Trends in the Domain of Rapid Rototyping: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
All-Printed Smart Structures: a Viable Option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*A, Gregory Washingtonb Adept
All-printed smart structures: a viable option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*a, Gregory Washingtonb aDept. of Mechanical Engineering, The University of Alabama, Box 870276, Tuscaloosa, AL, USA 35487-0276; bDept. of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, USA 92697-3975 ABSTRACT The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure. Keywords: printed smart structures, 3D printing, printed electronics, printed strain sensor 1. INTRODUCTION Decades of research and development have seen the progression of a variety of different additive manufacturing processes [1]. From basic Fused Deposition modeling to the more intricate Energy Beam methods, the ability to print a diverse selection of structures, both complex and simple, on demand with accuracy and precision has become a reality. -
A Study on Ultrasonic Energy Assisted Metal Processing : Its Correeltion with Microstructure and Properties, and Its Application to Additive Manufacturing
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2019 A study on ultrasonic energy assisted metal processing : its correeltion with microstructure and properties, and its application to additive manufacturing. Anagh Deshpande University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Manufacturing Commons, Metallurgy Commons, and the Other Materials Science and Engineering Commons Recommended Citation Deshpande, Anagh, "A study on ultrasonic energy assisted metal processing : its correeltion with microstructure and properties, and its application to additive manufacturing." (2019). Electronic Theses and Dissertations. Paper 3239. https://doi.org/10.18297/etd/3239 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. A STUDY ON ULTRASONIC ENERGY ASSISTED METAL PROCESSING: ITS CORRELTION WITH MICROSTRUCTURE AND PROPERTIES, AND ITS APPLICATION TO ADDITIVE MANUFACTURING By Anagh Deshpande A Dissertation Submitted to the Faculty of the J.B. Speed School of Engineering of the University of Louisville in Fulfillment -
Opas 3D-Tulostuksen Yleisimpiin Tekniikoihin Ja Niiden Haasteiden Ratkaisemiseen
JOONAS KORTELAINEN Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen AUTOMAATIOTEKNOLOGIAN KOULUTUSOHJELMA 2019 Tekijä(t) Julkaisun laji Päivämäärä Kortelainen, Joonas Opinnäytetyö, ylempi AMK Joulukuu 2019 Sivumäärä Julkaisun kieli 91 Suomi Julkaisun nimi Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen Tutkinto-ohjelma Automaatioteknologian koulutusohjelma Tä ssä opinnäytetyössä tuotettiin opas 3D-tulostuksen yleisimpiin ongelmatilanteisiin ja niiden ratkaisemiseen. Käsiteltäviksi 3D-tulostusteknologioiksi valittiin FDM- ja MSLA-teknologiat niiden yleisyyden vuoksi. Tämä tutkimus toteutettiin konkreettisin menetelmin, kokeilemalla ja tuottamalla on- gelmatapauksia tarkoituksella, sekä ratkaisemalla niitä saatavilla olevin keinoin sekä kokemuksen tuoman ratkaisukeskeisen toimintatavan avulla. Tuloksena on tämä opinnäytetyön muotoon kirjoitettu opas valittujen 3D-tulostustek- niikoiden yleisimpiin ongelmiin ja niiden ratkaisuihin. Ratkaisut näihin ongelmiin on tuotu esille ytimekkäästi sekä konkreettisin askelein. Lopuksi oli hyvä huomata, kuinka paljon ongelmia 3D-tulostamisessa näillä valituilla teknologioilla oikeastaan on. Käsitellyt ongelmat ovat yleisimpiä näillä tulostusteknii- koilla esille tulevia ongelmia, mutta muitakin ongelmia saattaa esiintyä. Asiasanat 3D-tulostus, ongelmanratkaisu, 3D-tulostimet Author(s) Type of Publication Date Kortelainen, Joonas Master’s thesis December 2019 ThesisNumberAMK of pages Language of publication: 91 Finnish Title of publication -
The Current Landscape for Additive Manufacturing Research
THE CURRENT LANDSCAPE FOR ADDITIVE MANUFACTURING RESEARCH A review to map the UK’s research activities in AM internationally and nationally 2016 ICL AMN report Dr. Jing Li Dr. Connor Myant Dr. Billy Wu Imperial College Additive Manufacturing Network Contents Executive Summary .............................................................................................................. 1 1. Introduction .................................................................................................................... 4 2. What is additive manufacturing? .................................................................................... 5 2.1. Advantages of additive manufacturing ......................................................................... 5 2.2. Types of additive manufacturing technology and challenges ........................................ 6 2.3. The manufacturing production chain and challenges ................................................... 9 2.4. Conclusions ................................................................................................................12 3. Mapping the international additive manufacturing research landscape ......................... 13 3.1. Global market trend ....................................................................................................13 3.1.1. Growth in market value ........................................................................................13 3.1.2 Additive manufacturing growth in industrial markets.............................................14 -
