Download (9MB)

Total Page:16

File Type:pdf, Size:1020Kb

Download (9MB) CSILLAGASZATI ÉVKÖNYV az 1972. évre szerkesztette a Tudományos Ismeretterjesztő Társulat Csillagászati és Űrkutatási Szakosztályainak Országos Választmánya Gondolat Kiadó Budapest, 1072 CSILLAGÁSZATI ADATOK AZ 1972. EVRE Az I — X. táblázatokat összeállította a TIT Hajdú-Bihar Megyei Csillagászati Szakosztálya az MTA Napfizikai Obszervatórium közreműködésével (Debrecen) I. JANUÁR KÖZÉP-EURŐPAI zónaidőben (KözEI) Budapesten A NAP A HOLD s A HOLD p fény­ B változásai xí kel delel nyugszik kel nyugszik h e t e Év Év hányadik Év hányadik napja Q A HÉT napjai h m h m h m h m h m h m 1 Sz (1) i 7 33 11 48 16 02 16 41 8 10 2 V 2 7 33 11 48 16 03 17 58 8 44 3 H 2 3 7 33 11 49 16 04 19 13 9 11 4 K 4 7 33 11 50 16 06 20 25 9 31 5 Sz 5 7 33 11 50 16 07 21 32 9 49 6 Cs 6 7 33 11 51 16 08 22 39 10 05 7 P 7 7 32 11 51 16 09 23 45 10 21 8 Sz 8 7 32 11 51 16 10 10 37 a 14 31 9 V 9 7 32 11 52 16 11 0 51 10 55 10 H 3 10 7 31 11 52 16 12 1 57 11 17 11 K 11 7 31 11 53 16 14 3 05 11 44 12 Sz 12 7 30 11 53 16 15 4 11 12 18 13 Cs 13 7 30 11 53 16 16 5 14 13 03 14 P 14 7 29 11 54 16 18 6 11 14 00 15 Sz 15 7 29 11 54 16 19 6 57 15 07 16 V 16 7 28 11 55 16 21 7 35 16 22 • 11 52 17 H 4 17 7 27 11 55 16 22 8 04 17 40 18 K 18 7 27 11 55 16 23 8 28 18 59 19 Sz 19 7 26 11 56 16 25 8 49 20 18 20 Cs 20 7 25 11 56 16 26 9 08 21 37 21 P 21 7 24 11 56 16 28 9 27 22 56 22 Sz 22 7 23 11 56 16 29 9 47 23 V 23 7 22 11 57 16 31 10 11 0 16 D 10 29 24 H 5 24 7 21 11 57 16 32 10 40 1 38 25 K 25 7 20 11 57 16 34 11 18 2 58 26 Sz 26 7 19 11 57 16 35 12 08 4 12 27 Cs 27 7 18 11 58 16 37 13 09 5 15 28 P 28 7 17 11 58 16 38 14 20 6 05 29 Sz 29 7 16 11 58 16 40 15 36 6 43 30 V 30 7 15 11 58 16 41 16 51 7 12 o 11 58 31 II 6 31 7 13 11 58 16 43 18 05 7 34 Hold: 9-ón 05h-kor földtávolban 22-én 06h-kor földközelben i HŐNAP Oh világidőkor NAP HOLD Julián Csillagidő dátum (A = 0h-nál) 2441... látszó RA D sugara RA D O h m s h m o // n h m ' ...317,5 6 39 01,347 18 42 - 2 3 06 16 18 6 51 + 25 02 318,5 6 42 57,911 18 46 23 01 16 18 7 50 21 59 319,5 6 46 54,472 18 51 22 56 16 18 8 44 17 48 320,5 6 50 51,030 18 55 22 50 16 18 9 34 12 54 321,5 6 54 47,585 19 00 22 44 16 18 10 21 7 35 322,5 6 58 44,138 19 04 22 38 16 18 11 05 + 2 05 323,5 7 02 40,690 19 08 22 31 16 18 11 49 - 3 22 324,5 7 06 37,242 19 13 22 23 16 18 12 32 8 37 325,5 7 10 33,796 19 17 22 15 16 17 13 16 13 32 326,5 7 14 30,351 19 22 22 07 16 17 14 01 17 57 327,5 7 18 26,908 19 26 21 59 16 17 14 49 21 41 328,5 7 22 23,467 19 30 21 49 16 17 15 40 24 33 329,5 7 26 20,029 19 35 21 40 16 17 16 34 26 19 330,5 7 30 16,592 19 39 21 30 16 17 17 30 26 48 331,5 7 