The Nucleation, Growth Kinetics and Mechanism of Sulfate Scale Minerals in the Presence and Absence of Additives As Inhibitors

Total Page:16

File Type:pdf, Size:1020Kb

The Nucleation, Growth Kinetics and Mechanism of Sulfate Scale Minerals in the Presence and Absence of Additives As Inhibitors The nucleation, growth kinetics and mechanism of sulfate scale minerals in the presence and absence of additives as inhibitors Taher Rabizadeh Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment November 2016 i Declaration The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 4 has been published as: Rabizadeh, T., Peacock, C. L. and Benning, L. G., 2014. Carboxylic acids: effective inhibitors for calcium sulfate precipitation?, Mineralogical Magazine, 78, 1465–1472. The experiments, analyses, data processing, interpretation and preparation of the manuscript were conducted by the candidate. All co-authors contributed to data interpretation and manuscript preparation. Chapter 5 has been published as: Rabizadeh, T., Stawski, T. M., Morgan D. J., Peacock, C. L. and Benning, L. G., The effects of inorganic additives on the nucleation and growth kinetics of calcium sulfate dihydrate crystals, Crystal Growth & Design, 17, 582-589. The candidate performed the experiments, analyses (except ICP-MS / OES and XPS measurements), data processing (except XPS measurements), interpretation (except XPS measurements) and preparation of the manuscript. XPS analyses, data processing and interpretation were discussed in depth with co-author David J. Morgan at Cardiff University. All co-authors contributed to data interpretation and manuscript preparation. ii Chapter 6 is in preparation for submission to the Journal of Crystal Growth as: Rabizadeh, T., Morgan D. J., Peacock, C. L. and Benning, L. G. Comparative performance of biodegradable vs. poly(acrylic acid) antiscalants on calcium sulfate dihydrate crystallisation. The candidate performed all experiments, analyses, data processing, interpretation and preparation of the manuscript. XPS analyses were performed at Cardiff University together with David J. Morgan. All co-authors contributed to data interpretation and manuscript preparation. Chapter 7 is in preparation for submission to Langmuir as: Rabizadeh, T., Morgan D. J., Peacock, C. L. and Benning, L. G., Investigating the effects of phosphonate inhibitors on the nucleation and growth kinetics of calcium sulfate dihydrate crystals. The candidate performed the experiments, analyses (except ICP-OES and XPS measurements), data processing, interpretation and preparation of the manuscript. XPS analyses were performed at Cardiff University together with David J. Morgan. All co-authors contributed to data interpretation and manuscript preparation. The right of Taher Rabizadeh to be identified as author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2016 The University of Leeds and Taher Rabizadeh iii Dedication I dedicate this work to my parents for raising me to be the person I am today, and my wife, Azam, who encouraged and supported me in this work from the beginning. I here extend my dedication to my brother as well as my parents-in-law. iv Acknowledgements I would like to take this opportunity to appreciate some people without whom it would not have been possible to do this work. I would like to express my sincere gratitude to my supervisor, Prof. Liane G. Benning for being supportive, patient, for encouraging me during a difficult time and throughout the development of the project. I really do appreciate all her effort, and without it, I would not be at this stage. It gives me immense pleasure to thank my co-supervisor, Dr. Caroline L. Peacock for her help, time, advice and patience. I am also grateful to my research collaborators, Dr. Tomasz M. Stawski, Dr. Davis J. Morgan, and Dr. Adriana Matamoros-Veloza. I really appreciate the Marie Skłodowska-Curie actions for sponsoring my PhD as part of the MINSC Initial Training Research Network and special thanks to the MINSC project manager, Clare Desplats. I would also like to thank all the PIs at the University of Leeds, Cohen geochemistry group, MINSC and CO2 react networks who guided me during my PhD. Thank you to the scientists at department of geosciences of University of Oslo specially Prof. Bjørn Jamtveit, Prof. Dag Dysthe, Prof. Håkon Olav Austrheim, and Kristina Dunkel for hosting me during my secondment. A special thank for Clariant Oil Services UK Ltd Company and Dr. Jamie Kerr and Dr. Adam Savin for providing me with an opportunity to have a short collaboration with them. v It is my pleasure to thank the administrative and technical staff, who were always available and helpful. Special thanks to Andy Connelly, Stephen Reid, Fiona Keay, Sam Allshaw, Richard Walshaw, Lesley Neave, Martin Fuller, Stuart Micklethwaite, and Mike Ward. I also want to thank my friends and colleagues at