Hongkong Double Star Observations

Total Page:16

File Type:pdf, Size:1020Kb

Hongkong Double Star Observations 1'1- g 1-o+ P 2.0- 9 s.0- P 65 o €1 I11 H 9.0- - 8'0- - I'O+ - Z'O+ - 2'0- - IS 0 I aMoH 2'1- - 9*0+ -- E.0- - P.0- - 0s 0 EEz tj 2.1- P L*I+ - P*o+ P 0'0 P 1.0- P 8t 0 Z'O+ - - 2'0- 8P O om€+ P 1.0- 9 6-o+ 9 0'2- 8 S'O - 9 2'1 - 9 ZP 0 9*r+ - 1.2- - E.0- - ZP 0 E.o+ P E.0- P 2'0- P 62 o 8'0 + P 2'0- P 1.0- - g*o+ - 1'0- - Po 6*E+ P E.0- 9 0'0 P 2;o- P ur yo ~ s'a P u TtI 'E-z 'NXLH3IUH3VN BHXINONOKLSV 19 41 30 20 - - 1goo Name RA. Decl. + m n f D , s 1 Power __* €3 111 73 oh 59" - 6' 2' 05-84 15503 0% 4 131'28 4 - oh8 rn , rn -228 05-92 155.0 0.8 4 12.56 6 -0.2 rg , rb 142 05.96 155.3 0.7 4 12.69 4 +0.2 b , b 228 8 Phoenicis I2 -47 '5 04.85 = 3.3 2.6 5 1.24 4 - 0.9 rn , rb 228 Sellors I 04.88 I 6.3 3.9 4? +0.3 vb , b 228 04.96 15.4 3.9 3 1.48 4 - 1.0 m , rn 228 05.82 2 0.9 1.0 2 - - 1.7 b , rn 142 0535 6.9 3.2 4 1.83 4 -0.6 rb , m 228 05.85 25.5 2.6 4 1-51 4 -0.6 rb , rb 340 05-92 7.9 6.2 4- -0.3 vb , rb 228 05.96 12.1 1.3 5- - 0.9 b , b 228 05-96 I 1.5 1.9 4 1-59 4 - 1.0 b , rn 228 2 102 Med. & C I I2 +48 29 04.88 2 24.8 1.6 4 9.65 6 -3.4 rn , rb 228 04.89 223.9 2.4 4 9-10 6 - 2.8 rn , vb 228 04.99 223.8 0.7 4- - - 1.0 g , rb 228 05.01 225.0 1.6 4 9.37 6 -0.2 rg , rb 142 05.02 224.9 0.7 5 9.45 4 + 0.6 m , rb 228 05.85 2 2 3.6 0.6 5 9.16 4 - 1.0 rn , rn 228 05.96 224.2 1.2 4 9-50 4 - 1.4 rb , rb 142 n Med. & D P 04.97 61.9 1.6 4- - - 0.8 b ,rb 228 05.02 64.0 I .6 4- +0.7 vb , rb 228 > > 04.9 7 8.6 I .o 4- - 0.9 rn , rb 228 P > 04.9 I 10.9 1.0 8- - 0.8 m , b 228 ,v P 04.9 7 356.3 0.5 4- -0.7 b , b 228 I 18 -19 36 04.88 7 5.6 0.6 4- +0.5 rn , rg 228 04.88 74.2 0.9 4- - 0.4 rn , m 228 04.89 7 5.9 1'5 4- -0.5 sg , rg 228 04.9 7 74.1 2.0 4- + 1.3 rg , rg 228 z Sculptoris -30 25 04.85 95.6 0.6 3- -2.5 vb , rn 228 h 3447 04.88 9 1.0 1.1 5 1-49 4 0.0 b ,b 228 04.89 95.7 0.5 4 1.57 4 - 0.6 n~ , rb 228 04.96 95.9 2.3 5 2.20 4 - 1.4 m , rn 228 04.9 7 96.6 1.8 4 1-85 4 + 1.2 rb , rb 228 05.82 97.2 2.6 4- - - 2.0 rn , m 600 05.84 99.0 3.4 4 1.85 6 - 1.5 rb , rb 340 05-96 91.2 0.9 4 1-15 4 - 1.7 rb , rb 228 Eridani p I 36 -56 42 04-85 220.0 1.5 4 7.66 6 - 1.1 rb , rb 228 Dunlop 5 04.88 221.2 I. I 5- 1 -1.5 vb , b 228 04.88 220.9 1.4 4 7.25 4 -0.1 rb , rn 340 04.93 221.6 0. I 4 8-14 4 -0.1 m , b 142 05.00 221.5 1.3 4 7.33 6 - 0.4 rb ., rb 228 05.02 221.6 0.3 4 1-59 6 rb , rn 228 05.85 22 1.5 0.5 4 7.47 4 rn , rn 228 Sculptoris - I -25 33 04.89 5 1.5 2.5 4- m , rb 228 h 3461 04.9 2 5 2.9 1.5 6- b , b 228 04-92 5 3.4 1.2 4- rb , b 128 04.9 7 49.5 2.1 5- rg , m 1a8 B 158 +32 39 04.88 265.2 4-5 5? vb, rb a28 04-89 254.8 1.4 4- b , b 228 05.03 256.6 6.3 4- vb, m 128 05.04 262.6 2.0 6- b , rb 180 B 5'3 , I 54 +I0 25 04-99 90.6 