34 13,156 19 43 21 19 16 17 18 28 25 51 332,5 7 38 09,719 19 48 21 09 16 17 19 25 23 29 333,5 7 42 06,280 19 52 20 57 16 17 20 20 19 46 234,5 7 46 02,839 19 56 20 46 16 17 21 14 14 56 335,5 7 49 59,394 20 00 20 34 16 17 22 06 9 16 336,5 7 53 55,947 20 05 20 22 16 17 22 57 - 3 05 337,5 7 57 52,499 20 09 20 09 16 17 23 48 + 3 17 338,5 8 01 49,050 20 13 19 56 16 17 0 39 9 30 339,5 8 05 45,603 20 17 19 42 16 17 1 32 15 14 340,5 8 09 42,159 20 22 19 28 16 17 2 28 20 08 341,5 8 13 38,719 20 26 19 14 16 16 3 26 23 53 342,5 8 17 35,281 20 30 18 59 16 16 4 27 26 10 343,5 8 21 31,845 20 34 18 44 16 16 5 29 26 49 344,5 8 25 28,409 20 38 18 29 16 16 6 30 25 47 345,5 8 29 24,971 20 42 18 14 16 16 7 29 23 15 346,5 8 33 21,531 20 47 17 58 16 16 8 24 19 29 347,5 8 37 18,088 20 51 - 1 7 41 16 16 9 15 + 14 50 Föld: 3-án 5b07m-kor napközeiben (KözEI) I. FEBRUÁR KÖZÉP-EURÓPAI zónaidőben (KözEI) Budapesten A NAP A HOLD A HOLD fény­ változásai kel delel nyugszik kel nyugszik DÁTUM napja A A HÉT napjai Év hányadik h e t e Év hányadik h m h m h m h m h m h m 1 K (6) 32 7 12 11 59 16 45 19 14 7 53 2 Sz 33 7 11 11 59 16 46 20 22 8 10 3 Cs 34 7 10 11 59 16 48 21 29 8 26 4 P 35 7 08 11 59 16 49 22 35 8 42 5 Sz 36 7 07 11 59 16 51 23 ál 8 59 6 V 37 7 05 11 59 16 52 9 19 7 n 7 38 7 04 11 59 16 54 0 48 9 44 (í 12 U 8 K 39 7 02 11 59 16 55 1 55 10 14 9 Sz 40 7 01 11 59 16 57 2 59 10 53 10 Cs 41 6 59 11 59 16 58 3 58 11 44 11 P 42 6 58 11 59 17 00 4 48 12 47 12 Sz 43 6 56 11 59 17 01 5 29 13 58 13 V 44 6 54 11 59 17 03 6 03 15 15 14 H 8 45 6 53 11 59 17 05 6 29 16 36 15 K 46 6 51 11 59 17 06 6 52 17 57 • 01 29 16 Sz 47 6 50 11 50 17 08 7 12 19 18 17 Cs 48 6 48 11 59 17 09 7 32 20 39 18 P 49 6 46 11 59 17 11 7 53 22 02 19 Sz 50 6 44 11 59 17 13 8 16 23 25 20 V 51 6 43 11 59 17 14 8 44 21 H 9 52 6 41 11 59 17 16 9 20 0 46 J) 18 20 22 K 53 6 39 11 58 17 17 10 05 2 03 23 Sz 54 6 38 11 58 17 18 11 02 3 09 24 Cs 55 6 36 11 58 17 20 12 09 4 02 25 P 56 6 34 11 58 17 22 13 22 4 43 2(5 Sz 57 6 32 11 58 17 23 14 36 5 14 27 V 58 6 30 11 58 17 25 15 49 5 39 28 H 10 59 6 29 11 58 17 27 16 59 5 58 29 K 60 6 27 11 58 17 28 18 07 6 16 O 04 12 Hold: 6-án 02h-kor földtávolban 17-én 20h-kor földközelbon 6 11 6 N A P Oh világidőkor NAP HOLD Julián Csillagidő dátum (A = on-nál) 2441. látszó RA D sugara RA D h m s h m 0 / / n h m • ' ...348,5 8 41 14,642 20 55 - 1 7 25 16 16 10 03 + 9 37 349,5 8 45 11,193 20 59 17 08 16 15 10 49 + 4 07 350,5 8 49 07,743 21 03 16 51 16 15 11 33 - 1 26 351,5 8 53 04,293 21 07 16 33 16 15 12 16 6 49 352,5 8 57 00,844 21 11 16 15 16 15 13 00 11 54 353,5 9 00 57,396 21 15 15 57 16 15 13 45 16 31 354,5 9 04 53,950 21 19 15 39 16 15 14 32 20 29 355,5 9 08 