Visualization and Statistical Analysis of Brain Connectivity in Alzheimer's

Total Page:16

File Type:pdf, Size:1020Kb

Visualization and Statistical Analysis of Brain Connectivity in Alzheimer's BrainVis: Visualization and Statistical Analysis of Brain Connectivity in Alzheimer’s Disease Yuliya Plotka Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering Supervisors: Prof. Sandra Pereira Gama Prof. Hugo Alexandre Teixeira Duarte Ferreira Examination Committee Chairperson: Prof. Jose´ Carlos Alves Pereira Monteiro Supervisor: Prof. Sandra Pereira Gama Member of the Committee: Prof. Hugo Miguel Aleixo Albuquerque Nicolau October 2018 Acknowledgments Is this real life? Thank you, Acknowledgments section, for existing. You gave me a great amount of motivation because writing you means one more stage of my life is done, which, now that I think about it, gives me a bittersweet feeling. Thank you, prof. Sandra Gama for all the help and feedback. Thank you, prof. Hugo Ferreira and IBEB for providing the data for the development of this work, and for the feedback. Thank you, Tecnico,´ for the opportunity you gave me to grow, to expand my horizons, to discover beautiful Lisbon and most importantly, to meet wonderful human beings. Our love-hate relationship will never end as I will constantly remember you while plucking my emerging white hairs. Thank you, Climber & Climber Mafia, for showing me the world of professional work in an outstanding way. To trust in me and to teach me, patiently, and to drive me to thrive every day. To lead me to meet unforgettable people. Ricardo, thank you for being the most intellectually energetic person (? - not sure about this) I know, for making me see that nothing is impossible and that anyone can learn anything. Mario,´ thank you for waking my love for mountains and to being a living legend. Cruzinha, thank you for being a great friend. Thank you for your craziness, for all the adventures, for being an amazing person, the biggest cat lover, and for buying all my bikes. Thank you Filipe F., Daniela, Carlos, and everyone I made group projects with. This opportunity of working with different people taught me to be more adaptable and helped me to prepare me for the real world, thank you for that. Thank you Gonc¸alo, Shima, Andre,´ Xico, Ricardo, Joao, Fred, Fabio,´ Durao,˜ and all the friends whom I met in LEIC and MEIC. You made all these past years much better. Andreia and Sara, thank you for all the companionship, the trips, the support and the nights out. You are amazing. Lucas, thank you for all the movie sessions, and for fighting for your dreams and never give up. You inspire me. Nicolau, Taniaˆ and Pedro, thank you for all the cycling adventures. Thank you for all the fun, uplifting mood and for helping me feed this passion. Pedro, thank you for always challenging the standards of knowledge. People like you change the world and inspire me. Inesˆ and Lucia,´ thank you for being my best friends for the last 10 years. I could not ask for better friends to grow up with. Thank you for teaching me that friendship is more important than pride. I will never forget you. Miguel Rosa, thank you for being there, especially in the dark moments in life. Thank you for all the cooking sessions. I promise I’ll pay you all the bets I lost, one day. Manel, thank you for all the mindfulness sessions. For all your teaching, for remembering me to always give unconditionally. For bringing me back to earth, when needed. For reassuring me that the happiest people in life are the simplest. Thank you, Ventura, Carol, Raquel, Gui, Bia, Ricardo, Valentin, for being great friends. For everything being the same even when we don’t see each other for months. With you, I feel at home. My parents, Svitlana and Stanislav, thank you for teaching me the value of sacrifice. For being great role models. For the unconditional love and support. For showing me that no matter the challenge, there’s always a way. Thank you for making lovely Portugal our home. I could never thank you enough. My brother, Sasha, thank you for being always there. My late cat, Maska, thank you for being a great companion for 15 years, and for making my nights warmer. The rest of my family, thank you all for your support, even living far away. Tiago, thank you for your spontaneity and for coming to Sanabria with me. Thank for your kindness, silliness, warmness, for taking care, for unconditional support, love, and for everything. Thank you for making my life a little bit better, every day. You inspire me to be a better person, every day. To each and every one of you - thank you. There will always be a special spot for you in my heart and my mind; well, unless I get Alzheimer’s, then entirely in my heart. ii Abstract Alzheimer’s disease is the most frequent cause of dementia in the western population. It is a