94 PART 712—CHEMICAL INFORMATION RULES Subpart A

Total Page:16

File Type:pdf, Size:1020Kb

94 PART 712—CHEMICAL INFORMATION RULES Subpart A § 711.35 40 CFR Ch. I (7–1–19 Edition) portion of the Master Inventory File is reporting under this part. Subpart B claimed as confidential, EPA may covers manufacturers’ and processors’ make the information available to the reporting. public without further notice to the (b) Chemical substances, mixtures, submitter. and categories of substances or mix- tures which have been recommended by § 711.35 Electronic filing. the Interagency Testing Committee for (a) You must use e-CDRweb to com- testing consideration by the Agency plete and submit Form U (EPA Form but not designated for Agency response 7740–8). Submissions may only be made within 12 months, will be added to as set forth in this section. § 712.30 using the procedure specified in (b) Submissions must be sent elec- § 712.30(c) only to the extent that the tronically to EPA via CDX. total number of designated and rec- (c) Access e-CDRweb and instruc- ommended chemicals has not exceeded tions, as follows: 50 in any 1 year. Additional rec- (1) By Web site. Go to the EPA Inven- ommended but not designated chemi- tory Update Reporting Internet home- cals may be added after proposal, and page at http://www.epa.gov/iur and fol- consideration of public comment. low the appropriate links. [47 FR 26998, June 22, 1982, as amended at 50 (2) By phone or e-mail. Contact the FR 34809, Aug. 28, 1985; 60 FR 31921, June 19, EPA TSCA Hotline at (202) 554–1404 or 1995] [email protected] for a CD–ROM containing the instructions. § 712.3 Definitions. The definitions in section 3 of TSCA, PART 712—CHEMICAL 15 U.S.C. 2602, apply for this part. In INFORMATION RULES addition, the following definitions apply: Subpart A—General Provisions (a) Byproduct means any chemical substance or mixture produced without Sec. 712.1 Scope and compliance. a separate commercial intent during 712.3 Definitions. the manufacture, processing, use, or 712.5 Method of identification of substances disposal of another chemical substance for reporting purposes. or mixture. 712.7 Report of readily obtainable informa- (b) EPA means the U.S. Environ- tion for subparts B and C. mental Protection Agency. 712.15 Confidentiality. (c) Import in bulk form means to im- Subpart B—Manufacturers Reporting— port a chemical substance (other than Preliminary Assessment Information as part of a mixture or article) in any quantity, in cans, bottles, drums, bar- 712.20 Manufacturers and importers who rels, packages, tanks, bags, or other must report. containers used for purposes of trans- 712.25 Exempt manufacturers and import- portation or containment, if the chem- ers. ical substance has an end use or com- 712.28 Form and instructions. 712.30 Chemical lists and reporting periods. mercial purpose separate from the con- tainer. AUTHORITY: 15 U.S.C. 2607(a). (d) Importer means anyone who im- SOURCE: 47 FR 26998, June 22, 1982, unless ports a chemical substance, including a otherwise noted. chemical substance as part of a mix- ture or article, into the customs terri- Subpart A—General Provisions tory of the U.S. and includes the per- son liable for the payment of any du- § 712.1 Scope and compliance. ties on the merchandise, or an author- (a) This part establishes procedures ized agent on his behalf. Importer also for chemical manufacturers and proc- includes, as appropriate: essors to report production, use, and (1) The consignee. exposure-related information on listed (2) The importer of record. chemical substances. Subpart A estab- (3) The actual owner if an actual lishes requirements that apply to all owner’s declaration and superseding 94 VerDate Sep<11>2014 10:47 Aug 09, 2019 Jkt 247183 PO 00000 Frm 00104 Fmt 8010 Sfmt 8010 Q:\40\40V33.TXT PC31 kpayne on VMOFRWIN702 with $$_JOB Environmental Protection Agency § 712.3 bond has been filed in accordance with chemical produced for a commercial 19 CFR 141.20. purpose. (4) The transferee, if the right to (i) Mixture means any combination of withdraw merchandise in a bonded two or more chemical substances if the warehouse has been transferred in ac- combination does not occur in nature cordance with subpart C of 19 CFR part and is not, in whole or in part, the re- 144. For the purposes of this definition, sult of a chemical reaction; except that the customs territory of the U.S. con- mixture does include (1) any combina- sists of the 50 states, Puerto Rico, and tion which occurs, in whole or in part, the District of Columbia. as a result of a chemical reaction if the (e) Impurity means a chemical sub- combination could have been manufac- stance unintentionally present with tured for commercial purposes without another chemical substance or mix- a chemical