50,506 21 23 15 20 16 15 15 22 23 39 356,5 9 12 47,064 21 27 15 02 16 14 16 14 25 48 357,5 9 16 43,624 21 31 14 42 16 14 17 09 26 46 358,5 9 20 40,185 21 35 14 23 16 14 18 05 26 24 359,5 9 24 36,746 21 39 14 03 16 14 19 02 24 36 360,5 9 28 33,306 21 43 13 44 16 14 19 58 21 33 361,5 9 32 29,863 21 47 13 24 16 13 20 54 16 56 362,5 9 36 26,417 21 51 13 03 16 13 21 47 11 27 363,5 9 40 22,968 21 55 12 43 16 13 22 40 - 5 17 364,5 9 44 19,517 21 58 12 22 16 13 23 32 + 1 15 365,5 9 48 16,066 22 02 12 01 16 13 0 24 7 43 366,5 9 52 12,616 22 06 11 40 16 12 1 18 13 47 367,5 9 56 09,169 22 10 11 19 16 12 2 14 19 01 368,5 10 00 05,725 22 14 10 57 16 12 3 13 23 06 369,5 10 04 02,284 22 18 10 36 16 12 4 13 25 44 370,5 10 07 58,845 22 22 10 14 16 12 5 15 26 45 371,5 10 11 55,406 22 25 9 52 16 11 6 15 26 08 372,5 10 15 51,966 22 29 9 30 16 11 7 14 24 01 373,5 10 19 48,524 22 33 9 08 16 11 8 09 20 39 374,5 10 23 45,079 22 37 8 45 16 11 9 00 16 19 375,5 10 27 41,631 22 41 8 23 16 10 9 48 11 19 376,5 10 31 38,181 22 44 - 8 00 16 10 10 34 + 5 57 7 I.
Recommended publications
  • Arxiv:1809.07342V1 [Astro-Ph.SR] 19 Sep 2018
    Draft version September 21, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 FAR-ULTRAVIOLET ACTIVITY LEVELS OF F, G, K, AND M DWARF EXOPLANET HOST STARS* Kevin France1, Nicole Arulanantham1, Luca Fossati2, Antonino F. Lanza3, R. O. Parke Loyd4, Seth Redfield5, P. Christian Schneider6 Draft version September 21, 2018 ABSTRACT We present a survey of far-ultraviolet (FUV; 1150 { 1450 A)˚ emission line spectra from 71 planet- hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90 { 360 A˚ extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emission lines to probe star-planet interactions (SPIs). We build this emission line sample from a combination of new and archival observations with the Hubble Space Telescope-COS and -STIS instruments, targeting the chromospheric and transition region emission lines of Si III,N V,C II, and Si IV. We find that the exoplanet host stars, on average, display factors of 5 { 10 lower UV activity levels compared with the non-planet hosting sample; this is explained by a combination of observational and astrophysical biases in the selection of stars for radial-velocity planet searches. We demonstrate that UV activity-rotation relation in the full F { M star sample is characterized by a power-law decline (with index α ≈ −1.1), starting at rotation periods & 3.5 days. Using N V or Si IV spectra and a knowledge of the star's bolometric flux, we present a new analytic relationship to estimate the intrinsic stellar EUV irradiance in the 90 { 360 A˚ band with an accuracy of roughly a factor of ≈ 2.
