A Short History of Digital Sound Synthesis by Composers in the U.S.A

Total Page:16

File Type:pdf, Size:1020Kb

A Short History of Digital Sound Synthesis by Composers in the U.S.A A Short History of Digital Sound Synthesis by Composers in the U.S.A. Chris Chafe Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California 94305 [email protected] Abstract: A new technology for music has emerged with unprecedented speed. Just over forty years ago, the first digitally-produced sounds gave pioneering composers from around the world a taste of vast new possibilities. Numerical experiments with sound became a logical extension of compositional interests that were pushing the boundaries of timbre, perception, new instruments and performance techniques, organization and paradoxically, indeterminism. At several centers including a small number in the U.S. interdisciplinary teams combined composition with research in musical acoustics, psychoa- coustics, and artificial intelligence. Their musical works provide a timeline of progress in sound syn- thesis. converters for sound acquisition and playback, but the promise was already apparent when a 1. Introduction "Portrait of the Computer as a Young Artist” was published: To describe the past four decades in a nutshell, we see composers, scientists, and engineers Today, scientists and musicians at MIT, working to develop a new musical medium; ex- Bell Telephone Laboratories, Princeton ploring the fabric of sound and sound perception; University and the Argonne National and pushing a new technology's scale and capa- Laboratory are trying to make the com- bilities rapidly towards the practical and effec- puter play and sing more surprisingly and tive. Briefly looking forward another stretch of mellifluously. As a musical instrument, time, this same description might apply to music the computer has unlimited potentialities made using direct stimulation of auditory sensa- for uttering sound. It can, in fact, pro- tions in the brain. Far fetched? Brain imaging duce strings of numbers representing any techniques that are central to perceptual studies conceivable or hearable sound… Won- suggest such a possibility. Magnetoencephalo- derful things would come out of that box graphy (MEG) shows promising temporal and if only we new how to evoke them. spatial resolution for music, perhaps foreshad- [Pierce 1965] owing the analytic side of this futuristic medium. And its synthetic reverse, transcranial magnetic The timeline of compositions below follows the stimulation (TMS), though still quite course, has development of synthesis algorithms along such a been used to induce certain non-auditory effects. track, citing several examples of new techniques Electrical stimulation of the inner ear is already which replicated observed patterns and musical in prosthetic use. In time, consequent technolo- signals, and which were rapidly incorporated in gies may lead to an evoked music (I’m just hoping composers’ work. The compositions described are for early work on the problem of loudness con- the fruits of research into new materials: they trol). engage the listener in a completely illusory world which could only have been achieved with digital Presently, about sixty sites are equipped for MEG 1 analyses and a handful for experimentation with tools. TMS. My prediction is that just as with digital sound synthesis over forty years ago, at some point an observed auditory pattern will be syn- 1 Listening to the accompanying, brief musical thetically induced and from then a new medium excerpts and explanatory sound examples will for composers will be born. Rewinding to 1965, enhance an appreciation of the timeline (total there were likewise only a few sites equipped duration is about 20 minutes). Each work consti- with computers and the necessary digital audio tutes a waypoint in a list that is much longer than Wendy Carlos’ album Switched on Bach. A Composers were immediately attracted by a gen- newer technology often invites its usage for imi- eral-purpose machine which by itself prescribes tation of the sound of an earlier technology. This no particular musical style, but which must be fed cascade leads right to the present were we can models and insights to produce results. Solutions even hear digital software imitating analog hard- which seem logical to us with hindsight were ware imitating mechanically-produced sound. gained through key advancements in the under- standing of the materials and nature of music. Models employed in the compositions cited be- “Musical Sounds from Digital Computers” in the low fall into five general categories: contemporary music journal, Gravesaner Blätter, • closed with: subtractive acoustical models (beginning with source / filter vocal simulations) The Future of Computer Music • additive acoustical models (recreating Man’s music has always been acousti- Fourier analyses) cally limited by the instruments on which he plays. These are mechanisms which • impulsive linear physical models (beginning have physical restrictions. We have made with plucked string simulations) sound and music directly from numbers, • self-sustained physical models with acousti- surmounting