the University of Leeds, Cohen geochemistry group, MINSC and CO2 react networks. Thanks to Pilar Ramirez-Garcia, Juan- Diego Rodriguez Blanco, Andy Bray, Ekbal Hussain, Thomas Rinder, Giulia Montanari, Cristina Ruiz-Agudo, Andrea Arale Vidal, Ana Hernandez Rodriguez, Fernando Berro Jimenez, Stefanie Lutz, Jan Prikryl, Diwaker Jha, Deirdre Clark, Romain Guilbaud, and Santosh Narshima Prathap Moola. vi Abstract In this research, I focused on elucidating the crystallisation kinetics and formation mechanism of calcium sulfate phases, specifically gypsum, in the presence and absence of additives as inhibitors. In many industries such as oil production and water desalination, calcium sulfate formation is a problem that causes pipeline and membrane clogging and reduces system efficiency. Thus, different types of additives are added to these systems as inhibitors to tackle the scaling problem. However, their efficiency or effectiveness in terms of calcium sulfate inhibition has not been fully tested and the processes are not well-understood at the mechanistic level. In this thesis, therefore, I investigated the effects of various carboxylic acids, alkali / alkaline earth metal cations, polycarboxylic acids and phosphonates as gypsum inhibitors to fill this knowledge gap. My results revealed that all additives delayed the crystallisation of gypsum to various degrees and by various pathways. I monitored the change in the time needed for turbidity in a reacting solution to start (induction time) and develop (crystallisation kinetics). I analysed the changes in both solution chemistry and solid characteristics, including surface properties, morphologies as well as composition, to derive a mechanistic understanding of how these additives affect gypsum formation. The results illustrated that among the tested carboxylic acids (tartaric, maleic and citric), citric acid performed far better than tartaric and maleic (at equivalent concentrations) and using citric acid dramatically increased the induction time (~ 4 fold, to ~ 25 minutes). Among the tested alkali / alkaline earth metal cations (Li+,K+, Na+ and Mg2+), Mg2+ decreased the nucleation and growth kinetics ~ 5 to ~ 10 fold more than Li+, Na+ and K+ even vii at low concentrations. Mg2+, Li+ and K+ only adsorbed to the gypsum crystals surfaces, while ~ 25% of associated Na+ became incorporated into the synthesised crystals and Li+ and Mg2+ also acted as shape and size modifiers. When I tested the effects of biodegradable polycarboxylic additives (polyaspartic acid; PASP and polyepoxysuccinic acid; PESA) and compared their efficiency with a traditionally used non-biodegradable (polyacrylic acid; PAA) antiscalant, I showed that PASP and PESA had a profound effect on gypsum crystallisation, with PASP having the highest inhibition efficiency. The PAA conformation and molecular weight both played important roles in affecting the crystallisation kinetics because of changes in surface adsorption mechanisms. Finally, I tested some industrial phosphonate inhibitors and demonstrated that they are indeed strong gypsum inhibitors, but I also showed for the first time that an increase in the number of functional groups affected the efficiency of the additive. Among the tested phosphonates with five phosphonate functional groups, the one with longer molecular chains was the better inhibitor. It is unclear how these additives interacted with the growing gypsum crystals (surface adsorption and / or structural incorporation), but I clearly showed that they affected gypsum growth kinetics and morphologies. viii Table of Contents Declaration..................................................................................................................................i Dedication.................................................................................................................................iii Acknowledgements ..................................................................................................................iv Abstract.....................................................................................................................................vi Table of Contents ...................................................................................................................viii List of Figures..........................................................................................................................xii
Recommended publications
  • How to Identify Rocks and Minerals
