Additive Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Additive Synthesis Music 171: Additive Synthesis Tamara Smyth, [email protected] Department of Music, University of California, San Diego (UCSD) October 22, 2019 1 Adding Sinusoids at Different Frequencies • Adding sinusoids of the same frequency produces another sinusoid at that frequency (with possibly different amplitude and/or phase). 7 6 5 4 3 2 amplitude (offset) 1 0 −1 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time (s) Figure 1: Adding 2 sinusoids at different frequencies. • Adding sinusoids with different frequencies results in a signal that is no longer sinusoidal. But is it periodic? Music 171: Additive Synthesis 2 A Non-Sinusoidal Periodic Signal • If the frequencies of the added sinusoids are integer multiples of the fundamental, the resulting signal will be periodic. 12 10 8 6 4 2 amplitude (offset) 0 −2 −4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time (s) Figure 2: Adding sinusoids at 3, 6, 9 Hz produces a periodic signal at 3 Hz. • Sinusoidal components, or partials that are integer multiples of a fundamental are calle harmonics. Music 171: Additive Synthesis 3 Viewing in the Frequency Domain • When viewing in the frequency domain, a “spike” at a frequency indicates there is a sinusoid in the signal at that frequency. 10 8 6 4 2 0 amplitude (offset) −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time (s) 1 0.8 0.6 0.4 magnitude 0.2 0 0 5 10 15 20 25 30 frequency (Hz) Figure 3: Adding sinusoids at 5, 10, 15 Hz in both time and frequency domain. • The height of the spike here, indicates the amplitude (thus all sinusoids here have a peak amplitude of 1). • The harmonic relationship between the partials can be seen by the even spacing between the “spikes”. Music 171: Additive Synthesis 4 Periodic Waveforms • A periodic waveform corresponds to a harmonic spectrum, one where sinusoidal components are integer multiples of a fundamental frequency. • Periodic waveforms, or harmonic sounds, may be thought of as those having a pitch. • “Standard” periodic waveforms: square, triangle and sawtooth, can be created using additive synthesis: 1 0.5 0 Amplitude −0.5 −1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (s) 2 1 0 Amplitude −1 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (s) 2 1 0 Amplitude −1 −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (s) Music 171: Additive Synthesis 5 Creating Standard Periodic Waveforms • The following table gives the harmonic number, relative amplitude and phase of the harmonics for standard waveforms. Table 1: Other Simple Waveforms Synthesized by Adding Sinusoids Type Harmonics Amplitude Phase Phase (cosine) (sine) square n = [1, 3, 5, ..., N] 1/n −π/2 0 (odd) triangle n = [1, 3, 5, ..., N] 1/n2 0 π/2 (odd) sawtooth n = [1, 2, 3, ..., N] 1/n −π/2 0 (even and odd) • Notice that the phase differs depending on whether you use a sine or cosine function. Music 171: Additive Synthesis 6 Spectra of Standard Waveforms Square Wave Spectrum 1 0.8 0.6 0.4 Magnitude 0.2 0 0 5 10 15 Frequency (Hz) Triangle Wave Spectrum 1 0.8 0.6 0.4 Magnitude 0.2 0 0 5 10 15 Frequency (Hz) Sawtooth Wave Spectrum 1 0.8 0.6 0.4 Magnitude 0.2 0 0 5 10 15 Frequency (Hz) Figure 4: Spectra of complex waveforms Music 171: Additive Synthesis 7 Harmonics and Pitch • Notice that even though these new waveforms contain more than one frequency component, they are still periodic. • Because the frequencis of components are integer multiples of some fundamental frequency, they are called harmonics. • Signals with harmonic spectra have a fundamental frequency and therefore have a periodic waveform (the reverse is, of course, also true). • Pitch is our subjective response to the fundamental frequency. • The relative amplitudes of the harmonics contribute to the timbre of a sound, but do not necessarily alter the pitch. Music 171: Additive Synthesis 8 Clarinet Analysis • A clarinet is generally considered to be closed-open. • Its tone (shown here in the steady state) can be viewed in both time and frequency domain. 