conventional limitations of cal feedback (electric guitar simulations with instruments. Thus the musical universe is feedback) now circumscribed only by man’s per- ceptions and creativity. • self-sustained physical models with non- linear excitation (beginning with simulations [Mathews 1962] of bow, reed and air jet) And more from Pierce’s “Portrait:” In each case, a good dosage of acoustical theory The computer is a great challenge to the and analysis of existing instruments provided the artist. It enables him to create within any platform upon which the modeling approach was set of rules and any discipline he cares to developed. communicate to the computer. Or, if he abandons discipline, he may leave eve- rything to chance and produce highly ar- 2.1. Acoustical tistic noise. Acoustical models involve spectral (frequency This is an attempt to portray the rapid progress domain) descriptions of patterns of air pressure and excitement which began to fill that vast po- variation radiated by the modeled instruments. tential enabled by digital tools. The most common is based on Fourier analysis in which an acoustical wave, picked up by micro- phone, is analyzed to give an accurate portrait of 2. Modeling its time-varying spectral components. Identical components are generated digitally and become For many disciplines, music included, the digital sound again via loudspeaker. Ideally, if the signal computer has enabled the age of modeling. The can be adequately analyzed, the resulting model arsenal of techniques for numerical simulation of will enable high quality resynthesis, as well as a natural phenomena (including for example, be- large set of transformations. havior of a trumpet) continues to expand with Acoustical models can also be based in analysis addition of new models expressed as algorithms of hearing, supplying those cues known to en- and / or data sets from analysis. In all forms, they voke a particular musical or auditory sensation. can be studied under different hypothetical con- Such sounds might not be based in the real world ditions, from the plausible to the extreme. at all, and are instead formulated from psychoa- Imitative synthesis of musical sounds is an old coustical principles or paradoxes. tradition and spans the major epochs of technolo- gies, including mechanical organs with stops like the vox humana, or analog electronic synthesizers 2. 2. Physical with patches like the instruments played on Physical models describe the vibrating mecha- nisms of (instruments and other) sound sources. what is represented. Many others (in the U.S. and Analysis and synthesis is either in the time do- internationally) have contributed to the medium main, in terms of mechanical or fluid dynamics, and their music could be included, but then this or in the frequency domain, as mixtures of dis- wouldn’t be a short history. tinct modes and regions of vibration. numbers alone represents a great technical step. It Dynamics-based modeling has not yet gained a required development of software with musically- general-purpose analytic method. Synthesis mod- useful frequency and dynamic ranges and that els are constructed by capturing “first principles” handed over to the machine a certain amount of of a physical system and then refining the model sonic detail. Without the latter, the composer by addition of physical details that are perceptu- would be lost in a sea of numbers. It marks the ally significant. The resulting sonic advantages, beginning of a medium in which software is di- particularly with regard to transients and long- vided into two layers, one for the generation of term laws (e.g., connected note transitions, tur- sounds as notes (coded as sound-producing sub- bulence or timbre control spaces), often remain routines) and the other a list of the notes to be outside the present powers of analysis for acousti- played (as calls on the subroutines). Since then, cal models. almost ubiquitously, the parameters compiled into A very young field at the moment ties physical note lists have indicated timing, pitch, loudness, modeling in with research in hearing: are there and aspects of timbre. effects similar to those in acoustically-described perceptual illusions that can be expressed in terms of the physics of the sound source itself? If so, 3.2. (1961) Hal’s Tune this may lead to a new class of physical models Mathews arranged Bicycle Built for Two using rooted in sensation rather than real-world simula- waveform techniques and J. Kelly's vocal tract tions. analog speech synthesis approach (a physical simulation of the shape of the vocal tract using a series of continuously changing digital filters). 3. Bell Labs Experiments The resulting performance became a well-known performance of the traditional song having been The very first examples of digital sound synthesis incorporated by the creators of the movie, 2001: were created alongside research in speech tech- A Space Odyssey. Hal, the computer, sings this nology. Though the computer hardware was the excerpt as his memory is removed bit-by-bit. same, new software was needed to meet the re- quirements of musical sound generation and or- ganization.