neurode- generative disorder marked by a cognitive and behavioral impairment that significantly interferes with social and occupational functioning. There are many ways to obtain data from the brain, but it is very difficult to analyze it in text or tabular form because of the complex structure of the brain, having a very large number of regions. Three different connectivity metrics were used, for 114 regions of the brain. A tool using data visualization and statistical analysis was developed, aiming to analyze the brain data and its connectivity, in order to understand what are the relevant metrics and regions associated with Alzheimer’s disease. In the first phase, low-fidelity prototypes were developed aiming to understand the dimensions of the available data. Later, more useful idioms were generated, along with several statistical analysis tests, used to bring more useful insights. The interface contains four different screens, using several information visualizations techniques and additional results from the statistical tests, providing multiple discoveries, through analysis and interaction, of several groups of patients, in different stages of Alzheimer’s disease. To validate the system, usability tests were performed with users who validated the usability and utility of our solution. Keywords Alzheimer’s disease, Brain Connectivity, Information Visualization iii Contents 1 Introduction 1 1.1 Visualization of Brain Connectivity...............................3 1.2 Alzheimer’s disease.......................................3 1.3 Organization of the Document..................................4 2 Related Work 5 2.1 Brain Visualization Tools.....................................7 2.1.1 BrainNet Viewer.....................................7 2.1.2 Connectome Viewer Toolkit...............................9 2.1.3 NetworkCube....................................... 11 2.1.4 Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox......... 12 2.1.5 CortechsLabs....................................... 13 2.1.6 Assessa.......................................... 14 2.1.7 Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity... 15 2.2 Medical and Statistics Visualization Tools........................... 16 2.2.1 AnamneVis........................................ 17 2.2.2 Affinity........................................... 18 2.2.3 Similan.......................................... 19 2.2.4 DICON.......................................... 20 2.2.5 PhenoBlocks....................................... 21 2.2.6 PatternFinder....................................... 22 2.2.7 A rank-by-feature framework for interactive exploration of multidimensional data.. 23 2.3 Discussion............................................ 23 3 BrainVis 27 3.1 Requirements analysis...................................... 29 3.1.1 Instituto de Biof´ısica e Engenharia Biomedica´ ..................... 29 3.2 Data treatment and organization................................ 31 3.2.1 Original data structure.................................. 32 v 3.2.2 Data processing..................................... 33 3.3 Learning phase.......................................... 35 3.4 First prototype.......................................... 38 3.5 Functional prototype....................................... 40 3.5.1 User interface components............................... 40 3.5.1.A Distribution analysis.............................. 42 3.5.1.B Normality Test................................. 45 3.5.1.C Comparing Mean and Median........................ 46 3.5.1.D Correlation analysis.............................. 48 3.5.2 Statistical analysis.................................... 49 3.6 Tool selection and development environment......................... 53 3.6.1 Programming Language................................. 53 3.6.2 R packages........................................ 53 3.6.3 Shiny........................................... 55 3.6.4 External libraries..................................... 56 3.7 Architecture............................................ 57 4 Evaluation 59 4.1 Protocol.............................................. 61 4.2 Results.............................................. 62 4.3 Discussion............................................ 63 5 Conclusions and future work 67 A User testing - Presentation and Contextualization 75 B User testing - Available tasks 77 vi List of Figures 1.1 Representing space in functional connectivity graphs. [van der Flier and Scheltens, 2005]4 2.1 BrainNet Viewer [Xia et al., 2013]................................8 2.2 Connectome Viewer Toolkit [Gerhard et al., 2011]....................... 10 2.3 NetworkCube [Bach et al., 2015]................................ 11 2.4 MIBCA toolbox [Ribeiro et al., 2015].............................. 12 2.5 Neuroquant Hippocampal Asymmetry Report [CortechsLabs, 2018]...........