0.15 0.1 0.05 0 −0.05 amplitude −0.1 1.022 1.024 1.026 1.028 1.03 1.032 1.034 1.036 1.038 1.04 1.042 time (s) 145 Hz 1 0.8 435 Hz 732 Hz 0.6 1171 Hz 0.4 1025 Hz magnitude 0.2 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 frequency (Hz) Figure 5: Frequency analysis of a clarinet note. • Summing sinusoids at 145, 433 and 732 Hz (as well as others), can approximate a synthesis of the clarinet (in the steady state). Music 171: Additive Synthesis 9 Additive Synthesis • Discrete signals (bandlimited by half the sampling rate) may be represented as the sum of N sinusoids of arbitrary amplitudes, phases, AND frequencies: N x(t)= X Ak cos(ωkt + φk) k=0 • We may therefore, synthesize a sound by setting up a bank of oscillators, each set to the appropriate amplitude, phase and frequency. • The output of each oscillator is added to produce a synthesized sound, and thus the synthesis technique is called additive synthesis. Music 171: Additive Synthesis 10 Additive Synthesis Pros and Cons Pros • Additive synthesis provides the maximum flexibility in the types of sound that can be synthesized. • In certain cases, it can realize tones that are “indistinguishable from real tones.” Cons • It is often necessary to do signal analysis before using additive synthesis to produce specific sounds. • Often requires many oscillators to produce good quality sounds—computationally demanding! • Attacks difficult. • Many functions are useful only for a limited range of pitch and loudness, e.g.: – the timbre of a piano played at A4 is different from one played at A2; – the timbre of a trumpet played loudly is quite different from one played softly at the same pitch. Music 171: Additive Synthesis 11 Modeling Transient Attacks • It is possible to use some knowledge of acoustics to determine functions: – e.g.: higher frequency harmonics are often the last to appear in the attack but the first to decay. – implement using a separate envelope on each harmonic with a steeper attack/decay for lower frequencies. • The duration of the attack and decay greatly influence the quality of a tone: – wind instruments tend to have long attacks, while – percussion instruments tend to have short attacks. Music 171: Additive Synthesis 12 ADSR Envelope • Recall the ADSR envelope (attack, decay, sustain, release) is an envelope that attempts to mimic the behaviour of sound produced by acoustic instruments. 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 6: An ADSR envelope. • Amplitude envelopes can occur on the overal sound or on individual sinusoidal components. Music 171: Additive Synthesis 13 Sinusoid with an ADSR Envelope 2 1 0 −1 Amplitude −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (s) 1 0.5 0 Attack Steady State Decay −0.5 Amplitude −1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (s) 2 1 0 −1 Amplitude −2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (s) Figure 7: A sinusoid with an amplitude envelope. Music 171: Additive Synthesis 14 Pitch and Frequency • There is a nonlinear relationship between pitch perception and frequency. – e.g., the pitch interval of an octave corresponds to a frequency ratio of 2:1. – thus octaves in higher registers span more frequencies • We will often encounter a pitch notation wich designates a pitch with an octave: C4 is middle C. • The pitch A4 or “A440” is often used as a reference, and is an A at 440 Hz. • What is the frequency one octave below A440? • In equal-tempered tuning, there are 12 evenly spaced tones in an octave, called semi-tones: – The frequency n semitones above A440 is 440 × 2n/12 Hz. – The frequency n semitones below A440 is − 440 × 2 n/12 Hz. Music 171: Additive Synthesis 15.
Recommended publications
  • Lab 4: Using the Digital-To-Analog Converter
    ECE2049 – Embedded Computing in Engineering Design Lab 4: Using the Digital-to-Analog Converter In this lab, you will gain experience with SPI by using the MSP430 and the MSP4921 DAC to create a simple function generator. Specifically, your function generator will be capable of generating different DC values as well as a square wave, a sawtooth wave, and a triangle wave. Pre-lab Assignment There is no pre-lab for this lab, yay! Instead, you will use some of the topics covered in recent lectures and HW 5. Lab Requirements To implement this lab, you are required to complete each of the following tasks. You do not need to complete the tasks in the order listed. Be sure to answer all questions fully where indicated. As always, if you have conceptual questions about the requirements or about specific C please feel free to as us—we are happy to help! Note: There is no report for this lab! Instead, take notes on the answers to the questions and save screenshots where indicated—have these ready when you ask for a signoff. When you are done, you will submit your code as well as your answers and screenshots online as usual. System Requirements 1. Start this lab by downloading the template on the course website and importing it into CCS—this lab has a slightly different template than previous labs to include the functionality for the DAC. Look over the example code to see how to use the DAC functions. 2. Your function generator will support at least four types of waveforms: DC (a constant voltage), a square wave, sawtooth wave, and a triangle wave, as described in the requirements below.