1.8 4 seen rb , rb 228 05.00 78.7 2.4 4 .? vb , vb 228 05.03 7 5.2 a.8 4 seen rb , m 600 Hastings I ~ 211 -18 42 04.88 3 5 5.8 2.6 4- b , b 228 04.88 343.5 5.4 4- vb, rb 228 21 41 30 22 - - - - - - I goo Name RA. Decl. m n P t Power + __ - -+ Hasrttigs I 2h I Irn - 18~42' 04.9 2 349:o 201 4 - oh2 b rb 228 04.93 3 5 1.9 1.1 4 - 0.3 vb , m 228 04.9 7 35'4' 1.8 5 t0.8 rb , rb 228 B 240 2 I1 +23 25 05.00 50.9 0.6 4 - 1.3 m ,b 228 +2.I 05-03 5 3.4 1.3 6 m 1m 228 05.84 5 3.0 1.6 5 - 2.6 rb , b 142 2s 249 2 14 +44 9 04.99 196.8 4-4 5 - 1.2 vb , rb 228 05.00 200.1 3.1 5 - 1.5 b , rb 228 05.01 204.5 3.8 5 - 0.8 vb , rb 228 05-03 '93.9 2.4 4 + 2.2 rb , m 228 h 3494 2 16 -35 54 04.9 2 76.9 4. I 5 - 1.2 vb b 228 04-96 63.5 7.2 4 - 1.9 vb , b 228 05.00 54.4 6.0 4 - 1.2 vb , rb 142 Hough 3 I 3 2 18 - 8 16 04.92 88.6 2.5 4 0.0 vb , b 228 h 3504 2 26 -30 49 05.00 270.8 1.9 5 - 1.0 b rb 228 05.02 266.9 0.4 4 + I:I rb rb 142 05.02 268.3 1.4 5 - 0.4 b , rb 228 25 295 2 36 - 17 04.88 3 18.3 1.6 4 - 2.3 vb , rb 228 04.9 2 321.8 0.8 5 - 1.4 vb , rb 228 2. I 05.00 321.8 5 - 1.5 rg 1 m 142 B 300 2 38 +29 2 04.88 304.8 3.2 5 - 2.0 m lb 228 2.0 05.00 306.1 1.4 4 - rg 1 rg 142 05.03 305.8 1.2 4 + 2.0 m ,m 228 h 3527 2 40 -40 51 04.88 41.5 5.4 4 - 1.8 vb , b 228 04.9 2 49.6 2.7 4 - 0.8 b , rb 228 04-93 58.8 4.0 4 - 0.6 b ,m 228 04.96 41.6 0.9 4 - 2.2 rb , rb 228 05.85 45.3 3.5 5 - 1.8 rb , m 228 2312 AB 2 45 +72 31 04.9 7 27.2 8. I 5 - 0.2 b , rb 142 04.99 23.5 4.2 4 - 1.5 rb , rb 228 05.02 23.6 0.8 4 + 1.0 rb rb 142 > AC % 04-99 131.6 0.5 3 - 1.4 vb , rb 142. 05.02 '29.3 0.4 4 + 1.0 b , rb 142 2 334 2 54 + 6 17 04.88 310.2 6.1 5 - 2.0 vb vb 228 05.01 306.8 1.4 4 - 1.2 vb , rb 2 28 05-03 317.0 2.3 5 + 1.9 m ,m 228 05-85 309.9 1.5 4 -2.2 rb , rb 228 08 50 33 t-71 II 04.9 7 198.7 1.3 4 - 0.4 rb , rb 228 05.02 203.8 5.2 5 +0.9 b ,b 228 05-87 198.9 2.8 4 - 0.8 b , rb 228 h 3556 39 -44 48 04.93 214.7 0.1 4 - 0.6 b , rb 228 O4.9 7 211.6 5.4 5 - 0.2 vb , b 228 05.8 7 208.6 4.5 5 - 1.3 vb , rb 228 05-96 2 I 2.9 4.' 5 +0.6 vb , rb 142 06.02 211.8 3.5 5 -0.5 rb , rb 142 B 388 3 22 -1-50 7 04.96 2 14.0 1.6 4 - 1.4 rb rb 228 O4.97 2 I 1.6 2.4 4 -0.5 rb , rb 228 Oj.01 210.9 1.2 4 - 0.2 b ,b 228 05.1 2 208.8 0.5 4 +0.7 m , rb 228 05.81 2 I 2.3 1.4 4 - 1.3 rb rb 228 2 407 3 25 -11 29 04-93 48.1 5.0 4 -0.7 b , rb 228 05.00 50.0 2.7 4 - 2.0 b , rb 228 05.87 50.9 4.3 6 -2.1 vb , rb 228 2 436 3 36 -12 55 04.89 237.' 0.3 4 - 2.3 rg I vb 228 04.92 236.1 0.
Recommended publications
  • Arxiv:1809.07342V1 [Astro-Ph.SR] 19 Sep 2018