reaction at the time the ture. chemical substances comprising the (f) Intermediate means any chemical combination were combined, and if all substance that is consumed, in whole of the chemical substances comprising or in part, in chemical reactions used the combination are included in the for the intentional manufacture of EPA, TSCA Chemical Substance Inven- other chemical substances or mixtures, tory after the effective date of the or that is intentionally present for the premanufacture notification require- purpose of altering the rates of such ment under 40 CFR part 720, and (2) hy- chemical reactions. (See also para- drates of a chemical substance or hy- graph (j) of this section.) drated ions formed by association of a (g) Known to or reasonably ascertain- chemical substance with water. The able by means all information in a per- term mixture includes alloys, inor- son’s possession or control, plus all in- ganic glasses, ceramics, frits, and ce- formation that a reasonable person ments, including Portland cement. similarly situated might be expected to (j) Non-isolated intermediate means possess, control, or know, or could ob- any intermediate that is not inten- tain without unreasonable burden. tionally removed from the equipment (h) Manufacture for commercial pur- in which it is manufactured, including poses means to import, produce, or the reaction vessel in which it is manu- manufacture with the purpose of ob- factured, equipment which is ancillary taining an immediate or eventual com- to the reaction vessel, and any equip- mercial advantage for the manufac- ment through which the substance turer and includes, among other passes during a continuous flow proc- things, such ‘‘manufacture’’ of any ess, but not including tanks or other amount of a chemical substance or vessels in which the substance is stored mixture: after its manufacture. (See also para- (1) For commercial distribution, in- graph (f) of this section.) cluding for test marketing. (k) Owned or controlled by the parent (2) For use by the manufacturer, in- company means the parent owns or con- cluding use for product research and trols 50 percent or more of the other development, or as an intermediate. company’s voting stock or other equity Manufacture for commercial purposes rights, or has the power to control the also applies to substances that are pro- management and policies of the other duced coincidentally during the manu- company. facture, processing, use, or disposal of (l) Person means any natural person, another substance or mixture, includ- firm, company, corporation, joint ven- ing byproducts and coproducts that are ture, partnership, sole proprietorship, separated from that other substance or association, or any other business enti- mixture, and impurities that remain in ty, any State or political subdivision that substance or mixture. Byproducts thereof, any municipality, any inter- and impurities may not in themselves state body, and any department, agen- have commercial value. They are none- cy, or instrumentality of the Federal theless produced for the purpose of ob- government. taining a commercial advantage since (m) Process for commercial purposes they are part of the manufacture of a means the preparation of a chemical 95 VerDate Sep<11>2014 10:47 Aug 09, 2019 Jkt 247183 PO 00000 Frm 00105 Fmt 8010 Sfmt 8010 Q:\40\40V33.TXT PC31 kpayne on VMOFRWIN702 with $$_JOB § 712.5 40 CFR Ch. I (7–1–19 Edition) substance or mixture, after its manu- naphtha, 64741–87–3,’’ but do not refine the facture, for distribution in commerce naphtha to produce ‘‘hexane, 110–54–3’’ would with the purpose of obtaining an imme- not report on hexane. Only the production of diate or eventual commercial advan- ‘‘hexane’’ as an isolated product must be re- tage for the processor. Processing of ported—not previous production of more crude, complex substances such as naphtha any amount of a chemical substance or from which hexane is extracted. Thus, per- mixture is included. If a chemical or sons who produce crude oil, ores, and other mixture containing impurities is proc- crude natural materials, but do not carry essed for commercial purposes, then them through further manufacturing steps those impurities are also processed for that produce a listed chemical have no re- commercial purposes. porting responsibilities under this Part. (n) Site means a contiguous property Note, however, that any method of extrac- unit. Property divided only by a public tion, refinement, or purification of a listed right-of-way shall be considered one chemical substance is considered to be man- ufacturing for the purposes of this rule. site. There may be more than one man- ufacturing plant on a single site. (c) Chemical substances as marketed. (o) Test marketing means distributing This part requires reporting about in commerce a limited amount of a chemical substances as they are mar- chemical substance or mixture, or arti- keted or used in practice. The fol- cle containing such substance or mix- lowing preparations of a chemical sub- ture, to a defined number of potential stance must be reported as the sub- customers, during a predetermined stance itself, not as a mixture, since testing period, to explore market capa- these preparations are regarded as the bility prior to broader distribution in substance in practice.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,543,378 B2 Singh (45) Date of Patent: Jan
