less than 6 times orbit diameter but more than 6 times in long-snouted and small-eyed species in the area), broadly angular to rounded at tip; snout without a rostral cartilage, entirely supported by pectoral fin skeleton; not formed into a rostral saw and without lateral saw teeth. Five small gill openings on underside of front half of pectoral disc, not visible in lateral view; no gill sieves or rakers on internal gill slits. Eyes dorsolateral on head and just anteromedial to spiracles, usually moderately large but small in a few species in the area.
    [Show full text]
  • Notes on the Origin of Müller and Henle's Illustration And
    Notes on the origin of Müller and Henle’s illustration and type material of the blue-spotted maskray Neotrygon kuhlii (Myliobatoidei : Dasyatidae) Philippe Borsa, Philippe Béarez To cite this version: Philippe Borsa, Philippe Béarez. Notes on the origin of Müller and Henle’s illustration and type material of the blue-spotted maskray Neotrygon kuhlii (Myliobatoidei : Dasyatidae). Cybium : Revue Internationale d’Ichtyologie, Paris : Muséum national d’histoire naturelle, 2016, 40, pp.255-258. ird- 01374770 HAL Id: ird-01374770 https://hal.ird.fr/ird-01374770 Submitted on 1 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. To be cited as: Borsa P, Béarez P (2016) Notes on the origin of Müller and Henle’s illustration and type material of the blue-spotted maskray Neotrygon kuhlii (Myliobatoidei: Dasyatidae). Cybium 40, 255-258. Notes on the origin of Müller and Henle’s illustration and type material of the blue-spotted maskray Neotrygon kuhlii (Myliobatoidei: Dasyatidae) PHILIPPE BORSA* (1) & PHILIPPE BÉAREZ (2) (1) Institut de recherche pour le développement (IRD), UMR 250 “Ecologie marine tropicale des océans Pacifique et Indien”, BP A5, 98840 Nouméa, New Caledonia. Tel.
    [Show full text]
  • The Covert World of Fish Biofluorescence: a Phylogenetically Widespread and Phenotypically Variable Phenomenon
    City University of New York (CUNY) CUNY Academic Works Publications and Research Baruch College 2014 The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon John S. Sparks American Museum of Natural History Robert C. Schelly American Museum of Natural History W. Leo Smith University of Kansas Matthew P. Davis University of Kansas Dan Tchernov University of Haifa See next page for additional authors How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/bb_pubs/29 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Authors John S. Sparks, Robert C. Schelly, W. Leo Smith, Matthew P. Davis, Dan Tchernov, Vincent A. Pieribone, and David F. Gruber This article is available at CUNY Academic Works: https://academicworks.cuny.edu/bb_pubs/29 The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon John S. Sparks1,2*., Robert C. Schelly1,2, W. Leo Smith3, Matthew P. Davis3, Dan Tchernov4, Vincent A. Pieribone1,5, David F. Gruber2,6*. 1 Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, New York United States of America, 2 Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America, 3 Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America, 4 Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, Israel, 5 Department of Cellular and Molecular Physiology, The John B.
    [Show full text]
  • DNA Barcoding of Mullets (Family Mugilidae) from Pakistan Reveals Surprisingly High Number of Unknown Candidate Species
    diversity Article DNA Barcoding of Mullets (Family Mugilidae) from Pakistan Reveals Surprisingly High Number of Unknown Candidate Species Ariba Hasan 1, Pirzada Jamal Ahmed Siddiqui 1, Shabir Ali Amir 2 and Jean-Dominique Durand 3,* 1 Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan; [email protected] (A.H.); [email protected] (P.J.A.S.) 2 Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad 44000, Pakistan; [email protected] 3 MARBEC University Montpellier, IRD, Bat 24 cc093 Place Eugene Bataillon, 34095 Montpellier, France * Correspondence: [email protected] Abstract: The mullets are a widespread group of ecologically and economically important fishes of disputed taxonomy due to their uniform external morphology. Barcoding and phylogenetic studies from various locations around the world largely highlighted the species diversity underestimation using morphological criteria used to establish the taxonomy of the family. Here, we investigated the mullet species diversity from Pakistan, a biogeographic area where nearly no mullet species were genetically characterized. Morphological examination of 40 mullets reveals 6 known species (Planiliza macrolepis, P. klunzingeri, P. subviridis, Crenimugil seheli, Ellochelon vaigiensis, and Mugil cephalus ). Using a references DNA barcode library, the DNA barcode-based species identification flagged eight molecular operational taxonomic units (MOTUs) belonging to five genera (Crenimugil, Ellochelon, Mugil, Osteomugil, and Planiliza). Among these MOTUs, only one was already present in Citation: Hasan, A.; Siddiqui, P.J.A.; Amir, S.A.; Durand, J.-D. DNA Barcode of Life Data system, all other representing new Barcode Index Numbers (BIN). These results Barcoding of Mullets (Family emphasize the importance of the recognition of cryptic species and the necessity to re-evaluate the Mugilidae) from Pakistan Reveals overall diversity by the genetic characterization of different species of this family.
    [Show full text]
  • Neotrygon Vali, a New Species of the Blue-Spotted Maskray Complex (Myliobatoidei: Dasyatidae)
    bioRxiv preprint doi: https://doi.org/10.1101/106682; this version posted July 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neotrygon vali, a new species of the blue-spotted maskray complex (Myliobatoidei: Dasyatidae) Philippe Borsa Institut de recherche pour le développement (IRD), UMR 250 “Ecologie marine tropicale des océans Pacifique et Indien”, BP A5, 98848 Nouméa, New Caledonia Email: [email protected]; Tel: +33 6 46838763 1 bioRxiv preprint doi: https://doi.org/10.1101/106682; this version posted July 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The blue-spotted maskray from Guadalcanal Island (Solomon archipelago) is distinct by its colour patterns from Neotrygon kuhlii with which it was previously confused, and belongs to a genetic lineage clearly separate from all other known species in the genus Neotrygon. It is here described as a new species, Neotrygon vali sp. nov., on the basis of its nucleotide sequence at the cytochrome oxidase 1 (CO1) gene locus. It is diagnosed from all other known species in the genus Neotrygon by the possession of nucleotide T at nucleotide site 420 and nucleotide G at nucleotide site 522 of the CO1 gene. Key words: new species, CO1 gene, molecular diagnosis, taxonomy INTRODUCTION Genetic studies of the dasyatid genus Neotrygon Castelnau, 1873 or maskrays have pointed to the possible occurrence of several species complexes (Ward et al., 2008; Naylor et al., 2012; Borsa et al., 2016a and references therein).
    [Show full text]