    [Show full text]
  • Appendix A: Scientific Notation
    Appendix A: Scientific Notation Since in astronomy we often have to deal with large numbers, writing a lot of zeros is not only cumbersome, but also inefficient and difficult to count. Scientists use the system of scientific notation, where the number of zeros is short handed to a superscript. For example, 10 has one zero and is written as 101 in scientific notation. Similarly, 100 is 102, 100 is 103. So we have: 103 equals a thousand, 106 equals a million, 109 is called a billion (U.S. usage), and 1012 a trillion. Now the U.S. federal government budget is in the trillions of dollars, ordinary people really cannot grasp the magnitude of the number. In the metric system, the prefix kilo- stands for 1,000, e.g., a kilogram. For a million, the prefix mega- is used, e.g. megaton (1,000,000 or 106 ton). A billion hertz (a unit of frequency) is gigahertz, although I have not heard of the use of a giga-meter. More rarely still is the use of tera (1012). For small numbers, the practice is similar. 0.1 is 10À1, 0.01 is 10À2, and 0.001 is 10À3. The prefix of milli- refers to 10À3, e.g. as in millimeter, whereas a micro- second is 10À6 ¼ 0.000001 s. It is now trendy to talk about nano-technology, which refers to solid-state device with sizes on the scale of 10À9 m, or about 10 times the size of an atom. With this kind of shorthand convenience, one can really go overboard.
    [Show full text]
  • A New Form of Estimating Stellar Parameters Using an Optimization Approach
    A&A 532, A20 (2011) Astronomy DOI: 10.1051/0004-6361/200811182 & c ESO 2011 Astrophysics Modeling nearby FGK Population I stars: A new form of estimating stellar parameters using an optimization approach J. M. Fernandes1,A.I.F.Vaz2, and L. N. Vicente3 1 CFC, Department of Mathematics and Astronomical Observatory, University of Coimbra, Portugal e-mail: [email protected] 2 Department of Production and Systems, University of Minho, Portugal e-mail: [email protected] 3 CMUC, Department of Mathematics, University of Coimbra, Portugal e-mail: [email protected] Received 17 October 2008 / Accepted 27 May 2011 ABSTRACT Context. Modeling a single star with theoretical stellar evolutionary tracks is a nontrivial problem because of a large number of unknowns compared to the number of observations. A current way of estimating stellar age and mass consists of using interpolations in grids of stellar models and/or isochrones, assuming ad hoc values for the mixing length parameter and the metal-to-helium enrichment, which is normally scaled to the solar values. Aims. We present a new method to model the FGK main-sequence of Population I stars. This method is capable of simultaneously estimating a set of stellar parameters, namely the mass, the age, the helium and metal abundances, the mixing length parameter, and the overshooting. Methods. The proposed method is based on the application of a global optimization algorithm (PSwarm) to solve an optimization problem that in turn consists of finding the values of the stellar parameters that lead to the best possible fit of the given observations.