    How to Identify Rocks and Minerals fluorite calcite epidote quartz gypsum pyrite copper fluorite galena By Jan C. Rasmussen (Revised from a booklet by Susan Celestian) 2012 Donations for reproduction from: Freeport McMoRan Copper & Gold Foundation Friends of the Arizona Mining & Mineral Museum Wickenburg Gem & Mineral Society www.janrasmussen.com ii NUMERICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals. MINERALS: IGNEOUS ROCKS: 1 Talc 2 Gypsum 50 Apache Tear 3 Calcite 51 Basalt 4 Fluorite 52 Pumice 5 Apatite* 53 Perlite 6 Orthoclase (feldspar group) 54 Obsidian 7 Quartz 55 Tuff 8 Topaz* 56 Rhyolite 9 Corundum* 57 Granite 10 Diamond* 11 Chrysocolla (blue) 12 Azurite (dark blue) METAMORPHIC ROCKS: 13 Quartz, var. chalcedony 14 Chalcopyrite (brassy) 60 Quartzite* 15 Barite 61 Schist 16 Galena (metallic) 62 Marble 17 Hematite 63 Slate* 18 Garnet 64 Gneiss 19 Magnetite 65 Metaconglomerate* 20 Serpentine 66 Phyllite 21 Malachite (green) (20) (Serpentinite)* 22 Muscovite (mica group) 23 Bornite (peacock tarnish) 24 Halite (table salt) SEDIMENTARY ROCKS: 25 Cuprite 26 Limonite (Goethite) 70 Sandstone 27 Pyrite (brassy) 71 Limestone 28 Peridot 72 Travertine (onyx) 29 Gold* 73 Conglomerate 30 Copper (refined) 74 Breccia 31 Glauberite pseudomorph 75 Shale 32 Sulfur 76 Silicified Wood 33 Quartz, var. rose (Quartz, var. chert) 34 Quartz, var. amethyst 77 Coal 35 Hornblende* 78 Diatomite 36 Tourmaline* 37 Graphite* 38 Sphalerite* *= not generally in kits. Minerals numbered 39 Biotite* 8-10, 25, 29, 35-40 are listed for information 40 Dolomite* only. www.janrasmussen.com iii ALPHABETICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals.
    [Show full text]
  • Potash Case Study
    Mining, Minerals and Sustainable Development February 2002 No. 65 Potash Case Study Information supplied by the International Fertilizer Industry Association This report was commissioned by the MMSD project of IIED. It remains the sole Copyright © 2002 IIED and WBCSD. All rights reserved responsibility of the author(s) and does not necessarily reflect the views of the Mining, Minerals and MMSD project, Assurance Group or Sponsors Group, or those of IIED or WBCSD. Sustainable Development is a project of the International Institute for Environment and Development (IIED). The project was made possible by the support of the World Business Council for Sustainable Development (WBCSD). IIED is a company limited by guarantee and incorporated in England. Reg No. 2188452. VAT Reg. No. GB 440 4948 50. Registered Charity No. 800066 1 Introduction 2 2 Global Resources and Potash Production 3 3 The use of potassium in fertilizer 4 3.1 Potassium Fertilizer Consumption 4 3.2 Potassium fertilization issues 6 Appendix A 8 1 Introduction Potash and Potassium Potassium (K) is essential for plant and animal life wherein it has many vital nutritional roles. In plants, potassium and nitrogen are the two elements required in greatest amounts, while in animals and humans potassium is the third most abundant element, after calcium and phosphorus. Without sufficient plant and animal intake of potassium, life as we know it would cease. Human and other animals atop the food chain depend upon plants for much of their nutritional needs. Many soils lack sufficient quantities of available potassium for satisfactory yield and quality of crops. For this reason available soil potassium levels are commonly supplemented by potash fertilization to improve the potassium nutrition of plants, particularly for sustaining production of high yielding crop species and varieties in modern agricultural systems.
    [Show full text]
  • Mechanism. of Gypsification*
    Geochimka. et Cofi!UOehimica Acta.1958, YoJ. 1&. py. 51 to 72. Pergamon :Press Ltd., London Mechanism. of gypsification* R. F. CoNLEYf and W. M. BUNDYt . (Recei11edl Aprill957; 1~71 rwi.sedform 24 Fehruary 1958) Abstract-Petrographic studies have shown that many gypsum deposits ha\>e been for111ed by the hydra-tion of anhydrit.,, but the mechanism for hydration has n~t been fully explained. Gypsum has been produced ~perimentally by the agitation of anhydrite in pure water, ~reaction that is accelerated by certa.in acids, bases, and salts, particularly aJkali sulphates. · Phase investigations and reaction velocity studies indicate that accelerated bydration of anhydrite takes place through the medium of transient surface wmplexes in cb1ute solution. Concentrated solutions may pre.cipita:te double salts. Contraa:y to recent hypotheses of gypsum dehydration by concentrated aalt solutions, double salt::; aniJfor gypsum are stable phases below a temuerature of 42°0. Abov6' 42"0 double salts may replace anhydrite as the stable pha..:.e. Gyps1.1.m. how~ver, may remain a roeta.stable phase indefinitely in its saturated solution below the hemih)'dmte transition temperature (98°C}. E;s:perimental data. indicate t.hat precipitation of anhydrite from sea. wat-er i.<J unlikely. INTRODUCTION HYDRATION of the mineral anhydrite (CaS011) to gypsum {CaS0 4 ·2~20) has been a well-known phenomenon for many years. Although the hydration of anhydrite by pure water is extremely slow, it is accelerated in the presence of certain salts, alkalis and acids. The mechanism whereby this acceleration takes place has never been fully understood.