    [Show full text]
  • Additive Synthesis, Amplitude Modulation and Frequency Modulation
    Additive Synthesis, Amplitude Modulation and Frequency Modulation Prof Eduardo R Miranda Varèse-Gastprofessor [email protected] Electronic Music Studio TU Berlin Institute of Communications Research http://www.kgw.tu-berlin.de/ Topics: Additive Synthesis Amplitude Modulation (and Ring Modulation) Frequency Modulation Additive Synthesis • The technique assumes that any periodic waveform can be modelled as a sum sinusoids at various amplitude envelopes and time-varying frequencies. • Works by summing up individually generated sinusoids in order to form a specific sound. Additive Synthesis eg21 Additive Synthesis eg24 • A very powerful and flexible technique. • But it is difficult to control manually and is computationally expensive. • Musical timbres: composed of dozens of time-varying partials. • It requires dozens of oscillators, noise generators and envelopes to obtain convincing simulations of acoustic sounds. • The specification and control of the parameter values for these components are difficult and time consuming. • Alternative approach: tools to obtain the synthesis parameters automatically from the analysis of the spectrum of sampled sounds. Amplitude Modulation • Modulation occurs when some aspect of an audio signal (carrier) varies according to the behaviour of another signal (modulator). • AM = when a modulator drives the amplitude of a carrier. • Simple AM: uses only 2 sinewave oscillators. eg23 • Complex AM: may involve more than 2 signals; or signals other than sinewaves may be employed as carriers and/or modulators. • Two types of AM: a) Classic AM b) Ring Modulation Classic AM • The output from the modulator is added to an offset amplitude value. • If there is no modulation, then the amplitude of the carrier will be equal to the offset.
    [Show full text]
  • Fourier Series
    Chapter 10 Fourier Series 10.1 Periodic Functions and Orthogonality Relations The differential equation ′′ y + 2y = F cos !t models a mass-spring system with natural frequency with a pure cosine forcing function of frequency !. If 2 = !2 a particular solution is easily found by undetermined coefficients (or by∕ using Laplace transforms) to be F y = cos !t. p 2 !2 − If the forcing function is a linear combination of simple cosine functions, so that the differential equation is N ′′ 2 y + y = Fn cos !nt n=1 X 2 2 where = !n for any n, then, by linearity, a particular solution is obtained as a sum ∕ N F y (t)= n cos ! t. p 2 !2 n n=1 n X − This simple procedure can be extended to any function that can be repre- sented as a sum of cosine (and sine) functions, even if that summation is not a finite sum. It turns out that the functions that can be represented as sums in this form are very general, and include most of the periodic functions that are usually encountered in applications. 723 724 10 Fourier Series Periodic Functions A function f is said to be periodic with period p> 0 if f(t + p)= f(t) for all t in the domain of f. This means that the graph of f repeats in successive intervals of length p, as can be seen in the graph in Figure 10.1. y p 2p 3p 4p 5p Fig. 10.1 An example of a periodic function with period p.
