PUBLICATIONS Global Biogeochemical Cycles RESEARCH ARTICLE Terrestrial pyrogenic carbon export to fluvial ecosystems: 10.1002/2015GB005095 Lessons learned from the White Nile watershed of East Africa Key Points: David T. Güereña1, Johannes Lehmann1,2,ToddWalter3, Akio Enders1, Henry Neufeldt4, • PyC was not preferentially eroded 4 4 5 4 4 relative to total organic C Holiance Odiwour ,HenryBiwott,JohnRecha, Keith Shepherd , Edmundo Barrios , 6,7 • PyC concentrations in base flow were and Chris Wurster correlated with subsoil PyC contents • Coupling of PyC and non-PyC in 1Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, USA, 2Atkinson Center for a Sustainable Future, streams may result from similar Cornell University, Ithaca, New York, USA, 3Department of Biological and Environmental Engineering, Cornell University, terrestrial pathways Ithaca, New York, USA, 4World Agroforestry Centre (ICRAF), Nairobi, Kenya, 5The International Livestock Research Institute, Nairobi, Kenya, 6College of Science, Technology and Engineering, James Cook University, Townsville, Queensland, Australia, Supporting Information: 7Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Townsville, Queensland, Australia • Tables S1–S5 and Figures S1–S8 Correspondence to: Abstract Pyrogenic carbon (PyC) is important because of its role in the global organic C (OC) cycle and in J. Lehmann, modifying soil properties. However, our understanding of PyC movement from terrestrial to fluvial ecosystems
[email protected] is not robust. This study examined (i) whether erosion or subsurface transport was more important for PyC export from headwaters, (ii) whether PyC was exported preferentially to total OC (TOC), and (iii) whether the movement Citation: of PyC from terrestrial to aquatic ecosystems provides an explanation for the coupling of PyC and non-PyC Güereña, D.