    [Show full text]
  • Mirabilite Na2so4 • 10H2O C 2001-2005 Mineral Data Publishing, Version 1
    Mirabilite Na2SO4 • 10H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals short to long prismatic, with complex form development, also crude, to 10 cm, in interlocking masses; crystalline, granular to compact massive, commonly as efflorescences. Twinning: Rare on {001} or {100}. Physical Properties: Cleavage: On {100}, perfect; on {010} and {001}, good to fair. Fracture: Conchoidal. Hardness = 1.5–2.5 D(meas.) = 1.464 D(calc.) = 1.467 Quickly dehydrates to th´enarditein dry air; very soluble in H2O, taste cool, then saline and bitter. Optical Properties: Transparent to opaque. Color: Colorless to white; colorless in transmitted light. Streak: White. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: X = b; Z ∧ c =31◦. Dispersion: r< v,strong, crossed. α = 1.391–1.394 β = 1.394–1.396 γ = 1.396–1.398 2V(meas.) = 75◦560 Cell Data: Space Group: P 21/c (synthetic). a = 11.512(3) b = 10.370(3) c = 12.847(2) β = 107.789(10)◦ Z=4 X-ray Powder Pattern: Synthetic. (ICDD 11-647). 5.49 (100), 3.21 (75), 3.26 (60), 3.11 (60), 4.77 (45), 3.83 (40), 2.516 (35) Chemistry: (1) (2) SO3 25.16 24.85 Na2O 18.67 19.24 H2O 55.28 55.91 Total 99.11 100.00 • (1) Kirkby Thore, Westmoreland, England. (2) Na2SO4 10H2O. Occurrence: Typically in salt pans, playas, and saline lakes, where deposition may be seasonal, and bedded deposits formed therefrom; rarely in caves and lava tubes; in volcanic fumaroles; a product of hydrothermal sericitic alteration; a post-mining precipitate.
    [Show full text]
  • Bulletin of the Mineral Research and Exploration
    Bull. Min. Res. Exp. (2017) 154:135-156 154 BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION Foreign Edition 2017 154 ISSN: 0026-4563 BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION RESEARCH THE MINERAL BULLETIN OF CONTENTS One of the Main Neotectonic Structures in the NW Central Anatolia: Beypazarı Blind Thrust Zone and Related Fault- Propagation Folds Bulletin of the Mineral .........................................................................................................................Gürol SEYİTOĞLU, Korhan ESAT and Bülent KAYPAK 1 Structural Features of the Niğde Massif in the Çamardı (Niğde) District ..............................................................................................................................................Ramazan DEMİRCİOĞLU and Yaşar EREN 15 Stratigraphy and Structure of the Southeastern Part of Piramagroon Anticline, Sulaimani Area, Northeast Iraq .......................................................................................................................................Kamal Haji KARIM and Polla Azad KHANAQA 27 An Approach to Coast Edge Line at the Eastern Antalya Marginal-Marine Sea Sides ................................................................................................................Muhittin GÖRMÜŞ, Levent BAŞAYİĞİT and Ahmet UYSAL 41 Grain Size, Total Heavy Mineral and Element Distribution and Control Factors Of Current Sediments on the Floor of Hisarönü and Datça Bays .............................................................................................Barbaros
    [Show full text]
  • Eugsterite, a New Salt Mineral
    American Mineralogist, Volume 66, pages 632-636, 1981 Eugsterite,a new salt mineral LronrB VBRcouwnN Departmentof Soil Scienceand Geology Agricultural University, Duivendaal I 0 Wageningen,The N etherlands Abstract Eugsterite,NaoCa(SOa)3 ' 2HrO is a new salt mineral. It occursin diferent parts of Kenya and in the Konya Basin in Turkey. It is associatedwith one or more of the following miner- als: halite, thenardite, bloedite, gypsum, glauberite and nesquehonite.Eugsterite is mono- clinic, B : I 16o.The strongestX-ray ditrraction lines are (d ta A (intensity)): 9.20 (39), 5.50 (64),4.50 (33),3.454 (32),3.428 (100),2.763 (2s),2.746 (46), r.7126(61). It forms clustersof thinfibers.Refractiveindices1.492<a,B,y=1.496;birefringence:0.004,tllb,Bc: 27". Introduction It is seenat two placesalong the shoreof Lake Victo- and Luanda, where it is found as a sur- A salt mineral which showed an unknown X-ray ria, at Sindo with thenarditeand halite diffraction pattern was discoveredduring a study of face mineral in association (Table found at Kalacha, Turkana dis- the mineralogy of saline soils in Kenya and Turkey. l). It is also Desertin the north of Kenya. The same mineral was also found in salt eflores- trict, eastof the Chalbi occur and eugsteriteis cenceson bricks. The mineral is called "eugsterite" There vast salt eflorescences with halite and thenardite. after Hans P. Eugster,The Johns Hopkins Univer- found in association sity, Baltimore, Maryland, who has extensivelystud- Turkey ied the origin and mineralogy of saline lakes. Type Konya Basin in material is depositedat the National Museum of Ge- Salt sampleswere taken in the of 1978.