Recommended publications
  • Additive Synthesis, Amplitude Modulation and Frequency Modulation
    Additive Synthesis, Amplitude Modulation and Frequency Modulation Prof Eduardo R Miranda Varèse-Gastprofessor [email protected] Electronic Music Studio TU Berlin Institute of Communications Research http://www.kgw.tu-berlin.de/ Topics: Additive Synthesis Amplitude Modulation (and Ring Modulation) Frequency Modulation Additive Synthesis • The technique assumes that any periodic waveform can be modelled as a sum sinusoids at various amplitude envelopes and time-varying frequencies. • Works by summing up individually generated sinusoids in order to form a specific sound. Additive Synthesis eg21 Additive Synthesis eg24 • A very powerful and flexible technique. • But it is difficult to control manually and is computationally expensive. • Musical timbres: composed of dozens of time-varying partials. • It requires dozens of oscillators, noise generators and envelopes to obtain convincing simulations of acoustic sounds. • The specification and control of the parameter values for these components are difficult and time consuming. • Alternative approach: tools to obtain the synthesis parameters automatically from the analysis of the spectrum of sampled sounds. Amplitude Modulation • Modulation occurs when some aspect of an audio signal (carrier) varies according to the behaviour of another signal (modulator). • AM = when a modulator drives the amplitude of a carrier. • Simple AM: uses only 2 sinewave oscillators. eg23 • Complex AM: may involve more than 2 signals; or signals other than sinewaves may be employed as carriers and/or modulators. • Two types of AM: a) Classic AM b) Ring Modulation Classic AM • The output from the modulator is added to an offset amplitude value. • If there is no modulation, then the amplitude of the carrier will be equal to the offset.
    [Show full text]
  • Frequency-Domain Additive Synthesis with an Oversampled Weighted Overlap-Add Filterbank for a Portable Low-Power MIDI Synthesizer
    Audio Engineering Society Convention Paper 6202 Presented at the 117th Convention 2004 October 28–31 San Francisco, CA, USA This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Frequency-Domain Additive Synthesis With An Oversampled Weighted Overlap-Add Filterbank For A Portable Low-Power MIDI Synthesizer King Tam1 1 Dspfactory Ltd., Waterloo, Ontario, N2V 1K8, Canada [email protected] ABSTRACT This paper discusses a hybrid audio synthesis method employing both additive synthesis and DPCM audio playback, and the implementation of a miniature synthesizer system that accepts MIDI as an input format. Additive synthesis is performed in the frequency domain using a weighted overlap-add filterbank, providing efficiency gains compared to previously known methods. The synthesizer system is implemented on an ultra-miniature, low-power, reconfigurable application specific digital signal processing platform. This low-resource MIDI synthesizer is suitable for portable, low-power devices such as mobile telephones and other portable communication devices. Several issues related to the additive synthesis method, DPCM codec design, and system tradeoffs are discussed. implementation using the Fourier transform and inverse Fourier transform. 1. INTRODUCTION While several other synthesis methods have been Additive synthesis in musical applications has been developed, interest in additive synthesis has continued.
    [Show full text]
  • THE COMPLETE SYNTHESIZER: a Comprehensive Guide by David Crombie (1984)
    THE COMPLETE SYNTHESIZER: A Comprehensive Guide By David Crombie (1984) Digitized by Neuronick (2001) TABLE OF CONTENTS TABLE OF CONTENTS...........................................................................................................................................2 PREFACE.................................................................................................................................................................5 INTRODUCTION ......................................................................................................................................................5 "WHAT IS A SYNTHESIZER?".............................................................................................................................5 CHAPTER 1: UNDERSTANDING SOUND .............................................................................................................6 WHAT IS SOUND? ...............................................................................................................................................7 THE THREE ELEMENTS OF SOUND .................................................................................................................7 PITCH ...................................................................................................................................................................8 STANDARD TUNING............................................................................................................................................8 THE RESPONSE OF THE HUMAN
    [Show full text]
  • Enhancing Digital Signal Processing Education with Audio Signal Processing and Music Synthesis
    AC 2008-1613: ENHANCING DIGITAL SIGNAL PROCESSING EDUCATION WITH AUDIO SIGNAL PROCESSING AND MUSIC SYNTHESIS Ed Doering, Rose-Hulman Institute of Technology Edward Doering received his Ph.D. in electrical engineering from Iowa State University in 1992, and has been a member the ECE faculty at Rose-Hulman Institute of Technology since 1994. He teaches courses in digital systems, circuits, image processing, and electronic music synthesis, and his research interests include technology-enabled education, image processing, and FPGA-based signal processing. Sam Shearman, National Instruments Sam Shearman is a Senior Product Manager for Signal Processing and Communications at National Instruments (Austin, TX). Working for the firm since 2000, he has served in roles involving product management and R&D related to signal processing, communications, and measurement. Prior to working with NI, he worked as a technical trade press editor and as a research engineer. As a trade press editor for "Personal Engineering & Instrumentation News," he covered PC-based test and analysis markets. His research engineering work involved embedding microstructures in high-volume plastic coatings for non-imaging optics applications. He received a BS (1993) in electrical engineering from the Georgia Institute of Technology (Atlanta, GA). Erik Luther, National Instruments Erik Luther, Textbook Program Manager, works closely with professors, lead users, and authors to improve the quality of Engineering education utilizing National Instruments technology. During his last 5 years at National Instruments, Luther has held positions as an academic resource engineer, academic field engineer, an applications engineer, and applications engineering intern. Throughout his career, Luther, has focused on improving education at all levels including volunteering weekly to teach 4th graders to enjoy science, math, and engineering by building Lego Mindstorm robots.