    Draft version September 21, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 FAR-ULTRAVIOLET ACTIVITY LEVELS OF F, G, K, AND M DWARF EXOPLANET HOST STARS* Kevin France1, Nicole Arulanantham1, Luca Fossati2, Antonino F. Lanza3, R. O. Parke Loyd4, Seth Redfield5, P. Christian Schneider6 Draft version September 21, 2018 ABSTRACT We present a survey of far-ultraviolet (FUV; 1150 { 1450 A)˚ emission line spectra from 71 planet- hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90 { 360 A˚ extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emission lines to probe star-planet interactions (SPIs). We build this emission line sample from a combination of new and archival observations with the Hubble Space Telescope-COS and -STIS instruments, targeting the chromospheric and transition region emission lines of Si III,N V,C II, and Si IV. We find that the exoplanet host stars, on average, display factors of 5 { 10 lower UV activity levels compared with the non-planet hosting sample; this is explained by a combination of observational and astrophysical biases in the selection of stars for radial-velocity planet searches. We demonstrate that UV activity-rotation relation in the full F { M star sample is characterized by a power-law decline (with index α ≈ −1.1), starting at rotation periods & 3.5 days. Using N V or Si IV spectra and a knowledge of the star's bolometric flux, we present a new analytic relationship to estimate the intrinsic stellar EUV irradiance in the 90 { 360 A˚ band with an accuracy of roughly a factor of ≈ 2.
    [Show full text]
  • Appendix A: Scientific Notation
    Appendix A: Scientific Notation Since in astronomy we often have to deal with large numbers, writing a lot of zeros is not only cumbersome, but also inefficient and difficult to count. Scientists use the system of scientific notation, where the number of zeros is short handed to a superscript. For example, 10 has one zero and is written as 101 in scientific notation. Similarly, 100 is 102, 100 is 103. So we have: 103 equals a thousand, 106 equals a million, 109 is called a billion (U.S. usage), and 1012 a trillion. Now the U.S. federal government budget is in the trillions of dollars, ordinary people really cannot grasp the magnitude of the number. In the metric system, the prefix kilo- stands for 1,000, e.g., a kilogram. For a million, the prefix mega- is used, e.g. megaton (1,000,000 or 106 ton). A billion hertz (a unit of frequency) is gigahertz, although I have not heard of the use of a giga-meter. More rarely still is the use of tera (1012). For small numbers, the practice is similar. 0.1 is 10À1, 0.01 is 10À2, and 0.001 is 10À3. The prefix of milli- refers to 10À3, e.g. as in millimeter, whereas a micro- second is 10À6 ¼ 0.000001 s. It is now trendy to talk about nano-technology, which refers to solid-state device with sizes on the scale of 10À9 m, or about 10 times the size of an atom. With this kind of shorthand convenience, one can really go overboard.