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • Mineralogy of the Martian Surface
    EA42CH14-Ehlmann ARI 30 April 2014 7:21 Mineralogy of the Martian Surface Bethany L. Ehlmann1,2 and Christopher S. Edwards1 1Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125; email: [email protected], [email protected] 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Annu. Rev. Earth Planet. Sci. 2014. 42:291–315 Keywords First published online as a Review in Advance on Mars, composition, mineralogy, infrared spectroscopy, igneous processes, February 21, 2014 aqueous alteration The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The past fifteen years of orbital infrared spectroscopy and in situ exploration 10.1146/annurev-earth-060313-055024 have led to a new understanding of the composition and history of Mars. Copyright c 2014 by Annual Reviews. Globally, Mars has a basaltic upper crust with regionally variable quanti- by California Institute of Technology on 06/09/14. For personal use only. All rights reserved ties of plagioclase, pyroxene, and olivine associated with distinctive terrains. Enrichments in olivine (>20%) are found around the largest basins and Annu. Rev. Earth Planet. Sci. 2014.42:291-315. Downloaded from www.annualreviews.org within late Noachian–early Hesperian lavas. Alkali volcanics are also locally present, pointing to regional differences in igneous processes. Many ma- terials from ancient Mars bear the mineralogic fingerprints of interaction with water. Clay minerals, found in exposures of Noachian crust across the globe, preserve widespread evidence for early weathering, hydrothermal, and diagenetic aqueous environments. Noachian and Hesperian sediments include paleolake deposits with clays, carbonates, sulfates, and chlorides that are more localized in extent.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    I`mt`qx1//4Lhmdq`knesgdLnmsg9Fk`tadqhsd Glauberite is something of a paradox among minerals, better known for specimens in which it is not present, than for those in which it is. In other words, glauberite is one of the Mineral Kingdom’s most widely pseudomorphed species, as the write-up will explain. We’ll also talk about the former Mineral of the Month Club. OGXRHB@K OQNODQSHDR Chemistry: Na2Ca(SO4)2 Sodium Calcium Sulfate Class: Sulfates Sub-Group: Anhydrous Sulfates Group: Glauberite Crystal System: Monoclinic Crystal Habits: Tabular or prismatic; steeply inclined, wedge-to-tabular-shaped dipyramidal crystals, sometimes with rounded edges; striated on several faces; pseudomorphic replacement common; also forms epimorphic Figure 1. Glauberite crystal. crystals, in which a second mineral encrusts the original glauberite crystals which then dissolve away to leave hollow, outer shells. Color: Colorless in unaltered crystals; altered or partially altered crystals yellowish or grayish, often white due to a powdery, efflorescent coating that forms upon prolonged exposure to dry air. Luster: Vitreous when free of efflorescent coating Transparency: Transparent to translucent; unaltered crystals usually transparent Streak: White Refractive Index: 1.51-1.53 Cleavage: Perfect in one direction Fracture: Very brittle, producing small conchoidal fragments Hardness: 2.5-3.0 Specific Gravity: 2.7-2.8 Luminescence: None Distinctive Features and Tests: Occurrence in evaporate deposits and association with such minerals as halite (sodium chloride, NaCl), calcite (calcium carbonate, CaCO3), thenardite (sodium sulfate, Na2SO4), gypsum (hydrous calcium sulfate, CaSO4AH2O). Sometimes confused with halite and calcite, but glauberite lacks halite’s pronounced cubic shape and dissolves more slowly in water.