Metal Parts Using Additive Technologies
3/3/2017 Fundamentals of Additive Manufacturing for Aerospace Frank Medina, Ph.D. Technology Leader, Additive Manufacturing Director, Additive Manufacturing Consortium [email protected] 915-373-5047 Intent of This Talk Introduce the general methods for forming metal parts using additive manufacturing Give multiple examples of each type of method Compare and contrast the methods given Disclaimer: – This talk serves as an introduction to the various additive manufacturing technologies which work with metals. There are so many methods available we will not have time to discuss them all. – Once you determine the right approach for you, please investigate different machine manufacturers and service providers to determine the optimal solution for your needs. – I have tried to be objective in the presentation. Where I can I have given the affiliations for the materials used. If I’ve missed any I apologize in advance. About me and EWI I am a Technology Leader at EWI specializing in additive manufacturing (AM) with a focus on Metals AM. I have over 17 years of AM experience, collaborating with research scientists, engineers, and medical doctors to develop new equipment and devices. Non-profit applied manufacturing R&D company ─ Develops, commercializes, and implements leading-edge manufacturing technologies for innovative businesses Thought-leader in many cross-cutting technologies ─ >160,000 sq-ft in 3 facilities with full-scale test labs (expanding) ─ >$40 million in state of the art capital equipment (expanding) ─ >170 engineers, technicians, industry experts (expanding) 1 3/3/2017 Structural Gap between Research and Application Technology Maturity Scale Source: NIST AMNPO presentation Oct. 2012 EWI Applied R&D Bridges the Gap Between Research and Application EWI Applied R&D: Manufacturing Technology Innovation, Maturation, Commercialization, Insertion Technology Maturity Scale Source: NIST AMNPO presentation Oct. -
Direct and Indirect Laser Sintering of Metals
Direct and Indirect Laser Sintering of Metals By Montasser Marasy A. Dewidar A Thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mechanical Engineering Leeds UK May 2002 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. Abstract 11 ABSTRACT Manufacturing functional prototypes and tools using conventional methods usually is a time consuming procedure with multiple steps. The pressure to get products to market faster has resulted in the creation of several Rapid Prototyping (RP) techniques. However, potentially one of the most important areas of Rapid Manufacturing (RM) technology lies in the field of Rapid Tooling (RT). Layer manufacture technologies are gaining increasing attention in the manufacturing sector for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produce tooling either indirectly or directly, and powder metal based layer manufacture systems are considered an effective way of producing rapid tooling. Selective Laser Sintering (SLS) is one of available layer manufacture technologies. SLS is a sintering process in which shaped parts are built up layer by layer from bottom to top of powder material. A laser beam scans the powder layer, filling in the outline of each layers CAD-image, and heats the selected powder to fuse it. This work reports the results of an experimental study examining the potential of layer manufacturing processes to deliver production metal tooling for manufacture of polymer components. -
Additive Manufacturing: Analysis of the Economic Context and Evaluation of the Indoor Air Quality, with a Total Quality Management Approach