    [Show full text]
  • The Chemical Composition of Solar-Type Stars and Its Impact on the Presence of Planets
    The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Munchen¨ 2013 The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Dissertation der Fakultat¨ fur¨ Physik der Ludwig-Maximilians-Universitat¨ Munchen¨ durchgefuhrt¨ am Max-Planck-Institut fur¨ Astrophysik vorgelegt von Patrick Baumann aus Munchen¨ Munchen,¨ den 31. Januar 2013 Erstgutacher: Prof. Dr. Achim Weiss Zweitgutachter: Prof. Dr. Joachim Puls Tag der mündlichen Prüfung: 8. April 2013 Zusammenfassung Wir untersuchen eine mogliche¨ Verbindung zwischen den relativen Elementhaufig-¨ keiten in Sternatmospharen¨ und der Anwesenheit von Planeten um den jeweili- gen Stern. Um zuverlassige¨ Ergebnisse zu erhalten, untersuchen wir ausschließlich sonnenahnliche¨ Sterne und fuhren¨ unsere spektroskopischen Analysen zur Bestim- mung der grundlegenden Parameter und der chemischen Zusammensetzung streng differenziell und relativ zu den solaren Werten durch. Insgesamt untersuchen wir 200 Sterne unter Zuhilfenahme von Spektren mit herausragender Qualitat,¨ die an den modernsten Teleskopen gewonnen wurden, die uns zur Verfugung¨ stehen. Mithilfe der Daten fur¨ 117 sonnenahnliche¨ Sterne untersuchen wir eine mogliche¨ Verbindung zwischen der Oberflachenh¨ aufigkeit¨ von Lithium in einem Stern, seinem Alter und der Wahrscheinlichkeit, dass sich ein oder mehrere Sterne in einer Um- laufbahn um das Objekt befinden. Fur¨ jeden Stern erhalten wir sehr exakte grundle- gende Parameter unter Benutzung einer sorgfaltig¨ zusammengestellten Liste von Fe i- und Fe ii-absorptionslinien, modernen Modellatmospharen¨ und Routinen zum Erstellen von Modellspektren. Die Massen und das Alter der Objekte werden mithilfe von Isochronen bestimmt, was zu sehr soliden relativen Werten fuhrt.¨ Bei jungen Sternen, fur¨ die die Isochronenmethode recht unzuverlssig¨ ist, vergleichen wir verschiedene alternative Methoden.
    [Show full text]
  • Hongkong Double Star Observations
    1'1- g 1-o+ P 2.0- 9 s.0- P 65 o €1 I11 H 9.0- - 8'0- - I'O+ - Z'O+ - 2'0- - IS 0 I aMoH 2'1- - 9*0+ -- E.0- - P.0- - 0s 0 EEz tj 2.1- P L*I+ - P*o+ P 0'0 P 1.0- P 8t 0 Z'O+ - - 2'0- 8P O om€+ P 1.0- 9 6-o+ 9 0'2- 8 S'O - 9 2'1 - 9 ZP 0 9*r+ - 1.2- - E.0- - ZP 0 E.o+ P E.0- P 2'0- P 62 o 8'0 + P 2'0- P 1.0- - g*o+ - 1'0- - Po 6*E+ P E.0- 9 0'0 P 2;o- P ur yo ~ s'a P u TtI 'E-z 'NXLH3IUH3VN BHXINONOKLSV 19 41 30 20 - - 1goo Name RA. Decl. + m n f D , s 1 Power __* €3 111 73 oh 59" - 6' 2' 05-84 15503 0% 4 131'28 4 - oh8 rn , rn -228 05-92 155.0 0.8 4 12.56 6 -0.2 rg , rb 142 05.96 155.3 0.7 4 12.69 4 +0.2 b , b 228 8 Phoenicis I2 -47 '5 04.85 = 3.3 2.6 5 1.24 4 - 0.9 rn , rb 228 Sellors I 04.88 I 6.3 3.9 4? +0.3 vb , b 228 04.96 15.4 3.9 3 1.48 4 - 1.0 m , rn 228 05.82 2 0.9 1.0 2 - - 1.7 b , rn 142 0535 6.9 3.2 4 1.83 4 -0.6 rb , m 228 05.85 25.5 2.6 4 1-51 4 -0.6 rb , rb 340 05-92 7.9 6.2 4- -0.3 vb , rb 228 05.96 12.1 1.3 5- - 0.9 b , b 228 05-96 I 1.5 1.9 4 1-59 4 - 1.0 b , rn 228 2 102 Med.