    [Show full text]
  • A New Form of Estimating Stellar Parameters Using an Optimization Approach
    A&A 532, A20 (2011) Astronomy DOI: 10.1051/0004-6361/200811182 & c ESO 2011 Astrophysics Modeling nearby FGK Population I stars: A new form of estimating stellar parameters using an optimization approach J. M. Fernandes1,A.I.F.Vaz2, and L. N. Vicente3 1 CFC, Department of Mathematics and Astronomical Observatory, University of Coimbra, Portugal e-mail: [email protected] 2 Department of Production and Systems, University of Minho, Portugal e-mail: [email protected] 3 CMUC, Department of Mathematics, University of Coimbra, Portugal e-mail: [email protected] Received 17 October 2008 / Accepted 27 May 2011 ABSTRACT Context. Modeling a single star with theoretical stellar evolutionary tracks is a nontrivial problem because of a large number of unknowns compared to the number of observations. A current way of estimating stellar age and mass consists of using interpolations in grids of stellar models and/or isochrones, assuming ad hoc values for the mixing length parameter and the metal-to-helium enrichment, which is normally scaled to the solar values. Aims. We present a new method to model the FGK main-sequence of Population I stars. This method is capable of simultaneously estimating a set of stellar parameters, namely the mass, the age, the helium and metal abundances, the mixing length parameter, and the overshooting. Methods. The proposed method is based on the application of a global optimization algorithm (PSwarm) to solve an optimization problem that in turn consists of finding the values of the stellar parameters that lead to the best possible fit of the given observations.
    [Show full text]
  • The Chemical Composition of Solar-Type Stars and Its Impact on the Presence of Planets
    The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Munchen¨ 2013 The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Dissertation der Fakultat¨ fur¨ Physik der Ludwig-Maximilians-Universitat¨ Munchen¨ durchgefuhrt¨ am Max-Planck-Institut fur¨ Astrophysik vorgelegt von Patrick Baumann aus Munchen¨ Munchen,¨ den 31. Januar 2013 Erstgutacher: Prof. Dr. Achim Weiss Zweitgutachter: Prof. Dr. Joachim Puls Tag der mündlichen Prüfung: 8. April 2013 Zusammenfassung Wir untersuchen eine mogliche¨ Verbindung zwischen den relativen Elementhaufig-¨ keiten in Sternatmospharen¨ und der Anwesenheit von Planeten um den jeweili- gen Stern. Um zuverlassige¨ Ergebnisse zu erhalten, untersuchen wir ausschließlich sonnenahnliche¨ Sterne und fuhren¨ unsere spektroskopischen Analysen zur Bestim- mung der grundlegenden Parameter und der chemischen Zusammensetzung streng differenziell und relativ zu den solaren Werten durch. Insgesamt untersuchen wir 200 Sterne unter Zuhilfenahme von Spektren mit herausragender Qualitat,¨ die an den modernsten Teleskopen gewonnen wurden, die uns zur Verfugung¨ stehen. Mithilfe der Daten fur¨ 117 sonnenahnliche¨ Sterne untersuchen wir eine mogliche¨ Verbindung zwischen der Oberflachenh¨ aufigkeit¨ von Lithium in einem Stern, seinem Alter und der Wahrscheinlichkeit, dass sich ein oder mehrere Sterne in einer Um- laufbahn um das Objekt befinden. Fur¨ jeden Stern erhalten wir sehr exakte grundle- gende Parameter unter Benutzung einer sorgfaltig¨ zusammengestellten Liste von Fe i- und Fe ii-absorptionslinien, modernen Modellatmospharen¨ und Routinen zum Erstellen von Modellspektren. Die Massen und das Alter der Objekte werden mithilfe von Isochronen bestimmt, was zu sehr soliden relativen Werten fuhrt.¨ Bei jungen Sternen, fur¨ die die Isochronenmethode recht unzuverlssig¨ ist, vergleichen wir verschiedene alternative Methoden.
