Stabilization of Soils with Lime and Sodium Silicate Harold Bernard Ellis Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sodium Silicate Crops
Sodium Silicate Crops 1 Identification of Petitioned Substance 2 3 Chemical Names: CAS Numbers: 4 Sodium Silicate 1344-09-8 5 6 Other Name: Other Codes: 7 Sodium metasilicate; Sodium silicate glass; EPA PC code: 072603 (NLM, 2011a); European 8 Sodium water glass; Silicic acid, sodium salt; Inventory of Existing Commercial Chemical 9 tetrasodium orthosilicate (IPCS, 2004) Substances (EINECS) Number: 215-687-4 (IPCS, 10 2004) 11 Trade Names: 12 Waterglass, Britesil, Sikalon, Silican, Carsil, 13 Dryseq, Sodium siloconate, Star, Soluble glass, 14 Sodium polysilicate (NLM, 2011a), N® - PQ 15 Corporation (OMRI, 2011) 16 Characterization of Petitioned Substance 17 18 Composition of the Substance: 19 The basic formula of sodium silicate is Na2O· nO2Si, which represents the components of silicon dioxide (SiO2) 20 and sodium oxide (Na2O) and the varying ratios of the two in the various formulations. This ratio is commonly 21 called the molar ratio (MR), which can range from 0.5 to 4.0 for sodium silicates and varies depending on the 22 composition of the specific sodium silicate. The structural formulas of these silicates are also variable and can be 23 complex, depending on the formulation, but generally do not have distinct molecular structures (IPCS, 2004). 24 The basic structure of soluble silicates, including sodium and potassium silicates, is a trigonal planar 25 arrangement of oxygen atoms around a central silicon atom, as depicted in Figure 1 below. Physical and 26 chemical properties of sodium silicate are summarized in Table 1, on page 2. 27 28 29 30 31 32 33 34 35 Figure 1: Chemical Structure of Sodium Silicate (NLM, 2011a) 36 37 Specific Uses of the Substance: 38 39 Sodium silicate and other soluble silicates have been used in many industries since the early 19th century. -
Optical Spectroscopy of Sodium Silicate Glasses
Processing and Application of Ceramics 7 [3] (2013) 117–121 DOI: 10.2298/PAC1303117M Optical spectroscopy of sodium silicate glasses prepared with nano- and micro-sized iron oxide particles Behzad Mehdikhani1,2,*, Gholam Hossein Borhani2 1Standard Research Institute, Building and Construction Department, Karaj, Iran 2Malek-e-ashtar University of Technology, Department of Materials Engineering, Isfahan, Iran Received 4 June 2013; received in revised form 27 July 2013; received in revised form 4 September 2013; accepted 7 September 2013 Abstract Wet chemical analysis and UV-VIS spectroscopy methods were used to determine the oxidation state of iron in Na2O·2SiO2 glasses, containing 0.3 mol% of Fe2O3 . The oxidation state of iron in the sodium silicate glasses was varied by changing the size of iron oxide particles used for preparation of glass batches and the melting temperature. In sodium silicate glasses iron commonly exists as an equilibrium mixture of ferrous ions, Fe2+, and ferric ions Fe3+. The increase of the melting temperature led to the transformation of ferric ions to ferrous ions. It was also shown that in the glasses prepared from nano-sized iron oxide particles the Fe2+/Fe3+ equilib- rium ratio is lower (i.e. smaller amount of ferrous ions were formed) comparing to that in the glasses prepared from micro-sized iron oxide particles. Keywords: sodium silicate glass, iron oxide, UV-VIS spectroscopy, wet chemical analysis I. Introduction tant in adjusting the transmittance of glass in the wave- Iron in glasses exists as equilibrium between the yel- length regions of UV, visible light and IR [6]. The pres- low ferric ion, Fe3+, and the blue ferrous ion, Fe2+. -
Effect of Mgo Additive on Volumetric Expansion of Self-Degradable
Effect of MgO Additive on Volumetric Expansion ofSelf-degradable Cements Prepared for The U.S. Department of Energy Energy Efficiency and Renewable Energy Geothermal Technologies Program 1000 Independence Avenue SW Washington, D.C. 20585 Prepared hy Toshifumi Sugama, John Warren, and Thomas Butcher Sustainable Energy Technologies Department Brookhaven National Laboratory Upton, NY 11973-5000 Septemher 2011 Notice: This manuscript has been authored by employee of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH t0886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non.exclusjv~ paid-up, irrevocable, world·wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. DISCLAIMER This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. -
The Conversion of Wollastonite to Caco3 Considering Its Use for CCS Application As Cementitious Material