    [Show full text]
  • Stellar Imaging Coronagraph and Exoplanet Coronal Spectrometer
    Stellar Imaging Coronagraph and Exoplanet Coronal Spectrometer – Two Additional Instruments for Exoplanet Exploration Onboard The WSO-UV 1.7 Meter Orbital Telescope Alexander Tavrova, b, Shingo Kamedac, Andrey Yudaevb, Ilia Dzyubana, Alexander Kiseleva, Inna Shashkovaa*, Oleg Korableva, Mikhail Sachkovd, Jun Nishikawae, Motohide Tamurae, g, Go Murakamif, Keigo Enyaf, Masahiro Ikomag, Norio Naritag a IKI-RAS Space Research Institute of Russian Academy of Science, Profsoyuznaya ul. 84/32, Moscow, 117997, Russia b Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia c Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan d INASAN Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya str., 48 , Moscow, 119017, Russia e NAOJ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan f JAXA Japan Aerospace Exploration Agency, 3-3-1 Yoshinodai, Chuo, Sagamihara, Kanagawa, 229-8510, Japan g The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan Abstract. The World Space Observatory for Ultraviolet (WSO-UV) is an orbital optical telescope with a 1.7 m- diameter primary mirror currently under development. The WSO-UV is aimed to operate in the 115–310 nm UV spectral range. Its two major science instruments are UV spectrographs and a UV imaging field camera with filter wheels. The WSO-UV project is currently in the implementation phase, with a tentative launch date in 2023. As designed, the telescope field of view (FoV) in the focal plane is not fully occupied by instruments. Recently, two additional instruments devoted to exoplanets have been proposed for WSO-UV, which are the focus of this paper.
    [Show full text]
  • 1903Aj 23 . . . 22K 22 the Asteojsomic Al
    22 THE ASTEOJSOMIC AL JOUENAL. Nos- 531-532 22K . Taking into account the smallness of the weights in- concerned. Through the use of these tables the positions . volved, the individual differences which make up the and motions of many stars not included in the present 23 groups in the preceding table agree^very well. catalogue can be brought into systematic harmony with it, and apparently without materially less accuracy for the in- dividual stars than could be reached by special compu- Tables of Systematic Correction for N2 and A. tations for these stars in conformity with the system of B. 1903AJ The results of the foregoing comparisons. have been This is especially true of the star-places computed by utilized to form tables of systematic corrections for ISr2, An, Dr. Auwers in the catalogues, Ai and As. As will be seen Ai and As. In right-ascension no distinction is necessary by reference to the catalogue the positions and motions of between the various catalogues published by Dr. Auwers, south polar stars taken from N2 agree better with the beginning with the Fundamental-G at alo g ; but in decli- results of this investigation than do those taken from As, nation the distinction between the northern, intermediate, which, in turn, are quoted from the Cape Catalogue for and southern catalogues must be preserved, so far as is 1890. SYSTEMATIC COBEECTIOEB : CEDEE OF DECLINATIONS. Eight-Ascensions ; Cokrections, ¿las and 100z//xtf. Declinations; Corrections, Æs and IOOzZ/x^. B — ISa B —A B —N2 B —An B —Ai âas 100 â[is âas 100 âgô âSs 100
    [Show full text]
  • One of the Most Useful Accessories an Amateur Can Possess Is One of the Ubiquitous Optical Filters
    One of the most useful accessories an amateur can possess is one of the ubiquitous optical filters. Having been accessible previously only to the professional astronomer, they came onto the marker relatively recently, and have made a very big impact. They are useful, but don't think they're the whole answer! They can be a mixed blessing. From reading some of the advertisements in astronomy magazines you would be correct in thinking that they will make hitherto faint and indistinct objects burst into vivid observ­ ability. They don't. What the manufacturers do not mention is that regardless of the filter used, you will still need dark and transparent skies for the use of the filter to be worthwhile. Don't make the mistake of thinking that using a filter from an urban location will always make objects become clearer. The first and most immediately apparent item on the downside is that in all cases the use of a filter reduces the amount oflight that reaches the eye, often quite sub­ stantially. The brightness of the field of view and the objects contained therein is reduced. However, what the filter does do is select specific wavelengths of light emitted by an object, which may be swamped by other wavelengths. It does this by suppressing the unwanted wavelengths. This is particularly effective in observing extended objects such as emission nebulae and planetary nebulae. In the former case, use a filter that transmits light around the wavelength of 653.2 nm, which is the spectral line of hydrogen alpha (Ha), and is the wavelength oflight respons­ ible for the spectacular red colour seen in photographs of emission nebulae.