    [Show full text]
  • I Identification and Characterization of Martian Acid-Sulfate Hydrothermal
    Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies by Sarah Rose Black B.A., State University of New York at Buffalo, 2004 M.S., State University of New York at Buffalo, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2018 i This thesis entitled: Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies written by Sarah Rose Black has been approved for the Department of Geological Sciences ______________________________________ Dr. Brian M. Hynek ______________________________________ Dr. Alexis Templeton ______________________________________ Dr. Stephen Mojzsis ______________________________________ Dr. Thomas McCollom ______________________________________ Dr. Raina Gough Date: _________________________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Black, Sarah Rose (Ph.D., Geological Sciences) Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation
    [Show full text]
  • Evaporites Deposits Evaporites Are Formed in Closed Or Semi-Closed Basins Where Evaporation Exceeds Precipitation (+ Runoff)
    Evaporites deposits Evaporites are formed in closed or semi-closed basins where evaporation exceeds precipitation (+ runoff). Rogers Dry Lake, Mojave Desert, California The Salar de Uyuni Lake in Bolivia (more than 9,000 km2) is the largest salt playa in the world. The salar (salt pan) has about a meter of briny water (blue). In addition to sodium chloride, NaCl (rock salt), and calcium sulfate, CaSO4, the lake also contains lithium chloride, LiCl, making this the biggest source of lithium in the world. http://eps.mcgill.ca/~courses/c542/ 1/42 Chemical Fractionation and the Chemical Divide As a result of evaporation, chemical fractionation takes place between seawater and the remaining concentrated brines. The fractionation can be accounted for by a variety of mechanisms: 1) Mineral precipitation 2) Selective dissolution of efflorescent crusts and sediment coatings 3) Exchange and sorption on active surfaces 4) Degassing 5) Redox reactions Mineral precipitation is the most important and the one that can most easily be modeled. The basic assumption of the model is that minerals will precipitate as the solution becomes saturated with respect to a solid phase. In other words, precipitation occurs when the ion activity product of the solution becomes equal to the solubility constant of the mineral and remains constant upon further evaporation. The fate of seawater constituents upon mineral precipitation rests on the concept of the chemical divide. 2/42 Chemical Divides: Branching points along the path of solution evolution 3/42 Brine evolution and chemical divides 2+ 2- If we monitor the evaporation of a dilute Ca and SO4 solution, their concentrations will increase until we reach gypsum saturation.
    [Show full text]
  • Efflorescent Iron Sulfate Minerals: Paragenesis, Relative Stability, and Environmental Impact
    American Mineralogist, Volume 88, pages 1919–1932, 2003 Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact JEANETTE K. JERZ* AND J. DONALD RIMSTIDT Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A. ABSTRACT This study of a pyrrhotite-dominated massive sulfide deposit in the Blue Ridge province in south- western Virginia shows that sulfate minerals formed by the oxidation of the pyrrhotite transform from one to another by a combination of oxidation, dehydration, and neutralization reactions. Significant quantities of sulfate minerals occur in the underground adits (Area I) and under overhangs along the high sidewall of the adjoining open pit (Area II). Samples from this site were analyzed to determine mineralogy, equilibrium relative humidity, chemical composition, and acid generation potential. In Area I, pyrrhotite oxidizes to marcasite + melanterite, which eventually oxidizes to melanterite + sul- furic acid. Melanterite is extruded from the rocks as a result of the volume change associated with this reaction. It accumulates in piles where halotrichite, copiapite, and fibroferrite form. In Area II, FeSO4 solutions produced by pyrrhotite oxidation migrate to the exposed pit face, where they evaporate to form melanterite. The melanterite rapidly dehydrates to form rozenite, which falls into a pile at the base of the wall, where melanterite, copiapite, and halotrichite are present. The observed paragenesis a a can be understood using a log O2 – log H2O diagram that we developed from published thermody- namic data and observations of coexisting phases. Dissolution experiments showed that fibroferrite-rich samples had the highest acid producing po- tential, followed by copiapite-rich samples and then halotrichite-rich samples.
    [Show full text]