Marine Current Energy Conversion
Total Page:16
File Type:pdf, Size:1020Kb
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1353 Marine Current Energy Conversion STAFFAN LUNDIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9510-7 UPPSALA urn:nbn:se:uu:diva-280763 2016 Dissertation presented at Uppsala University to be publicly examined in Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Wednesday, 4 May 2016 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor AbuBakr S. Bahaj (University of Southampton). Abstract Lundin, S. 2016. Marine Current Energy Conversion. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1353. 66 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9510-7. Marine currents, i.e. water currents in oceans and rivers, constitute a large renewable energy resource. This thesis presents research done on the subject of marine current energy conversion in a broad sense. A review of the tidal energy resource in Norway is presented, with the conclusion that tidal currents ought to be an interesting option for Norway in terms of renewable energy. The design of marine current energy conversion devices is studied. It is argued that turbine and generator cannot be seen as separate entities but must be designed and optimised as a unit for a given conversion site. The influence of support structure for the turbine blades on the efficiency of the turbine is studied, leading to the conclusion that it may be better to optimise a turbine for a lower flow speed than the maximum speed at the site. The construction and development of a marine current energy experimental station in the River Dalälven at Söderfors is reported. Measurements of the turbine's power coefficient indicate that it is possible to build efficient turbines for low flow speeds. Experiments at the site are used for investigations into different load control methods and for validation of a numerical model of the energy conversion system and the model's ability to predict system behaviour in response to step changes in operational tip speed ratio. A method for wake measurements is evaluated and found to be useful within certain limits. Simple models for turbine runaway behaviour are derived, of which one is shown by comparison with experimental results to predict the behaviour well. Keywords: marine current energy, renewable energy, turbine, energy conversion, wake, Söderfors Staffan Lundin, Department of Engineering Sciences, Electricity, Box 534, Uppsala University, SE-75121 Uppsala, Sweden. © Staffan Lundin 2016 ISSN 1651-6214 ISBN 978-91-554-9510-7 urn:nbn:se:uu:diva-280763 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280763) List of papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I M. Grabbe, E. Lalander, S. Lundin and M. Leijon. A review of the tidal current energy resource in Norway. Renewable & Sustainable Energy Reviews, 13(8):1898–1909, 2009. II S. Lundin, M. Grabbe, K. Yuen and M. Leijon. A design study of marine current turbine-generator combinations. In Proceedings of the 28th International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2009, paper OMAE2009-79350, pages 1–7, June 2009. III A. Goude, S. Lundin and M. Leijon. A parameter study of the influence of struts on the performance of a vertical-axis marine current turbine. In Proceedings of the 8th European Wave and Tidal Energy Conference, EWTEC09, Uppsala, Sweden, pages 477–483, September 2009. IV K. Yuen, S. Lundin, M. Grabbe, E. Lalander, A. Goude and M. Leijon. The Söderfors Project: Construction of an experimental hydrokinetic power station. In Proceedings of the 9th European Wave and Tidal Energy Conference, EWTEC11, Southampton, UK, 5 pages, September 2011. V S. Lundin, J. Forslund, N. Carpman, M. Grabbe, K. Yuen, S. Apelfröjd, A. Goude and M. Leijon. The Söderfors project: Experimental hydrokinetic power station deployment and first results. In Proceedings of the 10th European Wave and Tidal Energy Conference, EWTEC13, Aalborg, Denmark, 5 pages, September 2013. VI J. Forslund, S. Lundin, K. Thomas and M. Leijon. Experimental results of a DC bus voltage level control for a load controlled Marine Current Energy Converter. Energies, 8:4572–4586, 2015. VII S. Lundin, N. Carpman, K. Thomas and M. Leijon. Studying the wake of a marine current turbine using an acoustic doppler current profiler. In Proceedings of the 11th European Wave and Tidal Energy Conference, EWTEC15, Nantes, France, pages 09A2-3-1–8, September 2015. VIII S. Lundin, A. Goude and M. Leijon. One-dimensional modelling of marine current turbine runaway behaviour. Submitted to Energies, February 2016. IX S. Lundin, J. Forslund, A. Goude, M. Grabbe, K. Yuen and M. Leijon. Experimental demonstration of performance of a vertical axis marine current turbine in a river. In manuscript, March 2016. X J. Forslund, A. Goude, S. Lundin, K. Thomas and M. Leijon. Validation of a coupled electrical and hydrodynamic simulation model for vertical axis marine current energy converters. In manuscript, March 2016. Reprints were made with permission from the publishers. Contents 1 Introduction .................................................................................................. 13 1.1 Marine current power ........................................................................... 13 1.1.1 Characteristics of the energy resource ...................................... 13 1.1.2 Current topics of research .......................................................... 14 1.2 Previous work at the Division of Electricity ....................................... 15 1.3 The Söderfors Project ........................................................................... 16 1.3.1 Site selection .............................................................................. 16 1.3.2 Construction and deployment ................................................... 18 2 Theory .......................................................................................................... 23 2.1 Terminology .......................................................................................... 23 2.1.1 Turbine ........................................................................................ 23 2.1.2 Generator .................................................................................... 25 2.2 Torque balance ...................................................................................... 25 2.3 Turbine power coefficient .................................................................... 27 3 Results from papers ..................................................................................... 29 3.1 Tidal power in Norway ........................................................................ 29 3.2 Design considerations .......................................................................... 32 3.2.1 Turbine-generator combinations ............................................... 32 3.2.2 Influence of struts ....................................................................... 33 3.3 Performance of the Söderfors turbine ................................................. 35 3.3.1 First results ................................................................................. 35 3.3.2 Power coefficient ........................................................................ 35 3.3.3 Load control methods ................................................................ 37 3.3.4 Step response .............................................................................. 38 3.4 Wake measurements ............................................................................. 38 3.5 Turbine runaway behaviour ................................................................. 40 4 Future work .................................................................................................. 47 5 Concluding remarks ..................................................................................... 49 6 Summary of papers ...................................................................................... 51 7 Sammanfattning på svenska ........................................................................ 55 Acknowledgements .......................................................................................... 59 References ........................................................................................................ 61 List of Tables Table 1.1: Turbine data ................................................................................... 19 Table 1.2: Generator data ............................................................................... 19 Table 3.1: Number of sites assessed .............................................................. 31 Table 3.2: Rotational speed data .................................................................... 37 List of Figures Figure 1.1: Location of Söderfors ................................................................ 17 Figure 1.2: Bird’s eye view of central Söderfors ........................................ 17 Figure 1.3: Overview of test site .................................................................. 19 Figure 1.4: Energy conversion unit .............................................................. 19 Figure 1.5: Discharge in the Dalälven ......................................................... 20 Figure 1.6: Deployment of energy conversion unit ...................................