    [Show full text]
  • On the Origin of the O and B-Type Stars with High Velocities II Runaway
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 05(04.01.2; 05.01.1; 05.18.1) ASTROPHYSICS On the origin of the O and B-type stars with high velocities II Runaway stars and pulsars ejected from the nearby young stellar groups R. Hoogerwerf, J.H.J. de Bruijne, and P.T. de Zeeuw Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, the Netherlands August 2000 Abstract. We use milli-arcsecond accuracy astrometry 1. Introduction (proper motions and parallaxes) from Hipparcos and from radio observations to retrace the orbits of 56 runaway stars About 10–30% of the O stars and 5–10% of the B stars (Gies 1987; Stone 1991) have large peculiar velocities (up and nine compact objects with distances less than 700 −1 pc, to identify the parent stellar group. It is possible to to 200 km s ), and are often found in isolated locations; deduce the specific formation scenario with near certainty these are the so-called ‘runaway stars’ (Blaauw 1961, here- for two cases. (i) We find that the runaway star ζ Ophiuchi after Paper I). The velocity dispersion of the population of runaway stars, σ 30 km s−1 (e.g., Stone 1991), is and the pulsar PSR J1932+1059 originated about 1 Myr v ∼ ago in a supernova explosion in a binary in the Upper much larger than that of the ‘normal’ early-type stars, σ 10 km s−1. Besides their peculiar kinematics, run- Scorpius subgroup of the Sco OB2 association. The pulsar v ∼ received a kick velocity of 350kms−1 in this event, which away stars are also distinguished from the normal early- dissociated the binary, and∼ gave ζ Oph its large space type stars by an almost complete absence of multiplicity velocity.
    [Show full text]
  • Fundamental Problems in the Evaluation of Electron Micrographs
    RIJKSUNIVERSITEIT TE GRONINGEN FUNDAMENTAL PROBLEMS IN THE EVALUATION OF ELECTRON MICROGRAPHS Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit te Groningen op gezag van de Rector Magnificus Dr. J. Borgman in het openbaar te verdedigen op vrijdag 23 februari 1979 des namiddags te 2.45 uur precies door ANDRE MARTINUS JAN HUISER geboren te Groningen I Promotor: Dr. H. A. Ferwerda Coreferent: Prof. Dr. Ir. H. J. Frankena I r. tev nagedaehtenis van mijn vader ••./»'• VOORWOORD Graag wil ik diegenen bedanken met wie ik heb samengewerkt tijdens mijn promotie onderzoek. Zonder de ongenoemden te kort te willen doen wil ik enkelen met name noemen. In de eerste plaats mijn promotor, Dr. H.A. Ferwerda. Hem ben ik zeer erkentelijk voor de critische belangstelling waarmee hij mijn werk begeleid heeft en vooral voor zijn sympatieke wijze van samen- werking. Bij het schrijven van dit proefschrift heb ik veel steun ondervon- den van mijn coreferent, Dr. Ir. H.J. Frankena. Van zijn opmerkingen en suggesties heb ik in korte tijd veel geleerd. Hiervoor wil ik hem heel hartelijk danken. Verder ben ik grote dank verschuldigd aan Dr. B. J. Hoenders, Ir. P. van Toorn, en Dr. A.H. Greenaway voor hun tegenspel in de talloze discussies op wetenschappelijk en niet wetenschappelijk terrein, in en buiten het laboratorium. Zonder hun zouden belangrijke onderdelen van dit proefschrift wellicht nooit zijn ontstaan. Niet in het minst ben ik dank verschuldigd aan Sietske Lutter voor de aanstekelijke opgewektheid waarmee zij het leeuwendeel van dit proefschrift getypt heeft; alsmede Elli Boswijk die ook een gedeelte van het typewerk voor haar rekening heeft genomen.