    USO09543378B2 (12) United States Patent (10) Patent No.: US 9,543,378 B2 Singh (45) Date of Patent: Jan. 10, 2017 (54) SEMICONDUCTOR DEVICES AND USPC ........................................... 257/25, 347, 402 FABRICATION METHODS THEREOF See application file for complete search history. (71) Applicant: GLOBALFOUNDRIES Inc., Grand (56) References Cited Cayman (KY) U.S. PATENT DOCUMENTS (72) Inventor: Jagar Singh, Clifton Park, NY (US) 4,940,671 A * 7/1990 Small ................ HO1L 21,82285 257 (491 (73) Assignee: GLOBALFOUNDRIES INC., Grand 8,610,241 B1* 12/2013 Hu ...................... HOL 270629 Cayman (KY) 257,353 2004/0095698 A1* 5, 2004 Gerrish ............... HOL27/O255 *) Notice: Subject to anyy disclaimer, the term of this 361 (91.1 patent is extended or adjusted under 35 2004/0253779 A1* 12/2004 Hong ............... HOL 21,8249 U.S.C. 154(b) by 10 days. 438,203 (21) Appl. No.: 14/467,420 * cited by examiner Primary Examiner — Kenneth Parker (22) Filed: Aug. 25, 2014 Assistant Examiner — Warren H Kilpatrick (65) Prior Publication Data (74) Attorney, Agent, or Firm — Heslin Rothenberg Farley & Mesiti P.C.; Kristian E. Ziegler US 2016/OO56231 A1 Feb. 25, 2016 (57) ABSTRACT (51) Int. Cl. Semiconductor devices and fabrication methods thereof are HOIL 29/06 (2006.01) provided. The semiconductor devices include: a substrate, HOIL 29/66 (2006.01) the Substrate including a p-type well adjoining an n-type HOIL 29/735 (2006.01) well; a first p-type region and a first n-type region disposed HOIL 29/47 (2006.01) within the n-type well of the substrate, where the first p-type HOIL 29/423 (2006.01) region at least partially encircles the first n-type region; and HOIL 29/08 (2006.01) a second p-type region and a second n-type region disposed HOIL 29/10 (2006.01) in the p-type well of the substrate, where the second n-type (52) U.S.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • TR-499: Indium Phosphide (CASRN 22398-80-7) in F344/N Rats And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF INDIUM PHOSPHIDE (CAS NO. 22398-80-7) IN F344/N RATS AND B6C3F1 MICE (INHALATION STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 July 2001 NTP TR 499 NIH Publication No. 01-4433 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response
    IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 3, JUNE 2018 2400209 Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response Dennis G. Deppe, Fellow, IEEE, Mingxin Li, Xu Yang, and Mina Bayat (Invited Paper) Abstract— Experimental data and modeling results are can efficiently conduct heat from the strongly pumped laser presented for a new type of vertical-cavity surface-emitting active volume, and in a laser cavity much smaller than possible laser (VCSEL) that solves numerous problems with oxide before with commercial edge-emitting laser diodes. VCSELs. In addition, the new oxide-free VCSEL can be scaled to small size. Modeling shows that this small size can dramatically This change made it possible to obtain much higher cur- increase the speed of the laser through control of self-heating. rent density, and therefore higher photon density, and higher Modeling compared with both the oxide and the new oxide-free stimulated emission rate than other laser diodes. Continually VCSEL predict intrinsic modulation speed for room temperature reducing the laser active volume and relying on relatively > approaching 80 GHz, indicating the potential for 100-Gb/s data high efficiency VCSEL designs have produced ever-increasing speed from directly modulated VCSELs. The modeling is one of if not the first to include self-heating and spectral detuning between laser diode speed. VCSELs now reign supreme in laboratory the gain and the cavity resonance that results from self-heating. demonstrations of direct modulation data speed due largely to The modeling results accurately accounts for the saturation in their combined small volume, matched cavity and gain region, modulation speed in very high-speed oxide VCSELs operating at and high internal heat flow through high quality epitaxial high temperature and accounts for the temperature of differential mirrors [15]–[23].
