MOLIDAE Separated, Less Broad Than Spaces Between Them

Total Page:16

File Type:pdf, Size:1020Kb

MOLIDAE Separated, Less Broad Than Spaces Between Them click for previous page 3966 Bony Fishes MOLIDAE Molas (ocean sunfishes) by J.B. Hutchins iagnostic characters: Moderate to large fishes D(to 3 m or more); body short and deep or dorsal fin oblong, prominently compressed; caudal pedun- cle and typical caudal fin absent.Eyessmall. Mouth terminal, small; teeth united and beak-like in pseudo-caudal fin each jaw without a median suture; no palatine teeth. or clavus Gill opening small, pore-like, located in front of pectoral-fin base. Dorsal and anal fins of similar shape, generally triangular, dorsal fin located opposite anal fin; dorsal and anal fins spineless, each with 15 to 21 soft rays; pectoral fins small to moderate sized, located midlaterally, fitting into a shallow concavity in side of body, or concavity ab- sent; pelvic fins absent; caudal fin replaced by a leathery, rudder-like lobe known as a pseudo- caudal fin or clavus (supported mostly by fin-ray elements originally belonging to dorsal and anal fins). Skin leathery, with many small scales (small juveniles may also have some larger scattered spiny gill opening scales). Colour: base colour variable, ranging from grey, brown, purplish brown, greyish blue, silvery, to white, sometimes with either pale or dark spots. Habitat, biology, and fisheries: Pelagic fishes of tropical and temperate oceans, infrequently entering harbours. Sometimes seen swimming lazily, or idling at the surface, often partially on their sides. They are occasionally beached during storms. Food consists of jellyfishes, salps, ctenophores, larval eels, and at times other fishes. Usually heavily parasitized. Not anal fin generally eaten as flesh considered tough and unpal- atable. However, in some parts of the world, they are treated as a delicacy. Similar families occurring in the area None. The peculiar truncated shape, absence of a caudal peduncle and a normal caudal fin, together with the high dorsal and anal fins located far posteriorly on body readily distinguish these fishes from all other families. Key to the species of Molidae occurring in the area 1a. Body moderately deep, more or less oblong in lateral profile, body depth approximately 2 times in body length; lips funnel-like, closing as a vertical slit; skin smooth; pectoral fins elongate, fitting into shallow groove in side of body . Ranzania laevis 1b. Body very deep, oval or almost circular in lateral profile, body depth 1 to 1.5 times in body length; lips not funnel-like, closing in roundish form; skin with rough texture; pectoral fin small and rounded, not fitting into shallow groove in side of body .................® 2 2a. Clavus (pseudo-caudal fin) with a distinct median extension (very long in juveniles, noticeably shorter in adults), remaining margin not scalloped . Masturus lanceolatus 2b. Clavus without a distinct median extension, margin mostly scalloped ...............® 3 3a. Clavus supported by about 12 fin rays, of which 8 or 9 bear ossicles; ossicles widely separated, less broad than spaces between them . Mola mola 3b. Clavus supported by about 16 fin rays, of which 12 bear ossicles; ossicles close together, much broader than spaces between them . Mola ramsayi Tetraodontiformes: Molidae 3967 List of species occurring in the area The symbol 0 is given when species accounts are included. 0 Masturus lanceolatus (Liénard, 1840) 0 Mola mola (Linnaeus, 1758) 0 Mola ramsayi (Giglioli, 1883) 0 Ranzania laevis (Pennant, 1776) Reference Heemstra, P.C. 1986. Family Molidae. In Smith’s sea fishes, edited by M.M. Smith and P.C. Heemstra. Johannesburg, Macmillan South Africa, pp. 907-908. Masturus lanceolatus (Liénard, 1840) En - Point-tailed sunfish. Maximum total length at least 3 m. Little is known about the exact distribution of this rare species, but it probably occurs in all temperate and tropical seas of the world. Mola mola (Linnaeus, 1758) En - Ocean sunfish. Maximum total length at least 3.3 m. Found in all tropical and temperate seas of the world, preferring areas well offshore. 3968 Bony Fishes Mola ramsayi (Giglioli, 1883) En - Short ocean sunfish. Maximum total length at least 3 m. The distribution of this species is uncertain, but it probably occurs in temperate and tropical seas of the southern hemisphere. Ranzania laevis (Pennant, 1776) En - Slender mola; Fr - Ranzania; Sp - Ranzania. Maximum total length 90 cm. Found in tropical and temperate seas of the world, preferring areas well offshore. Unlike other ocean sunfishes, this species may travel in schools of up to 50 individuals. These schools sometimes become stranded in shallow coastal bays. click for next page.