DIPARTIMENTO DI ECONOMIA, SOCIETÀ, POLITICA CORSO DI DOTTORATO DI RICERCA IN Economia, Società, Diritto CURRICULUM Economia e Management CICLO XXXI Additive Manufacturing: analysis of the economic context and evaluation of the indoor air quality, with a Total Quality Management approach SETTORE SCIENTIFICO DISCIPLINARE: SECS-P/13-SCIENZE MERCEOLOGICHE RELATORE DOTTORANDA Chiar.ma Prof.ssa Federica Murmura Dott.ssa Laura Bravi CO TUTOR Ing. Francesco Balducci Anno Accademico 2017/2018 Summary INTRODUCTION CHAPTER 1: ADDITIVE MANUFACTURING: IS IT THE FUTURE? ABSTRACT .......................................................................................................................... 10 1.1 Additive and Subtractive Manufacturing ...................................................................... 10 1.2 The road towards Additive Manufacturing ................................................................... 13 1.2.1 Prehistory of AM .................................................................................................... 14 1.2.2 First attempts to modern AM ................................................................................. 16 1.2.3 The RepRap project ................................................................................................ 19 1.2.4 The Fab@Home project ......................................................................................... 23 1.3 AM today: 3D printing in the digitalization of manufacturing ..................................... 24 1.3.1 The main Additive Manufacturing -
High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology
materials Review A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology Paweł Fiedor 1 and Joanna Ortyl 1,2,* 1 Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; pawel.fi[email protected] 2 Photo HiTech Ltd., Bobrzy´nskiego14, 30-348 Cracow, Poland * Correspondence: [email protected] Received: 9 June 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: The following article introduces technologies that build three dimensional (3D) objects by adding layer-upon-layer of material, also called additive manufacturing technologies. Furthermore, most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing are covered. The micromanufacturing method covers photopolymerization-based methods such as stereolithography (SLA), digital light processing (DLP), the liquid crystal display–DLP coupled method, two-photon polymerization (TPP), and inkjet-based methods. Functional photocurable materials, with magnetic, conductive, or specific optical applications in the 3D printing processes are also reviewed. Keywords: 3D printing; high-resolution; additive manufacturing; photopolymerization; industry 4.0; stereolithography; two-photon polymerization 1. Introduction Three dimensional (3D) printing is currently an extremely important branch of Research and Development (R&D) departments. This is because of its rapid prototyping, swift elimination of design errors, and improvements of the product at the prototyping stage. This approach significantly accelerates the implementation of new solutions without incurring significant production costs and eliminating in-production testing of underdeveloped models. Thanks to 3D printing techniques, making a prototype with complex geometry has become possible in a short time with unprecedented precision [1]. -
3D Printing As an Alternative Manufacturing Method for the MicroGas Turbine Heat Exchanger
3D Printing as an Alternative Manufacturing Method for the Microgas Turbine Heat Exchanger Wolfgang Seiya and Sherry Zhang July 2015 Department of Energy Technology Royal Institute of Technology Stockholm, Sweden Pratt School of Engineering, Smarthome Program Duke University Durham, North Carolina, USA 1 Acknowledgements We would like to thank InnoEnergy, Compower, and the ‘‘STandUP for Energy’’ project for providing resourceful background information for this study. We owe our deepest gratitude to our advisor, Anders Malmquist for his continuous support for this study throughout the summer. His guidance, motivation, and expertise were invaluable assets in all areas of the study. Our sincere thanks goes to Joachim Claesson at KTH for his time and knowledge on the subject of heat exchangers. We take this opportunity to thank all the company correspondents that took their time and interest to help us with the vast information needed for this study. Lastly, we are immensely grateful to Duke Smart Home Program and its director Jim Gaston for providing us with the opportunity and necessary funds to live in Sweden while conducting this study. 2 I. Table of Contents List of Figures …………………………………………………………………………….… 6 List of Tables ……………………………………………………………………………….. 7 Abbreviations and Equation Nomenclature ………………………………………………… 8 Abstract …………………………………………………………………………………...… 9 Introduction …………………………………………………………………………………. 9 Methodology ……………………………………………………………………………….. 10 Materials ……………………………………………………………………………….. 10 Manufacturing …………………………………………………………………………. -
History of Additive Manufacturing