Recommended publications
  • Circular Representation of Human Cortical Networks for Subject and Population-Level Connectomic Visualization
    NeuroImage 60 (2012) 1340–1351 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Full Length Articles Circular representation of human cortical networks for subject and population-level connectomic visualization Andrei Irimia ⁎, Micah C. Chambers, Carinna M. Torgerson, John D. Van Horn Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 635 Charles E Young Drive South, Suite 225, Los Angeles, CA 90095, USA article info abstract Article history: Cortical network architecture has predominantly been investigated visually using graph theory representa- Received 13 September 2011 tions. In the context of human connectomics, such representations are not however always satisfactory Revised 19 January 2012 because canonical methods for vertex–edge relationship representation do not always offer optimal insight Accepted 20 January 2012 regarding functional and structural neural connectivity. This article introduces an innovative framework for Available online 28 January 2012 the depiction of human connectomics by employing a circular visualization method which is highly suitable to the exploration of central nervous system architecture. This type of representation, which we name a Keywords: ‘ ’ Connectomics connectogram , has the capability of classifying neuroconnectivity relationships intuitively and elegantly. A Cortical network multimodal protocol for MRI/DTI neuroimaging data acquisition is here combined with automatic image seg- DTI mentation to (1) extract cortical and non-cortical anatomical structures, (2) calculate associated volumetrics MRI and morphometrics, and (3) determine patient-specific connectivity profiles to generate subject-level and Neuroimaging population-level connectograms. The scalability of our approach is demonstrated for a population of 50 adults.
    [Show full text]
  • Progress and Challenges in Probing the Human Brain
    University of Pennsylvania ScholarlyCommons Neuroethics Publications Center for Neuroscience & Society 10-2015 Progress and Challenges in Probing the Human Brain Russell A. Poldrack Martha J. Farah University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/neuroethics_pubs Part of the Bioethics and Medical Ethics Commons, Neuroscience and Neurobiology Commons, and the Neurosciences Commons Recommended Citation Poldrack, R. A., & Farah, M. J. (2015). Progress and Challenges in Probing the Human Brain. Nature, 526 (7573), 371-379. http://dx.doi.org/10.1038/nature15692 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/neuroethics_pubs/136 For more information, please contact [email protected]. Progress and Challenges in Probing the Human Brain Abstract Perhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We begin with a consideration of different levels of description relevant to human neuroscience, from molecules to large-scale networks, and then review the methods that probe these levels and the ability of these methods to test hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for much of the recent growth of human neuroscience research. We briefly er view its inferential strengths and weaknesses and present examples of new analytic approaches that allow inferences beyond simple localization of psychological processes. Finally, we review the prospects for real-world applications and new scientific challenges for human neuroscience.
    [Show full text]
  • Evolutionary Expansion of Connectivity Between Multimodal Association Areas in the Human Brain Compared with Chimpanzees,” by Dirk Jan Ardesch, Lianne H
    Correction NEUROSCIENCE Correction for “Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees,” by Dirk Jan Ardesch, Lianne H. Scholtens, Longchuan Li, Todd M. Preuss, James K. Rilling, and Martijn P. van den Heuvel, which was first published March 18, 2019; 10.1073/pnas.1818512116 (Proc Natl Acad Sci USA 116:7101–7106). The authors wish to note the following: “No new MRI data were acquired for this study. All chimpanzee MRIs were obtained from a data archive of scans obtained prior to the 2015 implementation of US Fish and Wildlife Service and National Institutes of Health regulations governing research with chimpanzees. All the scans reported in this publication were completed by the end of 2012. All chimpanzee MRI scans are part of the National Chimpanzee Brain Resource (http://www.chimpanzeebrain.org).” Published under the PNAS license. Published online April 29, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1906107116 9680 | PNAS | May 7, 2019 | vol. 116 | no. 19 www.pnas.org Downloaded by guest on October 1, 2021 Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees Dirk Jan Ardescha, Lianne H. Scholtensa, Longchuan Lib, Todd M. Preussc,d,e, James K. Rillingc,d,f,g,h, and Martijn P. van den Heuvela,i,1 aConnectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands; bMarcus Autism Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30329; cYerkes National Primate Research Center, Emory University, Atlanta, GA 30329; dCenter for Translational Social Neuroscience, Emory University, Atlanta, GA 30329; eDepartment of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30307; fDepartment of Anthropology, Emory University, Atlanta, GA 30322; gSilvio O.