Recommended publications
  • Tetraodontiformes: Tetraodontidae) and Some Related Species, Including a New Species from Hawaii!
    Pacific Science (1983), vol. 37, no. 1 © 1983 by the University of Hawaii Press. All rights reserved The Status of Torquigener hypselogeneion (Bleeker) (Tetraodontiformes: Tetraodontidae) and Some Related Species, including a New Species from Hawaii! GRAHAM S. H ARDy 2 ABSTl~ACT: Torquigener .hypselogeneion (Bleeker) and T.jiorealis (Cope) are redescnbed, and a neotype IS proposed for the former. That species differs from T. jiorealis in having smaller eye ~iameter , shorter caudal peduncle length, usuall!, lower.fin ray counts, and different color pattern. Torquigener randalli n:s~. IS descnbed .from six specimens from Oahu, Hawaii, differing from the similar T.jiorealis In shape ofdorsal and anal fins, a usually lower dorsal and anal fin ray count, and in color pattern. 1:'1 MARCH 1852 Bleeker published the descrip­ METHODS tion of a small pufferfish, which he called Measurements (taken to 2 significant Tetraodon hypselogeneion, based on speci­ figures) were by dial caliper, in a manner mens from Amboina (Ambon) (Bleeker similar to that outlined by Dekkers (1975). 1852a). In subsequent descriptions, he ex­ All measurements are from preserved speci­ tended the known distribution to cover much mens . Fin ray counts include all visible rays, ?f the D~tch Ea st Indies (Indonesia), and both branched and unbranched, and fin ray In 1865 Included examples, considered as lengths were determined from the embedded hypselogeneion, reported from the Red Sea as base. One example each of T. jiorealis and Tetrodon honckenii (not ofBloch), by Riippell T. randalli was cleared and stained and (1828). A central Pacific species, described as all others x-rayed, for examination of their ! etrodon .f!Nealis by Cope (1871), was later osteology.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Four New Records of Fish Species (Cypriniformes: Nemacheilidae
    Zoological Research 35 (1): 51−58 DOI:10.11813/j.issn.0254-5853.2014.1.051 Four new records of fish species (Cypriniformes: Nemacheilidae, Balitoridae; Characiformes: Prochilodontidae) and corrections of two misidentified fish species (Tetraodontiformes: Tetraodontidae; Beloniformes: Belonidae) in Yunnan, China Marco Endruweit* Qingshan Road 601, Qingdao, China Abstract: In this study, six fish species of five families are reported for the first time from Yunnan Province, China. The nemacheilid Schistura amplizona Kottelat, 2000 is reported from the Luosuojiang River and Nanlahe River subbasins, Mekong basin; the prochilodontid Prochilodus lineatus (Valenciennes, 1837), the balitorid Vanmanenia serrilineata Kottelat, 2000, and the tetraodontid Monotrete turgidus Kottelat, 2000, from Nanlahe River subbasin, Mekong basin; the balitorid Beaufortia daon (Mai, 1978), and the belonid Xenentodon canciloides (Bleeker, 1854), both, from Black River subbasin, Red River basin. The freshwater puffer M. turgidus and the needlefish X. canciloides have been previously misidentified as Tetraodon leiurus (Bleeker, 1950) and Tylosurus strongylurus (van Hasselt, 1823), respectively. Keywords: New record; Misidentification; Mekong basin; Red River; Yunnan Yunnan Province is located in the Southwest within Chen et al in 1989, respectively 1990 for the second the People’s Republic of China. Its name refers to its volume, giving 226 species and subspecies accounts in location south of the Yunling Mountain range. It shares the first volume plus an additional 173 in the second. international border with Myanmar in the West and Through extensive fieldwork and re-evaluation of Southwest, with Laos and Vietnam in the South; national institutionally stored lots the number of Yunnanese fish borders with Xizang Autonomous Region to the species is growing (for e.g.
