Music Structure Music Proportion Total Type Style (%) (%) 7. REFERENCES A 17.50 [1] L. K, “Theme Motif Analysis as Applied in Chinese Coordinate A+B 20.42 Additive Synthesis with Band-Limited Oscillator Sections 75.42 Structure A+B+C 3.33 Folk Songs,” Art of Music-Journal of the Shanghai A+B+C+D+... 34.17 Conservatory of Music, 2005. Reproducing A+B+A 10.00 10.00 Peter Pabon So Oishi Structure [2] Z.-Y. P, “The Common Characteristics of Folk Songs Cyclotron A+B+A+C+A 1.25 Institute of Sonology, Institute of Sonology, 1.25 in Plains of Northeast China,” Journal of Jilin College Structure A+B+A+C+A+... 0 Royal Conservatoire, Juliana van Stolberglaan 1, Royal Conservatoire, Juliana van Stolberglaan 1, of the Arts, 2010. A+B+A+B 5.00 2595 CA Den Haag, The Netherlands 2595 CA Den Haag, The Netherlands Circular Structure A+B+A+B+A+B 1.67 12.92 A+B+A+B+A+B+... 6.25 [3] Y. Ruiqing, “Chinese folk melody form (22),” Jour-
[email protected] [email protected] nal of music education and creation, vol. 5, pp. 18–20, Table 3. Statistical results of HaoZi-Hunan music structure styles 2015. ABSTRACT harmonic regions by maintaining synced phase-couplings to a common devisor term. In this extended BLOsc ver- The last columns of Table 1, Table 2 and Table 3 all show [4] Z. Shenghao, “The interpretation of Chinese folk songs The band-limited oscillator (BLOsc) is atypical as it pro- sion, each frequency region can be given its own inde- that the folk songs in the three regions have general charac- and music ontology elements,” Ge Hai, vol.