    [Show full text]
  • New Possibilities in Sound Analysis and Synthesis Xavier Rodet, Philippe Depalle, Guillermo Garcia
    New Possibilities in Sound Analysis and Synthesis Xavier Rodet, Philippe Depalle, Guillermo Garcia To cite this version: Xavier Rodet, Philippe Depalle, Guillermo Garcia. New Possibilities in Sound Analysis and Synthesis. ISMA: International Symposium of Music Acoustics, 1995, Dourdan, France. pp.1-1. hal-01157137 HAL Id: hal-01157137 https://hal.archives-ouvertes.fr/hal-01157137 Submitted on 27 May 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New Possibilities in Sound Analysis and Synthesis Xavier Rodet, Philippe Depalle, Guillermo Garcia ISMA 95, Dourdan (France), 1995 Copyright © ISMA 1995 Abstract In this presentation we exemplify the emergence of new possibilities in sound analysis and synthesis with three novel developments that have been done in the Analysis/Synthesis team at IRCAM. These examples address three main activities in our domain, and have reached a large public making or simply listening to music. The first example concerns synthesis using physical models. We have determined the behavior of a class of models, in terms of stability, oscillation, periodicity, and finally chaos, leading to a better control of these models in truly innovative musical applications. The second example concerns additive synthesis essentially based on the analysis of natural sounds.
    [Show full text]
  • Additive Synthesis
    Additive synthesis Additive synthesis is a sound synthesis technique that creates timbre by adding sine waves together.[1][2] Additive synthesis example The timbre of musical instruments can be considered in the light of Fourier theory to consist of multiple harmonic or 0:00 inharmonic partials or overtones. Each partial is a sine wave of different frequency and amplitude that swells and decays over A bell-like sound generated by time due to modulation from an ADSR envelope or low frequency oscillator. additive synthesis of 21 inharmonic partials Additive synthesis most directly generates sound by adding the output of multiple sine wave generators. Alternative implementations may use pre-computedwavetables or the inverse Fast Fourier transform. Problems playing this file? See media help. Contents 1 Explanation 2 Definitions 2.1 Harmonic form 2.2 Time-dependent amplitudes 2.3 Inharmonic form 2.4 Time-dependent frequencies 2.5 Broader definitions 3 Implementation methods 3.1 Oscillator bank synthesis 3.2 Wavetable synthesis 3.2.1 Group additive synthesis 3.3 Inverse FFT synthesis 4 Additive analysis/resynthesis 4.1 Products 5 Applications 5.1 Musical instruments 5.2 Speech synthesis 6 History 6.1 Timeline 7 Discrete-time equations 8 See also 9 References 10 External links Explanation The sounds that are heard in everyday life are not characterized by a single frequency. Instead, they consist of a sum of pure sine frequencies, each one at a different amplitude. When humans hear these frequencies simultaneously, we can recognize the sound. This is true for both "non-musical" sounds (e.g. water splashing, leaves rustling, etc) and for "musical sounds" (e.g.
