Dental Materials Journal 2017; 36(6): 706–713 Synthesized mesoporous silica and calcium aluminate cement fillers increased the fluoride recharge and lactic acid neutralizing ability of a resin-based pit and fissure sealant Atikom SURINTANASARN1, Krisana SIRALERTMUKUL2 and Niyom THAMRONGANANSKUL1 1 Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand 2 Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chulalongkorn 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand Corresponding author, Niyom THAMRONGANANSKUL; E-mail:
[email protected] This study evaluated the effect of different types of filler in a resin-based pit and fissure sealant on fluoride release, recharge, and lactic acid neutralization. Resin-based sealant was incorporated with 5% w/w of the following fillers: calcium aluminate cement (CAC), synthesized mesoporous silica (SI), a CAC and SI mixture (CAC+SI), glass-ionomer powder (GIC), and acetic acid-treated GIC (GICA). Sealant without filler served as control. The samples were immersed in deionized water or a lactic acid solution and the concentration of fluoride in the water, before and after fluoride recharge, and the lactic acid pH change, respectively, were determined. The CAC+SI group demonstrated the highest fluoride release after being recharged with fluoride gel. The CAC+SI group also demonstrated increased lactic acid pH. These findings suggest that a resin-based sealant containing synthesized mesoporous silica and calcium aluminate cement may enhance remineralization due to fluoride release and higher pH. Keywords: Calcium aluminate cement, Fluoride recharge, Fluoride release, Mesoporous silica, Pit and fissure sealant empty channels can absorb and encapsulate relatively INTRODUCTION large amounts of molecules11).