applied sciences Article The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material Kristoff Svensson *, Andreas Neumann, Flora Feitosa Menezes, Christof Lempp and Herbert Pöllmann Institute for Geosciences and Geography, Martin-Luther-University of Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany; [email protected] (A.N.); fl[email protected] (F.F.M.); [email protected] (C.L.); [email protected] (H.P.) * Correspondence: [email protected]; Tel.: +49-345-55-26138 Received: 21 December 2017; Accepted: 8 February 2018; Published: 20 February 2018 Featured Application: Building materials and CCS. Abstract: The reaction of wollastonite (CaSiO3) with CO2 in the presence of aqueous solutions (H2O) and varied temperature conditions (296 K, 323 K, and 333 K) was investigated. The educts (CaSiO3) and the products (CaCO3 and SiO2) were analyzed by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry with thermogravimetry coupled with a mass spectrometer and infrared spectrometer (DSC-TG/MS/IR). The reaction rate increased significantly at higher temperatures and seemed less dependent on applied pressure. It could be shown that under the defined conditions wollastonite can be applied as a cementitious material for sealing wells considering CCS applications, because after 24 h the degree of conversion from CaSiO3 to CaCO3 at 333 K was very high (>90%). As anticipated, the most likely application of wollastonite as a cementitious material in CCS would be for sealing the well after injection of CO2 in the reservoir. -
Effects of Adding Silica Particles on Certain Properties of Resin‑Modified Glass‑Ionomer Cement
Published online: 2019-09-23 Original Article Effects of adding silica particles on certain properties of resin‑modified glass‑ionomer cement Nayef H. Felemban1, Mohamed I. Ebrahim2 1Department of Orthodontics, Faculty of Dentistry, Taif University, Taif, Saudi Arabia, Correspondence: Dr. Nayef H. Felemban 2Department Restorative Dentistry, Faculty of Dentistry, Email: [email protected] Taif University, Taif, Saudi Arabia ABSTRACT Objective: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin‑modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. Materials and Methods: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight) were used. One hundred and twenty specimens were fabricated for measuring microleakage, compressive strength, tensile strength, water sorption, and solubility. Statistical Analysis: One-way analysis of variance and Tukey’s tests were used for measuring significance between means where P ≤ 0.05. Results: RMGIC specimens without any additives showed significantly highest microleakage and lowest compressive and tensile strengths. Conclusion: Silica particles added to RMGIC have the potential as a reliable restorative material with increased compressive strength, tensile strength, and water sorption but decreased microleakage and water solubility. Key words: Class V, glass-ionomer, microleakage, silica particle, teeth restoration INTRODUCTION acquire chemical adhesion and antibacterial properties from GICs, but from resin composites, RMGICs Incorporation of photopolymerizable components into acquire many properties such as setting behavior, conventional acid‑base mixture leads to formation of good mechanical properties, and wear resistance.[2] hybrid materials named resin‑modified glass ionomer. -
Product Stewardship Summary Liquid Sodium Silicates
Product Stewardship Summary Liquid Sodium Silicates Summary Sodium silicates serve a wide range of end use markets, including soaps and detergents, pulp and paper, paint and pigments, catalysts, and metal cleaning. 1. Chemical Identity Name: Sodium Silicate Chemical Abstracts Service (CAS) number: 1344-09-8 Sodium silicate is the generic name for a series of compounds derived from soluble sodium silicate glasses. These materials are aqueous liquids containing sodium oxide (Na2O) and silicon dioxide (SiO2) in various ratios. Varying the amount of SiO2 and Na2O gives solutions having differing properties and diverse industrial applications. 2. Production Sodium silicate glass is made by fusing high purity silica sand and soda ash in open hearth furnaces at 1300°C. The molten glass is cooled, fractured, and dissolved under pressure with hot water and steam. OxyChem is a leading manufacturer of sodium silicates and operates facilities in Augusta, GA; Chicago, IL; Cincinnati, OH; Dallas, TX; and Mobile, AL. 3. Uses Sodium Silicates are used in a wide variety of applications. Some of the principle uses are summarized in this section. Detergents & Soaps Many detergent operations are performed with sodium silicates. Such operations range from metal cleaning and textile processing to washing laundry, dishes, dairy equipment, bottles, floors, and automobiles. Silicates are incorporated in synthetic detergent compositions to control corrosion and minimize alkali attack. Without silicates, many synthetic detergent compositions would be corrosive to aluminum, zinc, and certain metal alloy parts in washers. They may also attack porcelain enamel and overglaze fine china decorations. Adhesives and Cements Liquid sodium silicates are widely used as adhesives in making fiber drums, paper tubes, and other materials. -
Synthesized Mesoporous Silica and Calcium Aluminate Cement Fillers