    [Show full text]
  • Stellar Imaging Coronagraph and Exoplanet Coronal Spectrometer
    Stellar Imaging Coronagraph and Exoplanet Coronal Spectrometer – Two Additional Instruments for Exoplanet Exploration Onboard The WSO-UV 1.7 Meter Orbital Telescope Alexander Tavrova, b, Shingo Kamedac, Andrey Yudaevb, Ilia Dzyubana, Alexander Kiseleva, Inna Shashkovaa*, Oleg Korableva, Mikhail Sachkovd, Jun Nishikawae, Motohide Tamurae, g, Go Murakamif, Keigo Enyaf, Masahiro Ikomag, Norio Naritag a IKI-RAS Space Research Institute of Russian Academy of Science, Profsoyuznaya ul. 84/32, Moscow, 117997, Russia b Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia c Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan d INASAN Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya str., 48 , Moscow, 119017, Russia e NAOJ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan f JAXA Japan Aerospace Exploration Agency, 3-3-1 Yoshinodai, Chuo, Sagamihara, Kanagawa, 229-8510, Japan g The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan Abstract. The World Space Observatory for Ultraviolet (WSO-UV) is an orbital optical telescope with a 1.7 m- diameter primary mirror currently under development. The WSO-UV is aimed to operate in the 115–310 nm UV spectral range. Its two major science instruments are UV spectrographs and a UV imaging field camera with filter wheels. The WSO-UV project is currently in the implementation phase, with a tentative launch date in 2023. As designed, the telescope field of view (FoV) in the focal plane is not fully occupied by instruments. Recently, two additional instruments devoted to exoplanets have been proposed for WSO-UV, which are the focus of this paper.
    [Show full text]
  • 1903Aj 23 . . . 22K 22 the Asteojsomic Al
    22 THE ASTEOJSOMIC AL JOUENAL. Nos- 531-532 22K . Taking into account the smallness of the weights in- concerned. Through the use of these tables the positions . volved, the individual differences which make up the and motions of many stars not included in the present 23 groups in the preceding table agree^very well. catalogue can be brought into systematic harmony with it, and apparently without materially less accuracy for the in- dividual stars than could be reached by special compu- Tables of Systematic Correction for N2 and A. tations for these stars in conformity with the system of B. 1903AJ The results of the foregoing comparisons. have been This is especially true of the star-places computed by utilized to form tables of systematic corrections for ISr2, An, Dr. Auwers in the catalogues, Ai and As. As will be seen Ai and As. In right-ascension no distinction is necessary by reference to the catalogue the positions and motions of between the various catalogues published by Dr. Auwers, south polar stars taken from N2 agree better with the beginning with the Fundamental-G at alo g ; but in decli- results of this investigation than do those taken from As, nation the distinction between the northern, intermediate, which, in turn, are quoted from the Cape Catalogue for and southern catalogues must be preserved, so far as is 1890. SYSTEMATIC COBEECTIOEB : CEDEE OF DECLINATIONS. Eight-Ascensions ; Cokrections, ¿las and 100z//xtf. Declinations; Corrections, Æs and IOOzZ/x^. B — ISa B —A B —N2 B —An B —Ai âas 100 â[is âas 100 âgô âSs 100
    [Show full text]
  • One of the Most Useful Accessories an Amateur Can Possess Is One of the Ubiquitous Optical Filters
    One of the most useful accessories an amateur can possess is one of the ubiquitous optical filters. Having been accessible previously only to the professional astronomer, they came onto the marker relatively recently, and have made a very big impact. They are useful, but don't think they're the whole answer! They can be a mixed blessing. From reading some of the advertisements in astronomy magazines you would be correct in thinking that they will make hitherto faint and indistinct objects burst into vivid observ­ ability. They don't. What the manufacturers do not mention is that regardless of the filter used, you will still need dark and transparent skies for the use of the filter to be worthwhile. Don't make the mistake of thinking that using a filter from an urban location will always make objects become clearer. The first and most immediately apparent item on the downside is that in all cases the use of a filter reduces the amount oflight that reaches the eye, often quite sub­ stantially. The brightness of the field of view and the objects contained therein is reduced. However, what the filter does do is select specific wavelengths of light emitted by an object, which may be swamped by other wavelengths. It does this by suppressing the unwanted wavelengths. This is particularly effective in observing extended objects such as emission nebulae and planetary nebulae. In the former case, use a filter that transmits light around the wavelength of 653.2 nm, which is the spectral line of hydrogen alpha (Ha), and is the wavelength oflight respons­ ible for the spectacular red colour seen in photographs of emission nebulae.