    [Show full text]
  • Frequency-Domain Additive Synthesis with an Oversampled Weighted Overlap-Add Filterbank for a Portable Low-Power MIDI Synthesizer
    Audio Engineering Society Convention Paper 6202 Presented at the 117th Convention 2004 October 28–31 San Francisco, CA, USA This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Frequency-Domain Additive Synthesis With An Oversampled Weighted Overlap-Add Filterbank For A Portable Low-Power MIDI Synthesizer King Tam1 1 Dspfactory Ltd., Waterloo, Ontario, N2V 1K8, Canada [email protected] ABSTRACT This paper discusses a hybrid audio synthesis method employing both additive synthesis and DPCM audio playback, and the implementation of a miniature synthesizer system that accepts MIDI as an input format. Additive synthesis is performed in the frequency domain using a weighted overlap-add filterbank, providing efficiency gains compared to previously known methods. The synthesizer system is implemented on an ultra-miniature, low-power, reconfigurable application specific digital signal processing platform. This low-resource MIDI synthesizer is suitable for portable, low-power devices such as mobile telephones and other portable communication devices. Several issues related to the additive synthesis method, DPCM codec design, and system tradeoffs are discussed. implementation using the Fourier transform and inverse Fourier transform. 1. INTRODUCTION While several other synthesis methods have been Additive synthesis in musical applications has been developed, interest in additive synthesis has continued.
    [Show full text]
  • Tektronix Signal Generator
    Signal Generator Fundamentals Signal Generator Fundamentals Table of Contents The Complete Measurement System · · · · · · · · · · · · · · · 5 Complex Waves · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 The Signal Generator · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 Signal Modulation · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 Analog or Digital? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 Analog Modulation · · · · · · · · · · · · · · · · · · · · · · · · · 15 Basic Signal Generator Applications· · · · · · · · · · · · · · · · 8 Digital Modulation · · · · · · · · · · · · · · · · · · · · · · · · · · 15 Verification · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8 Frequency Sweep · · · · · · · · · · · · · · · · · · · · · · · · · · · 16 Testing Digital Modulator Transmitters and Receivers · · 8 Quadrature Modulation · · · · · · · · · · · · · · · · · · · · · 16 Characterization · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8 Digital Patterns and Formats · · · · · · · · · · · · · · · · · · · 16 Testing D/A and A/D Converters · · · · · · · · · · · · · · · · · 8 Bit Streams · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17 Stress/Margin Testing · · · · · · · · · · · · · · · · · · · · · · · · · · · 9 Types of Signal Generators · · · · · · · · · · · · · · · · · · · · · · 17 Stressing Communication Receivers · · · · · · · · · · · · · · 9 Analog and Mixed Signal Generators · · · · · · · · · · · · · · 18 Signal Generation Techniques
    [Show full text]
  • THE COMPLETE SYNTHESIZER: a Comprehensive Guide by David Crombie (1984)
    THE COMPLETE SYNTHESIZER: A Comprehensive Guide By David Crombie (1984) Digitized by Neuronick (2001) TABLE OF CONTENTS TABLE OF CONTENTS...........................................................................................................................................2 PREFACE.................................................................................................................................................................5 INTRODUCTION ......................................................................................................................................................5 "WHAT IS A SYNTHESIZER?".............................................................................................................................5 CHAPTER 1: UNDERSTANDING SOUND .............................................................................................................6 WHAT IS SOUND? ...............................................................................................................................................7 THE THREE ELEMENTS OF SOUND .................................................................................................................7 PITCH ...................................................................................................................................................................8 STANDARD TUNING............................................................................................................................................8 THE RESPONSE OF THE HUMAN
    [Show full text]
  • Oscilators Simplified