    [Show full text]
  • Lecture 14 Outline: Additive Synthesis
    21M.380 Music and Technology Sound Design Lecture №14 Additive synthesis Monday, March 28, 2016 1 Review 1.1 ED assignment • Award for liveliest script in terms of sound design goes to , , and • Let’s listen to some submissions: – Group A – Group B – Group C – Group D – Group E 1.2 QZ1 • Let’s listen to Pd patch from p.1 • A harmonic spectrum tends to be perceived as a single source (key point!) • [vline~] can also control frequency (not just amplitude) • Input to [osc~] always controls frequency! • Let’s build that counter from question 4.1 together! 2 Overview of synthesis techniques • Additive (Farnell 2010, ch. 17) • Wavetables (ibid., ch. 18) • Waveshaping (ibid., ch. 19) • Modulation (AM and FM) (ibid., ch. 20) • Granular (ibid., ch. 21) 1 of 3 21M.380, Lecture №14 (Mon, 3/28/2016) 3 Additive synthesis • Fourier series: Any periodic signal can be reconstructed as a sum of (co)sine signals • Question: Which limitations might this synthesis approach have? – Periodic sounds are by definition harmonic; what about inharmonic sounds? – Static spectrum – Requires lots of control data (amplitudes, frequencies, but also phase of all partials!) • Phase-alignment of partials can be important (demo Farnell 2010, fig. 17.2) • Generalize to dynamically changing sounds via STFT and resynthesis with envelopes • Generalize to inharmonic sounds through frequency envelopes over time (in addition to amplitude envelopes) • Demo: Partial-tracer in Pd: Help Browser... 4.data.structures 14.partialtracer.pd – Try with voice.wav (inharmonic dynamic spectrum)
    [Show full text]
  • CM3106 Chapter 5: Digital Audio Synthesis
    CM3106 Chapter 5: Digital Audio Synthesis Prof David Marshall [email protected] and Dr Kirill Sidorov [email protected] www.facebook.com/kirill.sidorov School of Computer Science & Informatics Cardiff University, UK Digital Audio Synthesis Some Practical Multimedia Digital Audio Applications: Having considered the background theory to digital audio processing, let's consider some practical multimedia related examples: Digital Audio Synthesis | making some sounds Digital Audio Effects | changing sounds via some standard effects. MIDI | synthesis and effect control and compression Roadmap for Next Few Weeks of Lectures CM3106 Chapter 5: Audio Synthesis Digital Audio Synthesis 2 Digital Audio Synthesis We have talked a lot about synthesising sounds. Several Approaches: Subtractive synthesis Additive synthesis FM (Frequency Modulation) Synthesis Sample-based synthesis Wavetable synthesis Granular Synthesis Physical Modelling CM3106 Chapter 5: Audio Synthesis Digital Audio Synthesis 3 Subtractive Synthesis Basic Idea: Subtractive synthesis is a method of subtracting overtones from a sound via sound synthesis, characterised by the application of an audio filter to an audio signal. First Example: Vocoder | talking robot (1939). Popularised with Moog Synthesisers 1960-1970s CM3106 Chapter 5: Audio Synthesis Subtractive Synthesis 4 Subtractive synthesis: Simple Example Simulating a bowed string Take the output of a sawtooth generator Use a low-pass filter to dampen its higher partials generates a more natural approximation of a bowed string instrument than using a sawtooth generator alone. 0.5 0.3 0.4 0.2 0.3 0.1 0.2 0.1 0 0 −0.1 −0.1 −0.2 −0.2 −0.3 −0.3 −0.4 −0.5 −0.4 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 subtract synth.m MATLAB Code Example Here.
    [Show full text]
  • Additive Synthesis with Band-Limited Oscillator Sections 75.42 Structure A+B+C 3.33 Folk Songs,” Art of Music-Journal of the Shanghai A+B+C+D+
    Music Structure Music Proportion Total Type Style (%) (%) 7. REFERENCES A 17.50 [1] L. K, “Theme Motif Analysis as Applied in Chinese Coordinate A+B 20.42 Additive Synthesis with Band-Limited Oscillator Sections 75.42 Structure A+B+C 3.33 Folk Songs,” Art of Music-Journal of the Shanghai A+B+C+D+... 34.17 Conservatory of Music, 2005. Reproducing A+B+A 10.00 10.00 Peter Pabon So Oishi Structure [2] Z.-Y. P, “The Common Characteristics of Folk Songs Cyclotron A+B+A+C+A 1.25 Institute of Sonology, Institute of Sonology, 1.25 in Plains of Northeast China,” Journal of Jilin College Structure A+B+A+C+A+... 0 Royal Conservatoire, Juliana van Stolberglaan 1, Royal Conservatoire, Juliana van Stolberglaan 1, of the Arts, 2010. A+B+A+B 5.00 2595 CA Den Haag, The Netherlands 2595 CA Den Haag, The Netherlands Circular Structure A+B+A+B+A+B 1.67 12.92 A+B+A+B+A+B+... 6.25 [3] Y. Ruiqing, “Chinese folk melody form (22),” Jour- [email protected] [email protected] nal of music education and creation, vol. 5, pp. 18–20, Table 3. Statistical results of HaoZi-Hunan music structure styles 2015. ABSTRACT harmonic regions by maintaining synced phase-couplings to a common devisor term. In this extended BLOsc ver- The last columns of Table 1, Table 2 and Table 3 all show [4] Z. Shenghao, “The interpretation of Chinese folk songs The band-limited oscillator (BLOsc) is atypical as it pro- sion, each frequency region can be given its own inde- that the folk songs in the three regions have general charac- and music ontology elements,” Ge Hai, vol.