    [Show full text]
  • On the Origin of the O and B-Type Stars with High Velocities II Runaway
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 05(04.01.2; 05.01.1; 05.18.1) ASTROPHYSICS On the origin of the O and B-type stars with high velocities II Runaway stars and pulsars ejected from the nearby young stellar groups R. Hoogerwerf, J.H.J. de Bruijne, and P.T. de Zeeuw Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, the Netherlands August 2000 Abstract. We use milli-arcsecond accuracy astrometry 1. Introduction (proper motions and parallaxes) from Hipparcos and from radio observations to retrace the orbits of 56 runaway stars About 10–30% of the O stars and 5–10% of the B stars (Gies 1987; Stone 1991) have large peculiar velocities (up and nine compact objects with distances less than 700 −1 pc, to identify the parent stellar group. It is possible to to 200 km s ), and are often found in isolated locations; deduce the specific formation scenario with near certainty these are the so-called ‘runaway stars’ (Blaauw 1961, here- for two cases. (i) We find that the runaway star ζ Ophiuchi after Paper I). The velocity dispersion of the population of runaway stars, σ 30 km s−1 (e.g., Stone 1991), is and the pulsar PSR J1932+1059 originated about 1 Myr v ∼ ago in a supernova explosion in a binary in the Upper much larger than that of the ‘normal’ early-type stars, σ 10 km s−1. Besides their peculiar kinematics, run- Scorpius subgroup of the Sco OB2 association. The pulsar v ∼ received a kick velocity of 350kms−1 in this event, which away stars are also distinguished from the normal early- dissociated the binary, and∼ gave ζ Oph its large space type stars by an almost complete absence of multiplicity velocity.
    [Show full text]
  • Fundamental Problems in the Evaluation of Electron Micrographs
    RIJKSUNIVERSITEIT TE GRONINGEN FUNDAMENTAL PROBLEMS IN THE EVALUATION OF ELECTRON MICROGRAPHS Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit te Groningen op gezag van de Rector Magnificus Dr. J. Borgman in het openbaar te verdedigen op vrijdag 23 februari 1979 des namiddags te 2.45 uur precies door ANDRE MARTINUS JAN HUISER geboren te Groningen I Promotor: Dr. H. A. Ferwerda Coreferent: Prof. Dr. Ir. H. J. Frankena I r. tev nagedaehtenis van mijn vader ••./»'• VOORWOORD Graag wil ik diegenen bedanken met wie ik heb samengewerkt tijdens mijn promotie onderzoek. Zonder de ongenoemden te kort te willen doen wil ik enkelen met name noemen. In de eerste plaats mijn promotor, Dr. H.A. Ferwerda. Hem ben ik zeer erkentelijk voor de critische belangstelling waarmee hij mijn werk begeleid heeft en vooral voor zijn sympatieke wijze van samen- werking. Bij het schrijven van dit proefschrift heb ik veel steun ondervon- den van mijn coreferent, Dr. Ir. H.J. Frankena. Van zijn opmerkingen en suggesties heb ik in korte tijd veel geleerd. Hiervoor wil ik hem heel hartelijk danken. Verder ben ik grote dank verschuldigd aan Dr. B. J. Hoenders, Ir. P. van Toorn, en Dr. A.H. Greenaway voor hun tegenspel in de talloze discussies op wetenschappelijk en niet wetenschappelijk terrein, in en buiten het laboratorium. Zonder hun zouden belangrijke onderdelen van dit proefschrift wellicht nooit zijn ontstaan. Niet in het minst ben ik dank verschuldigd aan Sietske Lutter voor de aanstekelijke opgewektheid waarmee zij het leeuwendeel van dit proefschrift getypt heeft; alsmede Elli Boswijk die ook een gedeelte van het typewerk voor haar rekening heeft genomen.