    [Show full text]
  • Acute Cognitive Deficits After Traumatic Brain Injury Predict Alzheimer's
    GeroScience (2020) 42:1411–1429 https://doi.org/10.1007/s11357-020-00245-6 ORIGINAL ARTICLE Acute cognitive deficits after traumatic brain injury predict Alzheimer’s disease-like degradation of the human default mode network Andrei Irimia & Alexander S. Maher & Nikhil N. Chaudhari & Nahian F. Chowdhury & Elliot B. Jacobs & the Alzheimer’s Disease Neuroimaging Initiative Received: 9 June 2020 /Accepted: 29 July 2020 /Published online: 2 August 2020 # American Aging Association 2020 Abstract Traumatic brain injury (TBI) and Alzheimer’s are leveraged to study the extent to which geriatric mild disease (AD) are prominent neurological conditions whose TBI(mTBI)canleadtoAD-like alteration of resting-state neural and cognitive commonalities are poorly understood. activity in the default mode network (DMN). This network The extent of TBI-related neurophysiological abnormali- is found to contain modules whose extent of AD-like, ties has been hypothesized to reflect AD-like neurodegen- posttraumatic degradation can be accurately prognosticat- eration because TBI can increase vulnerability to AD. ed based on the acute cognitive deficits of geriatric mTBI However, it remains challenging to prognosticate AD risk patients with cerebral microbleeds. Aside from establish- partly because the functional relationship between acute ing a predictive physiological association between geriatric posttraumatic sequelae and chronic AD-like degradation mTBI, cognitive impairment, and AD-like functional deg- remains elusive. Here, functional magnetic resonance im- radation, these findings advance the goal of acutely fore- aging (fMRI), network theory, and machine learning (ML) casting mTBI patients’ chronic deviations from normality along AD-like functional trajectories. The association of Andrei Irimia and Alexander S. Maher contributed equally to this geriatric mTBI with AD-like changes in functional brain work.
    [Show full text]
  • Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury
    Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Irimia, Andrei, Micah C. Chambers, Carinna M. Torgerson, Maria Filippou, David A. Hovda, Jeffry R. Alger, Guido Gerig, et al. 2012. Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury. Frontiers in Neurology 3:10. Published Version doi://10.3389/fneur.2012.00010 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8462352 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA METHODS ARTICLE published: 06 February 2012 doi: 10.3389/fneur.2012.00010 Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury Andrei Irimia1, Micah C. Chambers 1, Carinna M.Torgerson1, Maria Filippou 2, David A. Hovda2, Jeffry R. Alger 3, Guido Gerig 4, Arthur W.Toga1, Paul M. Vespa2, Ron Kikinis 5 and John D. Van Horn1* 1 Laboratory of Neuro Imaging, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA 2 Brain Injury Research Center, Departments of Neurology and Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA 3 Department of Radiology, David
    [Show full text]
  • White Matter Dissection and Structural Connectivity of the Human Vertical
    www.nature.com/scientificreports OPEN White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex Tatsuya Jitsuishi1, Seiichiro Hirono2, Tatsuya Yamamoto1,3, Keiko Kitajo1, Yasuo Iwadate2 & Atsushi Yamaguchi1* The vertical occipital fasciculus (VOF) is an association fber tract coursing vertically at the posterolateral corner of the brain. It is re-evaluated as a major fber tract to link the dorsal and ventral visual stream. Although previous tractography studies showed the VOF’s cortical projections fall in the dorsal and ventral visual areas, the post-mortem dissection study for the validation remains limited. First, to validate the previous tractography data, we here performed the white matter dissection in post-mortem brains and demonstrated the VOF’s fber bundles coursing between the V3A/B areas and the posterior fusiform gyrus. Secondly, we analyzed the VOF’s structural connectivity with difusion tractography to link vision-associated cortical areas of the HCP MMP1.0 atlas, an updated map of the human cerebral cortex. Based on the criteria the VOF courses laterally to the inferior longitudinal fasciculus (ILF) and craniocaudally at the posterolateral corner of the brain, we reconstructed the VOF’s fber tracts and found the widespread projections to the visual cortex. These fndings could suggest a crucial role of VOF in integrating visual information to link the broad visual cortex as well as in connecting the dual visual stream. Te VOF is the fber tract that courses vertically at the posterolateral corner of the brain. Te VOF was histori- cally described in monkey by Wernicke1 and then in human by Obersteiner2.