    [Show full text]
  • Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures. Xiaotao Su Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Su, Xiaotao, "Indium Arsenide/Gallium Arsenide Quantum Dots and Nanomesas: Multimillion-Atom Molecular Dynamics Solutions on Parallel Architectures." (2001). LSU Historical Dissertations and Theses. 319. https://digitalcommons.lsu.edu/gradschool_disstheses/319 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI fiims the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Measurement and Application of Optical Nonlinearities in Indium Phosphide, Cadmium Mercury Telluride and Photonic Crystal Fibres
    MEASUREMENT AND APPLICATION OF OPTICAL NONLINEARITIES IN INDIUM PHOSPHIDE, CADMIUM MERCURY TELLERIDE AND PHOTONIC CRYSTAL FIBRES Trefor James Sloanes A Thesis Submitted for the Degree of DEng at the University of St. Andrews 2009 Full metadata for this item is available in the St Andrews Digital Research Repository at: https://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/723 This item is protected by original copyright Measurement and Application of Optical Nonlinearities in Indium Phosphide, Cadmium Mercury Telluride and Photonic Crystal Fibres This thesis is presented in application for the degree of Doctor of Engineering to the University of St. Andrews by Trefor James Sloanes I, Trefor James Sloanes, hereby certify that this thesis, which is approximately 28,500 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in October, 2003 and as a candidate for the degree of Doctor of Engineering in August, 2004; the higher study for which this is a record was carried out in the University of St Andrews between 2003 and 2008. date ……………… signature of candidate ……………… I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Engineering in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]
  • Scalable Synthesis of Inas Quantum Dots Mediated Through Indium Redox Chemistry Matthias Ginterseder, Daniel Franke, Collin F
    pubs.acs.org/JACS Communication Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry Matthias Ginterseder, Daniel Franke, Collin F. Perkinson, Lili Wang, Eric C. Hansen, and Moungi G. Bawendi* Cite This: J. Am. Chem. Soc. 2020, 142, 4088−4092 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Next-generation optoelectronic applications centered in the near-infrared (NIR) and short-wave infrared (SWIR) wavelength regimes require high-quality materials. Among these materials, colloidal InAs quantum dots (QDs) stand out as an infrared-active candidate material for biological imaging, lighting, and sensing applications. Despite significant development of their optical properties, the synthesis of InAs QDs still routinely relies on hazardous, commercially unavailable precursors. Herein, we describe a straightforward single hot injection procedure revolving around In(I)Cl as the key precursor. Acting as a simultaneous reducing agent and In source, In(I)Cl smoothly reacts with a tris(amino)arsenic precursor to yield colloidal InAs quantitatively and at gram scale. Tuning the reaction temperature produces InAs cores with a first excitonic absorption feature in the range of 700− 1400 nm. A dynamic disproportionation equilibrium between In(I), In metal, and In(III) opens up additional flexibility in precursor selection. CdSe shell growth on the produced cores enhances their optical properties, furnishing particles with center emission wavelengths between 1000 and 1500 nm and narrow photoluminescence full-width at half-maximum (FWHM) of about 120 meV throughout. The simplicity, scalability, and tunability of the disclosed precursor platform are anticipated to inspire further research on In-based colloidal QDs.