    [Show full text]
  • Astrometric Search for Extrasolar Planets in Stellar Multiple Systems
    Astrometric search for extrasolar planets in stellar multiple systems Dissertation submitted in partial fulfillment of the requirements for the degree of doctor rerum naturalium (Dr. rer. nat.) submitted to the faculty council for physics and astronomy of the Friedrich-Schiller-University Jena by graduate physicist Tristan Alexander Röll, born at 30.01.1981 in Friedrichroda. Referees: 1. Prof. Dr. Ralph Neuhäuser (FSU Jena, Germany) 2. Prof. Dr. Thomas Preibisch (LMU München, Germany) 3. Dr. Guillermo Torres (CfA Harvard, Boston, USA) Day of disputation: 17 May 2011 In Memoriam Siegmund Meisch ? 15.11.1951 † 01.08.2009 “Gehe nicht, wohin der Weg führen mag, sondern dorthin, wo kein Weg ist, und hinterlasse eine Spur ... ” Jean Paul Contents 1. Introduction1 1.1. Motivation........................1 1.2. Aims of this work....................4 1.3. Astrometry - a short review...............6 1.4. Search for extrasolar planets..............9 1.5. Extrasolar planets in stellar multiple systems..... 13 2. Observational challenges 29 2.1. Astrometric method................... 30 2.2. Stellar effects...................... 33 2.2.1. Differential parallaxe.............. 33 2.2.2. Stellar activity.................. 35 2.3. Atmospheric effects................... 36 2.3.1. Atmospheric turbulences............ 36 2.3.2. Differential atmospheric refraction....... 40 2.4. Relativistic effects.................... 45 2.4.1. Differential stellar aberration.......... 45 2.4.2. Differential gravitational light deflection.... 49 2.5. Target and instrument selection............ 51 2.5.1. Instrument requirements............ 51 2.5.2. Target requirements............... 53 3. Data analysis 57 3.1. Object detection..................... 57 3.2. Statistical analysis.................... 58 3.3. Check for an astrometric signal............. 59 3.4. Speckle interferometry.................
    [Show full text]
  • AKARI/IRC 18 Micron Survey of Warm Debris Disks
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 November 1, 2018 AKARI/IRC 18 µm Survey of Warm Debris Disks Hideaki Fujiwara1, Daisuke Ishihara2, Takashi Onaka3, Satoshi Takita4, Hirokazu Kataza4, Takuya Yamashita5, Misato Fukagawa6, Takafumi Ootsubo7, Takanori Hirao8, Keigo Enya4, Jonathan P. Marshall9, Glenn J. White10,11, Takao Nakagawa4, and Hiroshi Murakami4 1 Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA e-mail: [email protected] 2 Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 3 Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan 4 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan 5 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan 6 Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan 7 Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan 8 Research Institute of Science and Technology for Society, Japan Science and Technology Agency, K’s Gobancho Bldg, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, JAPAN 9 Departmento F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onoma de Madrid, Cantoblanco, 28049 Madrid, Spain 10 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 11 Space Science & Technology Department, The Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK Received 19 June 2012 / Accepted 21 November 2012 ABSTRACT Context. Little is known about the properties of the warm (Tdust & 150 K) debris disk material located close to the central star, which has a more direct link to the formation of terrestrial planets than the low temperature debris dust that has been detected to date.
    [Show full text]