    [Show full text]
  • Disconnectome of the Migraine Brain: a “Connectopathy”
    Silvestro et al. The Journal of Headache and Pain (2021) 22:102 The Journal of Headache https://doi.org/10.1186/s10194-021-01315-6 and Pain RESEARCH ARTICLE Open Access Disconnectome of the migraine brain: a “connectopathy” model Marcello Silvestro1,2†, Alessandro Tessitore1,2†, Giuseppina Caiazzo1,2, Fabrizio Scotto di Clemente1,2,3, Francesca Trojsi1,2, Mario Cirillo1, Fabrizio Esposito1,2, Gioacchino Tedeschi1,2,3 and Antonio Russo1,2,3* Abstract Background: In the past decades a plethora of studies has been conducted to explore resting-state functional connectivity (RS-FC) of the brain networks in migraine with conflicting results probably due to the variability and susceptibility of signal fluctuations across the course of RS-FC scan. On the other hand, the structural substrates enabling the functional communications among the brain connectome, characterized by higher stability and reproducibility, have not been widely investigated in migraine by means of graph analysis approach. We hypothesize a rearrangement of the brain connectome with an increase of both strength and density of connections between cortical areas specifically involved in pain perception, processing and modulation in migraine patients. Moreover, such connectome rearrangement, inducing an imbalance between the competing parameters of network efficiency and segregation, may underpin a mismatch between energy resources and demand representing the neuronal correlate of the energetically dysfunctional migraine brain. Methods: We investigated, using diffusion-weighted MRI imaging tractography-based graph analysis, the graph- topological indices of the brain “connectome”, a set of grey matter regions (nodes) structurally connected by white matter paths (edges) in 94 patients with migraine without aura compared to 91 healthy controls.
    [Show full text]
  • Brain Mapping Using Neuroimaging
    pISSN 2287-5123·eISSN 2287-4445 https://doi.org/10.9729/AM.2016.46.4.179 Review Article Brain Mapping Using Neuroimaging Woo-Suk Tae1, Shin-Hyuk Kang1,2, Byung-Joo Ham1,3, Byung-Jo Kim1,4, Sung-Bom Pyun1,5,* 1Brain Convergence Research Center, Korea University, Seoul 02841, Korea 2Department of Neurosurgery, Korea University College of Medicine, Seoul 02841, Korea 3Department of Psychiatry, Korea University College of Medicine, Seoul 02841, Korea 4Department of Neurology, Korea University College of Medicine, Seoul 02841, Korea 5Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul 02841, Korea Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance *Correspondence to: imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent Pyun SB, neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness Tel: +82-2-920-6480 analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Fax: +82-2-929-9951 Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and E-mail: [email protected] independent component analysis for fMRI also will also be introduced. Received December 25, 2016 Revised December 28, 2016 Key Words: Brain connectome, Magnetic resonance imaging, Diffusion tensor imaging, Accepted December 28, 2016 Functional magnetic resonance imaging, Brain mapping INTRODUCTION Hu et al., 2016).