    [Show full text]
  • Fullerene-Acene Chemistry
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2007 Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene Andreas John Athans University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Athans, Andreas John, "Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene" (2007). Doctoral Dissertations. 363. https://scholars.unh.edu/dissertation/363 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. FULLERENE-ACENE CHEMISTRY: PART I: STUDIES ON THE REGIOSELECTIVE REDUCTION OF ACENES AND ACENE QUINONES; PART II: PROGRESS TOWARD THE SYNTHESIS OF LARGE ACENES AND THEIR DIELS- ALDER CHEMISTRY WITH [60]FULLERENE VOLUME 1 CHAPTERS 1-5 BY ANDREAS JOHN ATHANS B.S. University of New Hampshire, 2001 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy m Chemistry May, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3 2 6 0 5 8 6 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Environmental Protection Agency § 712.30
    Environmental Protection Agency § 712.30 (2) A confidentiality statement § 712.30 Chemical lists and reporting signed and dated by an authorized per- periods. son located at the plant site or cor- (a)(1) Persons subject to this subpart porate headquarters of the respondent B must submit a Preliminary Assess- company. ment Information Manufacturer’s Re- (3) The specific chemical name and port for each chemical substance or Chemical Abstracts Service (CAS) Reg- mixture that is listed or designated in istry Number listed in 40 CFR 712.30. this section. (4) The name, company, address, city, State, ZIP code, and telephone number (2) Unless a respondent has already of a person who is submitting the form, prepared a Manufacturer’s Report in which may be a person located at a conformity with conditions set forth in plant site or corporate headquarters paragraph (a)(3) of this section, the in- that will serve as the respondent, and formation in each Manufacturer’s Re- will be able to answer questions about port must cover the respondent’s latest the information submitted by the com- complete corporate fiscal year as of the pany to EPA. A respondent to this sub- effective date. The effective date will part must include the appropriate Dun be 30 days after the FEDERAL REGISTER and Bradstreet Number for each plant publishes a rule amendment making site reported. the substance or mixture subject to (5) The plant site activities, such as this subpart B. the manufacturing of a chemical sub- (3) Persons subject to this subpart B stance, including the total quantity of need not comply with the requirements the chemical substance (in kilograms) of paragraph (a)(2) of this section if imported in bulk during the reporting they meet either one of the following period.
    [Show full text]
  • Vertically Aligned Arrays of Insb Nanostructures for Tuning Light Absorption in the Mid-Infrared
    Vertically Aligned Arrays of InSb Nanostructures for Tuning Light Absorption in the Mid-Infrared The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37799758 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Vertically Aligned Arrays of InSb Nanostructures for Tuning Light Absorption in the Mid-Infrared Nicholas Collins A Thesis in the Field of Bioengineering and Nanotechnology for the Degree of Master of Liberal Arts Harvard University March 2018 Copyright 2017 Nicholas Collins Abstract Infrared detection is valuable across a diverse range of fields. Military applications have long been the focus of development of infrared detection technology, but as accessibility to infrared detectors grows, industries ranging from waste management to medicine have shown broad uses for the technology. Imaging of biological samples is particularly well suited for near and mid infrared imaging as opaque superficial layers often inhibit the use of visible light to detect underlying structures which may hold diagnostic value. Infrared detecting devices are typically underutilized in a biomedical setting despite there being many potential applications. The primary objective of this research was to provide a proof of concept for a novel transmission filters system in the near and mid infrared range using vertically oriented indium antimonide (InSb) nanostructures. This was achieved by conducting optical simulations of InSb nanowires, developing an ICP-RIE etching process suitable for InSb, and, lastly, by measuring specular reflectance of the InSb nanostructure arrays using FT-IR microscopy.