    SIMPLIFIED WITH 61 PROJECTS DELTON T. HORN SIMPLIFIED WITH 61 PROJECTS DELTON T. HORN TAB BOOKS Inc. Blue Ridge Summit. PA 172 14 FIRST EDITION FIRST PRINTING Copyright O 1987 by TAB BOOKS Inc. Printed in the United States of America Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein. Library of Cangress Cataloging in Publication Data Horn, Delton T. Oscillators simplified, wtth 61 projects. Includes index. 1. Oscillators, Electric. 2, Electronic circuits. I. Title. TK7872.07H67 1987 621.381 5'33 87-13882 ISBN 0-8306-03751 ISBN 0-830628754 (pbk.) Questions regarding the content of this book should be addressed to: Reader Inquiry Branch Editorial Department TAB BOOKS Inc. P.O. Box 40 Blue Ridge Summit, PA 17214 Contents Introduction vii List of Projects viii 1 Oscillators and Signal Generators 1 What Is an Oscillator? - Waveforms - Signal Generators - Relaxatton Oscillators-Feedback Oscillators-Resonance- Applications--Test Equipment 2 Sine Wave Oscillators 32 LC Parallel Resonant Tanks-The Hartfey Oscillator-The Coipltts Oscillator-The Armstrong Oscillator-The TITO Oscillator-The Crystal Oscillator 3 Other Transistor-Based Signal Generators 62 Triangle Wave Generators-Rectangle Wave Generators- Sawtooth Wave Generators-Unusual Waveform Generators 4 UJTS 81 How a UJT Works-The Basic UJT Relaxation Oscillator-Typical Design Exampl&wtooth Wave Generators-Unusual Wave- form Generator 5 Op Amp Circuits
    [Show full text]
  • Fourier Transforms
    Fourier Transforms Mark Handley Fourier Series Any periodic function can be expressed as the sum of a series of sines and cosines (or varying amplitides) 1 Square Wave Frequencies: f Frequencies: f + 3f Frequencies: f + 3f + 5f Frequencies: f + 3f + 5f + … + 15f Sawtooth Wave Frequencies: f Frequencies: f + 2f Frequencies: f + 2f + 3f Frequencies: f + 2f + 3f + … + 8f 2 Fourier Series A function f(x) can be expressed as a series of sines and cosines: where: Fourier Transform Fourier Series can be generalized to complex numbers, and further generalized to derive the Fourier Transform. Forward Fourier Transform: Inverse Fourier Transform: Note: 3 Fourier Transform Fourier Transform maps a time series (eg audio samples) into the series of frequencies (their amplitudes and phases) that composed the time series. Inverse Fourier Transform maps the series of frequencies (their amplitudes and phases) back into the corresponding time series. The two functions are inverses of each other. Discrete Fourier Transform If we wish to find the frequency spectrum of a function that we have sampled, the continuous Fourier Transform is not so useful. We need a discrete version: Discrete Fourier Transform 4 Discrete Fourier Transform Forward DFT: The complex numbers f0 … fN are transformed into complex numbers F0 … Fn Inverse DFT: The complex numbers F0 … Fn are transformed into complex numbers f0 … fN DFT Example Interpreting a DFT can be slightly difficult, because the DFT of real data includes complex numbers. Basically: The magnitude of the complex number for a DFT component is the power at that frequency. The phase θ of the waveform can be determined from the relative values of the real and imaginary coefficents.
    [Show full text]
  • Tooth Wave Supplied to One Deflection Axis of 50 Field of Search
    United States Patent (11) 3,633,066 72) Inventors Kozo Uchida; Naohisa Nakaya; Koji Suzuki, all of Tokyo, 56 References Cited Japan UNITED STATES PATENTS (21) Appl. No. 851,609 3,432,762 3/1969 La Porta....................... 328/179 22) Fied Aug. 20, 1969 3,571,617 3/1971 Hainz........................... 307/228 45) Patented Jan. 4, 1972 Primary Examiner-Rodney D. Bennett, Jr. 73 Assignee Iwatsu Electric Company Limited Assistant Examiner-H. A. Birmiel Tokyo, Japan Attorney-Chittick, Pfund, Birch, Samuels & Gauthier 32) Priority Aug. 23, 1968 33 Japan 31) 43/59922 ABSTRACT: In a sampling device including a synchronizing device comprising a synchronizing circuit, a sampler, an oscil loscope, and a synchronism control circuit having a dif 54) AUTOMATICSYNCHRONIZING SYSTEMSFOR ferentiation circuit to differentiate the output from the sam SAMPLNG EDEVICES pler to vary a variable element in the synchronizing circuit whereby to stop variation of the variable element and to main 3 Claims, 7 Drawing Figs. tain the same in the stopped condition upon reaching 52) U.S.C........................................................ 315/19, synchronism there is provided means to stop the operation of 307/228, 315125,328/72,328/179 the synchronism control circuit over the flyback interval of a (51) Int. Cl......................................................... H01j29/70 low-speed sawtooth wave supplied to one deflection axis of 50 Field of Search............................................ 307/228; the oscilloscope to prevent loss of synchronization which 328/63, 72, 179, 151; 315/18, 19, 22, 25 otherwise tends to occur during the flyback interval. LOW SP SAW 48SAMPLNGPULSE GEN COMPARATOR TOOTH WAVE GEN SYNCHRONIZING HGH SP SAW CKT TOOTH WAVE GEN 46 PATENTEDIAN 4972 3,633,066 SHEET 1 OF 2 - - - - - - - - - - was - - - - - - - - - - - - - -- a-- - - - F.