    [Show full text]
  • A Population-Based Atlas of the Macroscale Structural Connectome in the Human Brain
    bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted May 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Population-Based Atlas of the Macroscale Structural Connectome in the Human Brain Fang-Cheng Yeh1,2,*, Sandip Panesar1, David Fernandes1, Antonio Meola3, Masanori Yoshino4, Juan C Fernandez-Miranda1, Jean M. Vettel5,6,7, and Timothy Verstynen8,* 1Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA 3Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA 4Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan 5U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland, USA. 6Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA. 7University of Pennsylvania, Department of Bioengineering, Philadelphia, PA, USA 8Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pennsylvania, USA. *Correspondence to: Fang-Cheng Yeh, M.D. Ph.D. Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania Email: [email protected] Timothy D. Verstynen Ph.D. Department of Psychology and Center for the Neural Basis of Computation, Carnegie Mellon University Pittsburgh, PA, USA Email: [email protected] Key words: structural connectome, tractography atlas, connectogram, diffusion MRI bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted May 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Alterations in Reward Network Functional Connectivity Are Associated with Increased Food Addiction in Obese Individuals Soumya Ravichandran1, Ravi R
    www.nature.com/scientificreports OPEN Alterations in reward network functional connectivity are associated with increased food addiction in obese individuals Soumya Ravichandran1, Ravi R. Bhatt1,6, Bilal Pandit1, Vadim Osadchiy1,2, Anita Alaverdyan1, Priten Vora1, Jean Stains1,2,3, Bruce Nalibof1,2,3,4, Emeran A. Mayer1,2,3,4,5 & Arpana Gupta1,2,3,4* Functional neuroimaging studies in obesity have identifed alterations in the connectivity within the reward network leading to decreased homeostatic control of ingestive behavior. However, the neural mechanisms underlying sex diferences in the prevalence of food addiction in obesity is unknown. The aim of the study was to identify functional connectivity alterations associated with: (1) Food addiction, (2) Sex- diferences in food addiction, (3) Ingestive behaviors. 150 participants (females: N = 103, males: N = 47; food addiction: N = 40, no food addiction: N = 110) with high BMI ≥ 25 kg/m2 underwent functional resting state MRIs. Participants were administered the Yale Food Addiction Scale (YFAS), to determine diagnostic criteria for food addiction (YFAS Symptom Count ≥ 3 with clinically signifcant impairment or distress), and completed ingestive behavior questionnaires. Connectivity diferences were analyzed using a general linear model in the CONN Toolbox and images were segmented using the Schaefer 400, Harvard–Oxford Subcortical, and Ascending Arousal Network atlases. Signifcant connectivities and clinical variables were correlated. Statistical signifcance was corrected for multiple comparisons at q < .05. (1) Individuals with food addiction had greater connectivity between brainstem regions and the orbital frontal gyrus compared to individuals with no food addiction. (2) Females with food addiction had greater connectivity in the salience and emotional regulation networks and lowered connectivity between the default mode network and central executive network compared to males with food addiction.
    [Show full text]
  • Corticopallidal Connectome of the Globus Pallidus Externus in Humans: an Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography
    ORIGINAL RESEARCH FUNCTIONAL Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography X S.S. Grewal, X V.M. Holanda, and X E.H. Middlebrooks ABSTRACT BACKGROUND AND PURPOSE: Electrophysiologic abnormalities of the globus pallidus externus have been shown in several disease processes including Parkinson disease, dystonia, and Huntington disease. However, the connectivity, nuclear structure, and function of the globus pallidus externus are still not well-understood. Increasing evidence for the existence of direct corticopallidal connections chal- lenges traditional understanding of the connectivity of the globus pallidus externus; nevertheless, these corticopallidal connections have yet to be fully characterized in humans. The objective of this study was to assess the corticopallidal connections of the globus pallidus externus by means of probabilistic diffusion-weighted MR imaging tractography using high-resolution, multishell data. MATERIALS AND METHODS: Imaging data from the open-access Human Connectome Project data base were used to perform proba- bilistic tractography between the globus pallidus externus and the cerebral cortex using 34 distinct cortical regions. Group averages were calculated for normalized percentages of tracts reaching each of the cortical targets, and side-to-side comparison was made. RESULTS: Cortical connectivity was demonstrated between the globus pallidus externus and multiple cortical regions, including direct connection to putative sensorimotor, associative, and limbic areas. Connectivity patterns were not significantly different between the right and left hemispheres with the exception of the frontal pole, which showed a greater number of connections on the right (P ϭ .004). CONCLUSIONS: Our in vivo study of the human globus pallidus externus using probabilistic tractography supports the existence of extensive corticopallidal connections and a tripartite functional division, as found in animal studies.
    [Show full text]
  • Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology
    bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted January 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology Fang-Cheng Yeh1,2,*, Sandip Panesar1, David Fernandes1, Antonio Meola3, Masanori Yoshino4, Juan C Fernandez-Miranda1, Jean M. Vettel5,6,7, and Timothy Verstynen8,* 1Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA 3Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA 4Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan 5U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland, USA. 6Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA. 7University of Pennsylvania, Department of Bioengineering, Philadelphia, PA, USA 8Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pennsylvania, USA. *Correspondence to: Fang-Cheng Yeh, M.D. Ph.D. Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania Email: [email protected] Timothy D. Verstynen Ph.D. Department of Psychology and Center for the Neural Basis of Computation, Carnegie Mellon University Pittsburgh, PA, USA Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/136473; this version posted January 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]