    [Show full text]
  • Structured Additive Synthesis: Towards a Model of Sound Timbre and Electroacoustic Music Forms M
    Structured Additive Synthesis: Towards a Model of Sound Timbre and Electroacoustic Music Forms M. Desainte-Catherine, Sylvain Marchand To cite this version: M. Desainte-Catherine, Sylvain Marchand. Structured Additive Synthesis: Towards a Model of Sound Timbre and Electroacoustic Music Forms. Proceedings of the International Computer Music Confer- ence (ICMC99), Oct 1999, China. pp.260–263. hal-00308406 HAL Id: hal-00308406 https://hal.archives-ouvertes.fr/hal-00308406 Submitted on 30 Jul 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Structured Additive Synthesis Towards a Mo del of Sound Timbre and Electroacoustic Music Forms Myriam DesainteCatherine myriamlabriubordeauxfr Sylvain Marchand smlabriubordeauxfr SCRIME LaBRI Universite Bordeaux I cours de la Liberation F Talence Cedex France Abstract We have develop ed a sound mo del used for exploring sound timbre This mo del is called Structured Additive Synthesis or SAS for short It has the exibility of additive synthesis while addressing the fact that basic additive synthesis is extremely
    [Show full text]
  • Exploration of Audio Synthesizers
    Iowa State University Capstones, Theses and Creative Components Dissertations Fall 2018 Exploration of Audio Synthesizers Timothy Lindquist Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Digital Circuits Commons, Electrical and Electronics Commons, Hardware Systems Commons, and the Signal Processing Commons Recommended Citation Lindquist, Timothy, "Exploration of Audio Synthesizers" (2018). Creative Components. 81. https://lib.dr.iastate.edu/creativecomponents/81 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Exploration of audio synthesizers by Timothy Lindquist A creative component submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Gary Tuttle, Major Professor The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this creative component. The Graduate College will ensure this creative component is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 1 Table of Contents LIST OF FIGURES 2 LIST OF TABLES 3 NOMENCLATURE 3 ACKNOWLEDGEMENTS 4 ABSTRACT 5 BACKGROUND 6 SYNTHESIS TECHNIQUES 7 Additive Synthesis 7 Subtractive Synthesis 11 FM Synthesis 13 Sample-based Synthesis 16 DESIGN 17 Audio Generation 19 Teensy 3.6 19 Yamaha YM2612 19 Texas Instruments SN76489AN 20 Sequencer 20 Audio Manipulation 24 Modulation Effects 24 Time-Based Effects 24 Shape Based Effects 25 Filters 27 CONSTRUCTION 33 Housing 33 Component Population 35 PCB Creation 36 CONCLUSION 41 REFERENCES 42 APPENDIX A.
    [Show full text]
  • 6 Chapter 6 MIDI and Sound Synthesis
    6 Chapter 6 MIDI and Sound Synthesis ................................................ 2 6.1 Concepts .................................................................................. 2 6.1.1 The Beginnings of Sound Synthesis ........................................ 2 6.1.2 MIDI Components ................................................................ 4 6.1.3 MIDI Data Compared to Digital Audio ..................................... 7 6.1.4 Channels, Tracks, and Patches in MIDI Sequencers ................ 11 6.1.5 A Closer Look at MIDI Messages .......................................... 14 6.1.5.1 Binary, Decimal, and Hexadecimal Numbers .................... 14 6.1.5.2 MIDI Messages, Types, and Formats ............................... 15 6.1.6 Synthesizers vs. Samplers .................................................. 17 6.1.7 Synthesis Methods ............................................................. 19 6.1.8 Synthesizer Components .................................................... 21 6.1.8.1 Presets ....................................................................... 21 6.1.8.2 Sound Generator .......................................................... 21 6.1.8.3 Filters ......................................................................... 22 6.1.8.4 Signal Amplifier ............................................................ 23 6.1.8.5 Modulation .................................................................. 24 6.1.8.6 LFO ............................................................................ 24 6.1.8.7 Envelopes
    [Show full text]