Wohlers Report 2014 History of Additive Manufacturing History of additive This 34‐page document is a part of Wohlers Report 2014 and was created for its readers. The document chronicles the history of additive manufacturing manufacturing (AM) and 3D printing, beginning with the initial by Terry Wohlers and Tim Gornet commercialization of stereolithography in 1987 to May 2013. Developments from May 2013 through April 2014 are available in the complete 276‐page version of the report. An analysis of AM, from the earliest inventions in the 1960s to the 1990s, is included in the final several pages of this document. Additive manufacturing first emerged in 1987 with stereolithography (SL) from 3D Systems, a process that solidifies thin layers of ultraviolet (UV) light‐sensitive liquid polymer using a laser. The SLA‐1, the first commercially available AM system in the world, was the precursor of the once popular SLA 250 machine. (SLA stands for StereoLithography Apparatus.) The Viper SLA product from 3D Systems replaced the SLA 250 many years ago. In 1988, 3D Systems and Ciba‐Geigy partnered in SL materials development and commercialized the first‐generation acrylate resins. DuPont’s Somos stereolithography machine and materials were developed the same year. Loctite also entered the SL resin business in the late 1980s, but remained in the industry only until 1993. After 3D Systems commercialized SL in the U.S., Japan’s NTT Data CMET and Sony/D‐MEC commercialized versions of stereolithography in 1988 and 1989, respectively. NTT Data CMET (now a part of Teijin Seiki, a subsidiary of Nabtesco) called its system Solid Object Ultraviolet Plotter (SOUP), while Sony/D‐MEC (now D‐MEC) called its product Solid Creation System (SCS). -
Manufatura Aditiva Na Transformação Digital - Uma Estratégia a Cumprir
Manufatura Aditiva na transformação digital - uma estratégia a cumprir Martinho Oliveira EMaRT Group – Emerging: Materials, Research, Technology CICECO – Aveiro’s Institute of Materials Diretor - Escola Superior Aveiro-Norte Universidade de Aveiro Webinar "Digital Take off | Manufatura aditiva na Transformação Digital“ 28 de Maio de 2020 By Microsoft Teams SCHOOL OF DESIGN, MANAGEMENT AND PRODUCTION TECHNOLOGIES NORTHERN AVEIRO Technology | Product development | Materials Oliveira de Azeméis Industrial activity: Plastic and mould industry Car components Metalworking Footwear Cork industry Food products PORTUGAL2 AM landscape (hardware, software, materials, post-processing systems Source: AMFG, 2019 number of polymer and metal AM systems manufacturers Polymer AM manufacturers Metal AM manufacturers Source: AMFG, 2019 Sales evolution of materials and money spent in AM production Sales of materials for polymer powder bed fusion. Money spent annually on part production using AM. Figures are in millions of dollars. Figures are in millions of dollars. Source: Wohlers Report 2019. Source: Wohlers Report 2020 AM: opportunities, key industries and limitations AM is being recognized across different industries Opportunities for AM: decline of some traditional manufacturing sectors environment sustainable products an production methods innovative products and production lines/flux customization global economy centered in the individual 3 key industries: Automotive, Aerospace, Medical Automotive: new products to market quickly and in a cost effective -
Additive Manufacturing – Integration of Functions in EMI-Shields
1 Royal Institute of Technology Master Thesis Additive Manufacturing – Integration of Functions in EMI-shields Author: Author: André JOHANSSON KUCERA Alexandra LIDHOLM Course: Course: MG212X, Degree Project in Production SE202X, Degree Project Engineering and Management in Solid Mechanics Supervisor KTH: Supervisor KTH: Amir RASHID, Bo ALFREDSSON, professor in Industrial professor in Solid Production Mechanics Examiner KTH: Examiner KTH: Amir RASHID Bo ALFREDSSON Supervisor Saab AB: Mussie GEBRETNSAE June 2019 i Abstract Additive manufacturing enables a simplified production process of components with complex geometry based on computer aided three-dimensional design. The technology of creating components layer-by-layer allows an efficient process with the ability to design parts with specific properties which can be difficult to obtain when conventional manufacturing methods are used. In this master thesis, an EMI shield was analyzed where the choice of manufacturing process was of interest. Producing the shield with additive manufacturing, instead of conventional methods, and how to integrate different materials in the process were investigated. The possibility to produce the shield and its components in the same process would result in a shorter production process with less process steps and would be an effective approach for future applications. In the current EMI shield, each component has a specific function with high demands in terms of temperature resistance, weight and EMC. These requirements must be taken into account when choosing manufacturing method and suitable materials in order to obtain desired characteristics of the shield. In the analysis of creating an electromagnetic interference (EMI) shield with multi-materials, a comprehensive literature study was conducted where different AM methods and available materials were investigated.