    [Show full text]
  • Enhancing Digital Signal Processing Education with Audio Signal Processing and Music Synthesis
    AC 2008-1613: ENHANCING DIGITAL SIGNAL PROCESSING EDUCATION WITH AUDIO SIGNAL PROCESSING AND MUSIC SYNTHESIS Ed Doering, Rose-Hulman Institute of Technology Edward Doering received his Ph.D. in electrical engineering from Iowa State University in 1992, and has been a member the ECE faculty at Rose-Hulman Institute of Technology since 1994. He teaches courses in digital systems, circuits, image processing, and electronic music synthesis, and his research interests include technology-enabled education, image processing, and FPGA-based signal processing. Sam Shearman, National Instruments Sam Shearman is a Senior Product Manager for Signal Processing and Communications at National Instruments (Austin, TX). Working for the firm since 2000, he has served in roles involving product management and R&D related to signal processing, communications, and measurement. Prior to working with NI, he worked as a technical trade press editor and as a research engineer. As a trade press editor for "Personal Engineering & Instrumentation News," he covered PC-based test and analysis markets. His research engineering work involved embedding microstructures in high-volume plastic coatings for non-imaging optics applications. He received a BS (1993) in electrical engineering from the Georgia Institute of Technology (Atlanta, GA). Erik Luther, National Instruments Erik Luther, Textbook Program Manager, works closely with professors, lead users, and authors to improve the quality of Engineering education utilizing National Instruments technology. During his last 5 years at National Instruments, Luther has held positions as an academic resource engineer, academic field engineer, an applications engineer, and applications engineering intern. Throughout his career, Luther, has focused on improving education at all levels including volunteering weekly to teach 4th graders to enjoy science, math, and engineering by building Lego Mindstorm robots.
    [Show full text]
  • Experiment 4: Time-Varying Circuits
    Name/NetID: Teammate/NetID: Experiment 4: Time-Varying Circuits Laboratory Outline: Last week, we analyzed simple circuits with constant voltages using the DC power supply and digital multimeter (DMM). This week, we’ll learn to deal with voltages that vary over time by using the function generator and oscilloscope which can be found on your lab bench. Once this lab is complete, you’ll understand how and when to use all the bench equipment in the ECE 110 Lab. Unless an experiment requires a particularly-obscure capability from these devices, all future procedures will assume you understand how to take the necessary measurements using the necessary sources and meters. In addition, you will have expanded your knowledge on constructing prototype circuits and will be able to build most circuits required of future experiments. Using the Oscilloscope and Function Generator: In order to analyze voltages that vary with time, we must use a measurement device that can capture a time history of those voltages. This device is called an oscilloscope. In addition, there are many situations in which we might desire to generate a specific periodic voltage without having to build a special circuit to do so. We can do this using what is called a function generator (sometimes called a signal generator or waveform generator). Once we have mastered the use of these pieces of bench equipment, we’ll have all the basic skills needed for the rest of the semester. Notes: Function Generator Important! The function A function generator is a piece of equipment that outputs an electrical waveform that can vary in time, in contrast to the DC generator operates like an ideal power supply that can only output a constant voltage.
    [Show full text]
  • Delta Modulation
    DELTA MODULATION PREPARATION ...............................................................................122 principle of operation...............................................................122 block diagram.........................................................................................122 step size calculation................................................................................124 slope overload and granularity.................................................124 slope overload ........................................................................................124 granular noise.........................................................................................125 noise and distortion minimization ..........................................................126 EXPERIMENT .................................................................................126 setting up..................................................................................126 slope overload..........................................................................129 the ADAPTIVE CONTROL signal................................................................129 the output .................................................................................130 complex message.....................................................................131 TUTORIAL QUESTIONS................................................................132 APPENDIX.......................................................................................133 a ‘complex’
    [Show full text]