    [Show full text]
  • United States Patent (19) (11) 4,237,471 Pommerrenig 45) Dec
    United States Patent (19) (11) 4,237,471 Pommerrenig 45) Dec. 2, 1980 54 METHOD OF PRODUCING A 58) Field of Search ........................ 357/30, 16, 61, 63 SEMCONDUCTORPHOTODODE OF NDUM ANTMONDE AND DEVICE 56 References Cited THEREOF U.S. PATENT DOCUMENTS 75 Inventor: Dieter H. Pommerrenig, Burke, Va. 3,558,373 1/1971 Moody ................................. 148/171 73 Assignees: Hamamatsu Corporation, Middlesex, Primary Examiner-Martin H. Edlow N.J.; Hamamatsu TV Co., Ltd., Attorney, Agent, or Firm-Moonray Kojima Hamamatsu, Japan 57 ABSTRACT (21 Appl. No.: 51,245 A method of producing semiconductor photodiodes of indium antimonide, by growing an indium antimonide 22 Filed: Jun. 22, 1979 epitaxial layer of one type conductivity onto a substrate of indium antimonide of another type conductivity, Related U.S. Application Data utilizing conventional vapor phase or liquid phase epi 60 Continuation of Ser. No. 879,640, Feb. 21, 1978, aban taxial techniques, wherein the antimony in the epitaxial doned, which is a division of Ser. No. 739,659, Nov. 8, layer is partially replaced by either arsenic or phospho 1976, abandoned. rus, thus resulting in a high performing photoelectric 51 Int. Cl’............................................. H01L 27/14 device. 52 U.S.C. ........................................ 357/30; 357/16; 357/61 6 Claims, 16 Drawing Figures U.S. Patent Dec. 2, 1980 Sheet 1 of 2 4,237,471 A.27, 7 W/W 727.4c /////////////////// XXXXXXXXXXXXXXXXXXXXXXXX A27.4eXXYYXXYYXXXX U.S. Patent Dec. 2, 1980 Sheet 2 of 2 4,237,471 77.5A O 27 PZZZZZZZZZZZZZZZZZZZZ-53 " V ZZZZZZZZZZZZZZZZZZZZZZZ \ \ 22222XXXXXXXXXXXV N Ny.V 4,237,471 2 thereby, and wherein an indium antimonide epitaxial METHOD OF PRODUCING ASEMECONDUCTOR layer of one type conductivity is epitaxially grown onto PHOTODODE OF NEDUMANTMONDE AND an indium antimonide substrate of another type conduc DEVICE THEREOF tivity, with the antimony in the epitaxial layer partially replaced with arsenic or phosphorus, Photodiodes and This is a continuation of application Ser.
    [Show full text]
  • III-V Material Properties Welcome to This Section on III-V PV Technology. in This Video We Will Discuss the Material
    III-V Material Properties Welcome to this section on III-V PV technology. In this video we will discuss the material properties of the semiconductors used for this technology. In this video, you will learn what the III-V PV technology exactly is and how it is different from other solar cell technologies. We will then discuss the structural properties of III-V semiconductors. In the next video we will look into the electrical and optical properties of III- V materials. The III-V PV technology, as the name implies, utilizes elements of the 3-A group and the 5-A group in the periodic table of elements. As you might recall, group 3 elements have 3 electrons in their outer valence shell, and group 5 elements have 5 valence electrons. One of the most common III-V absorber materials is formed by bonding the group 3 material gallium, with the group 5 material arsenic. Several such combinations are possible however, and many different III-V alloys are used as an absorber material by the PV industry. Examples include Gallium phosphide, Indium phosphide, indium arsenide, Gallium indium arsenide, gallium indium phosphide, aluminium-gallium-indium-arsenide and aluminium- gallium-indium-phosphide. An important question for III-V technology is how abundant are the III- and V- elements. As discussed at the start of this course, of these five elements, only aluminium and phosphorus are relatively abundant in nature. Gallium, arsenide and germanium are not rare or precious metals, but they are much less abundant than silicon. Indium is rare and in high demand.
    [Show full text]