    [Show full text]
  • The Mitochondrial Genome of Spotted Green Pufferfish Tetraodon Nigroviridis
    Genes Genet. Syst. (2006) 81, p. 29–39 The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes Yusuke Yamanoue1*, Masaki Miya2, Jun G. Inoue1†, Keiichi Matsuura3, and Mutsumi Nishida1 1Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan 2Department of Zoology, Natural History Museum & Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba 260-8682, Japan 3Department of Zoology, National Science Museum, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan (Received 12 November 2005, accepted 19 December 2005) We determined the whole mitochondrial genome sequence for spotted green pufferfish, Tetraodon nigroviridis (Teleostei: Tetraodontiformes). The genome (16,488 bp) contained 37 genes (two ribosomal RNA genes, 22 transfer RNA genes, and 13 protein-coding genes) plus control region as found in other vertebrates, with the gene order identical to that of typical vertebrates. The sequence was used to estimate phylogenetic relationships and divergence times among major lin- eages of fishes, including representative model organisms in fishes. We employed partitioned Bayesian approaches for these two analyses using two datasets that comprised concatenated amino acid sequences from 12 protein-coding genes (excluding the ND6 gene) and concatenated nucleotide sequences from the 12 pro- tein-coding genes (without 3rd codon positions), 22 transfer RNA genes, and two ribosomal RNA genes. The resultant trees from the two datasets were well resolved and largely congruent with those from previous studies, with spotted green pufferfish being placed in a reasonable phylogenetic position. The approx- imate divergence times between spotted green pufferfish and model organisms in fishes were 85 million years ago (MYA) vs.
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • First Record for the Sunfish Mola Mola (Molidae: Tetradontiformes)
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(2): 563- 574 (2019) www.ejabf.journals.ekb.eg First record for the sunfish Mola mola (Molidae: Tetradontiformes) from the Egyptian coasts, Aqaba Gulf, Red Sea, with notes on morphometrics and levels of major skeletal components Mohamed A. Amer1*; Ahmed El-Sadek2; Ahmed Fathallah3; Hamdy A. Omar4 and Mohamed M. Eltoutou4 1-Faculty of Science, Zoology Dept., Marine Biology, Al-Azhar University, Cairo, Egypt. 2- Abu Galum Marine Protectorate Area, Nature Conservation Sector, EEAA, Egypt. 3- Egyptian Environmental Affairs Agency (EEAA), Alexandria Branch, Egypt. 4-National Institute of Oceanography and Fisheries, Alexandria, Egypt. * Corresponding author: [email protected] ARTICLE INFO ABSTRACT Article History: The sunfish Mola mola is recorded for the first time from the Egyptian Received:April 30, 2019 waters at Abu Galum Protectorate Area (South Sinai), Aqaba Gulf, Red Accepted: May 28, 2019 Sea. The present study conducted to give information on morphometric Online: June 3, 2019 characters, anatomy and levels of major elements in skull, vertebrae and _______________ paraxial parts of its skeletal system. These elements comprised Ca, P, Na, K, Mg, S, Cl, Zn and Cu and their levels were estimated. The results Keywords: exhibited that Ca and P were the main components in skull and were the Sunfish most dominant elements in paraxial skeleton in addition to remarkable Mola mola ratios of Na and Cl. Cu was detected with very low ratios only in paraxial Abu Galum skeleton parts. The annuli in examined vertebrae were counted and showed South Sinai that, this fish may be in its second age group.