    [Show full text]
  • Astrometric Search for Extrasolar Planets in Stellar Multiple Systems
    Astrometric search for extrasolar planets in stellar multiple systems Dissertation submitted in partial fulfillment of the requirements for the degree of doctor rerum naturalium (Dr. rer. nat.) submitted to the faculty council for physics and astronomy of the Friedrich-Schiller-University Jena by graduate physicist Tristan Alexander Röll, born at 30.01.1981 in Friedrichroda. Referees: 1. Prof. Dr. Ralph Neuhäuser (FSU Jena, Germany) 2. Prof. Dr. Thomas Preibisch (LMU München, Germany) 3. Dr. Guillermo Torres (CfA Harvard, Boston, USA) Day of disputation: 17 May 2011 In Memoriam Siegmund Meisch ? 15.11.1951 † 01.08.2009 “Gehe nicht, wohin der Weg führen mag, sondern dorthin, wo kein Weg ist, und hinterlasse eine Spur ... ” Jean Paul Contents 1. Introduction1 1.1. Motivation........................1 1.2. Aims of this work....................4 1.3. Astrometry - a short review...............6 1.4. Search for extrasolar planets..............9 1.5. Extrasolar planets in stellar multiple systems..... 13 2. Observational challenges 29 2.1. Astrometric method................... 30 2.2. Stellar effects...................... 33 2.2.1. Differential parallaxe.............. 33 2.2.2. Stellar activity.................. 35 2.3. Atmospheric effects................... 36 2.3.1. Atmospheric turbulences............ 36 2.3.2. Differential atmospheric refraction....... 40 2.4. Relativistic effects.................... 45 2.4.1. Differential stellar aberration.......... 45 2.4.2. Differential gravitational light deflection.... 49 2.5. Target and instrument selection............ 51 2.5.1. Instrument requirements............ 51 2.5.2. Target requirements............... 53 3. Data analysis 57 3.1. Object detection..................... 57 3.2. Statistical analysis.................... 58 3.3. Check for an astrometric signal............. 59 3.4. Speckle interferometry.................
    [Show full text]
  • AKARI/IRC 18 Micron Survey of Warm Debris Disks
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 November 1, 2018 AKARI/IRC 18 µm Survey of Warm Debris Disks Hideaki Fujiwara1, Daisuke Ishihara2, Takashi Onaka3, Satoshi Takita4, Hirokazu Kataza4, Takuya Yamashita5, Misato Fukagawa6, Takafumi Ootsubo7, Takanori Hirao8, Keigo Enya4, Jonathan P. Marshall9, Glenn J. White10,11, Takao Nakagawa4, and Hiroshi Murakami4 1 Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA e-mail: [email protected] 2 Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 3 Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan 4 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan 5 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan 6 Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan 7 Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan 8 Research Institute of Science and Technology for Society, Japan Science and Technology Agency, K’s Gobancho Bldg, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, JAPAN 9 Departmento F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onoma de Madrid, Cantoblanco, 28049 Madrid, Spain 10 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 11 Space Science & Technology Department, The Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK Received 19 June 2012 / Accepted 21 November 2012 ABSTRACT Context. Little is known about the properties of the warm (Tdust & 150 K) debris disk material located close to the central star, which has a more direct link to the formation of terrestrial planets than the low temperature debris dust that has been detected to date.
    [Show full text]
  • TYC 8241 2652 1 and the Case of the Disappearing Disk: No Smoking Gun Yet
    TYC 8241 2652 1 and the case of the disappearing disk: no smoking gun yet Günther, H. M., Kraus, S., Melis, C., Curé, M., Harries, T., Ireland, M., Kanaan, S., Poppenhaeger, K., Rizzuto, A., Rodriguez, D., Schneider, C. P., Sitko, M., Weigelt, G., Willson, M., & Wolk, S. (2017). TYC 8241 2652 1 and the case of the disappearing disk: no smoking gun yet. Astronomy & Astrophysics. https://doi.org/10.1051/0004- 6361/201629008 Published in: Astronomy & Astrophysics Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2017 ESO. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:25. Sep. 2021 A&A 598, A82 (2017) Astronomy DOI: 10.1051/0004-6361/201629008 & c ESO 2017 Astrophysics TYC 8241 2652 1 and the case of the disappearing disk: No smoking gun yet? Hans Moritz Günther1, Stefan Kraus2, Carl Melis3, Michel Curé4, Tim Harries2, Michael Ireland5, Samer Kanaan4, Katja Poppenhaeger6; 12, Aaron Rizzuto7, David Rodriguez8, Christian P.
    [Show full text]