    [Show full text]
  • Sensory Biology of Aquatic Animals
    Jelle Atema Richard R. Fay Arthur N. Popper William N. Tavolga Editors Sensory Biology of Aquatic Animals Springer-Verlag New York Berlin Heidelberg London Paris Tokyo JELLE ATEMA, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA Richard R. Fay, Parmly Hearing Institute, Loyola University, Chicago, Illinois 60626, USA ARTHUR N. POPPER, Department of Zoology, University of Maryland, College Park, MD 20742, USA WILLIAM N. TAVOLGA, Mote Marine Laboratory, Sarasota, Florida 33577, USA The cover Illustration is a reproduction of Figure 13.3, p. 343 of this volume Library of Congress Cataloging-in-Publication Data Sensory biology of aquatic animals. Papers based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held, June 24-28, 1985, at the Mote Marine Laboratory in Sarasota, Fla. Bibliography: p. Includes indexes. 1. Aquatic animals—Physiology—Congresses. 2. Senses and Sensation—Congresses. I. Atema, Jelle. II. International Conference on the Sensory Biology - . of Aquatic Animals (1985 : Sarasota, Fla.) QL120.S46 1987 591.92 87-9632 © 1988 by Springer-Verlag New York Inc. x —• All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of Information storage and retrieval, electronic adaptation, Computer Software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc.
    [Show full text]
  • First Documented Record of the Ocean Sunfish, Mola Mola
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2013 Band/Volume: NS_6_A Autor(en)/Author(s): Jawad Laith A. Artikel/Article: First documented record of the ocean sunfish, Mola mola (Linnaeus), from the Sea of Oman, Sultanate of Oman (Teleostei: Molidae) 287-290 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 6: 287–290; Stuttgart, 30.IV.2013 287 First documented record of the ocean sunfish, Mola mola (Linnaeus), from the Sea of Oman, Sultanate of Oman (Teleostei: Molidae) LAITH A. JAWAD Abstract The first assured record of the ocean sunfish, Mola mola (Linnaeus, 1758), in Omani waters is reported based on a specimen of 1350 mm total length which has stranded on the coast of Quriat City, 120 km north of Muscat, the capital of Oman. Morphometric and meristic data are provided and compared with those of several specimens of this species from other parts of the world. K e y w o r d s : Sea of Oman; Molidae; range extension. Zusammenfassung Der Mondfisch, Mola mola (Linnaeus, 1758), wird zum ersten Mal für Oman bestätigt. Der Nachweis basiert auf einem 1350 mm langen Exemplar, das an der Küste von Quriat City, 120 km nördlich der omanischen Hauptstadt Muscat gestrandet ist. Morphometrische und meristische Daten dieses Exemplares werden gegeben und mit einigen anderen Belegen weltweit verglichen. Contents 1 Introduction ...........................................................................................................................................................287
    [Show full text]
  • ERSS Glyptothorax Trilineatus
    Three-lined Catfish (Glyptothorax trilineatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, July 2017 Revised, February 2018 Web Version, 8/16/2018 Photo: Information Center, Chinese Academy of Fishery Sciences. Licensed under Creative Commons BY-NC. Available: http://eol.org/data_objects/20871530. (August 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “Asia: India, Myanmar, Nepal, Thailand and Laos. Reported from China [Chu and Mo 1999].” Status in the United States This species has not been reported in the United States. No evidence was found of trade in G. trilineatus in the United States. Means of Introductions in the United States Glyptothorax trilineatus has not been reported as introduced in the United States. Remarks Proper identification has been brought up as an issue along with a taxonomical synonym and brings into question range wide distribution. 1 From Vishwanath and Linthoingambi (2007): “Hitherto reports of G. trilineatus from India are due to misidentifications” From Eschmeyer et al. (2018): “trilineatoides, Glyptothorax[…] Synonym of Glyptothorax trilineatus Blyth 1860.” From Devi and Boguskaya (2009): “Common Name(s): English – Three-lined Catfish” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Siluriformes Family Sisoridae Genus Glyptothorax Species Glyptothorax trilineatus Blyth, 1860” “Current Standing: valid” Size, Weight, and Age Range From Froese and Pauly (2017): “Max length : 30.0 cm TL male/unsexed; [Menon 1999]” Environment From Froese and Pauly (2017): “Freshwater; benthopelagic; pH range: 6.0 - 7.2; dH range: ? - 10.
    [Show full text]