Dental Materials Journal 2017; 36(6): 706–713 Synthesized mesoporous silica and calcium aluminate cement fillers increased the fluoride recharge and lactic acid neutralizing ability of a resin-based pit and fissure sealant Atikom SURINTANASARN1, Krisana SIRALERTMUKUL2 and Niyom THAMRONGANANSKUL1 1 Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand 2 Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chulalongkorn 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand Corresponding author, Niyom THAMRONGANANSKUL; E-mail: [email protected] This study evaluated the effect of different types of filler in a resin-based pit and fissure sealant on fluoride release, recharge, and lactic acid neutralization. Resin-based sealant was incorporated with 5% w/w of the following fillers: calcium aluminate cement (CAC), synthesized mesoporous silica (SI), a CAC and SI mixture (CAC+SI), glass-ionomer powder (GIC), and acetic acid-treated GIC (GICA). Sealant without filler served as control. The samples were immersed in deionized water or a lactic acid solution and the concentration of fluoride in the water, before and after fluoride recharge, and the lactic acid pH change, respectively, were determined. The CAC+SI group demonstrated the highest fluoride release after being recharged with fluoride gel. The CAC+SI group also demonstrated increased lactic acid pH. These findings suggest that a resin-based sealant containing synthesized mesoporous silica and calcium aluminate cement may enhance remineralization due to fluoride release and higher pH. Keywords: Calcium aluminate cement, Fluoride recharge, Fluoride release, Mesoporous silica, Pit and fissure sealant empty channels can absorb and encapsulate relatively INTRODUCTION large amounts of molecules11). -
The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol
TECHNICAL BULLETIN No. 53 JUNE 1963 The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol N. H. MONTEITH and G. DONALD SHERMAN HAWAII AGRICULTURAL EXPERIMENT STATION, UNIVERSITY OF HAWAII The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol N. H. MONTEITH and G. DONALD SHERMAN UNIVERSITY OF HAWAII COLLEGE OF TROPICAL AGRICULTURE HAWAII AGRICULTURAL EXPERIMENT STATION HONOLULU, H AWAII J UNE 1963 T ECIINICAL B ULLETIN No. 53 ACKNOWLEDGMENT The authors gra tcfully acknow ledge the assistance of the staff of th e Experiment Station of the H awaii an Sugar Planters' Association in pro viding greenhouse, photographic, and laboratory facilities, and for advice on sta tistical and analytical methods. Research funds on this proj ect were pro vid ed by the Hawaiian Sugar Planters' Association Experiment Station under a coope rative research agreemcnt with the Department of Agronomy and Soil Science. Funds and materials we re also provided by the Tenn essee Valley Authority, Contract No. TV21132A. THE AUTHORS N. H. MONTEITH was In structor in Agricultur e, University of Hawaii, 1961-1962. DR. G. DONALD SHERMAN, Associate Director of the Hawaii Agricultural Experiment Station, is Senior Soil Scientist at the Hawaii Agricultural Ex periment Station and Senior Professor of Soil Science, University of Hawaii. CONTENTS PAGE INTRODUcrION 5 LITERAT UHE REVIEW 5 Effect of Calcium Carbonate on Phosphorus Availability 5 Effect of Calcium Carbonate on Other Factors 7 Effect of Calcium Silicate on Phosphorus Availability 8 Effect of Calcium Silicate on Other Factors 8 EXPEmMENTAL PROCEDUHES 9 Soils . -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
Sodium Silicate Solution 1
MSDS Number: S4982 * * * * * Effective Date: 03/30/11 * * * * * Supercedes: 09/23/09 Sodium Silicate Solution 1. Product Identification Synonyms: Water Glass; Soluble Glass; Silicate of Soda; Egg Preserver CAS No.: Not applicable to mixtures. Molecular Weight: Not applicable to mixtures. Chemical Formula: Na2O(SiO2)x.(H2O)x Product Codes: 3877 2. Composition/Information on Ingredients Ingredient CAS No Percent Hazardous --------------------------------------- ------------ ------------ --------- Sodium Silicate 1344-09-8 35 - 40% Yes Water 7732-18-5 60 - 65% No 3. Hazards Identification Emergency Overview -------------------------- WARNING! HARMFUL IF SWALLOWED OR INHALED. CAUSES SEVERE IRRITATION TO EYES, SKIN AND RESPIRATORY TRACT. SAF-T-DATA(tm) Ratings (Provided here for your convenience) ----------------------------------------------------------------------------------------------------------- Health Rating: 2 - Moderate Flammability Rating: 1 - Slight Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: Green (General Storage) ----------------------------------------------------------------------------------------------------------- Potential Health Effects ---------------------------------- Diluted solutions of sodium silicate are strong alkaline irritants. The solid sodium silicate is corrosive. Exposure to alkaline corrosives may result in severe burns depending on the concentration and duration of exposure. Sodium silicate -
Ep 1112960 A1
Europäisches Patentamt *EP001112960A1* (19) European Patent Office Office européen des brevets (11) EP 1 112 960 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: C01F 7/00, C01B 33/38, 04.07.2001 Bulletin 2001/27 C07C 51/41, C07C 53/126, C01B 25/45, C09K 5/14, (21) Application number: 00944340.9 C08K 3/18, C08K 5/098, (22) Date of filing: 07.07.2000 B01J 41/08, B01J 41/10 (86) International application number: PCT/JP00/04554 (87) International publication number: WO 01/04053 (18.01.2001 Gazette 2001/03) (84) Designated Contracting States: • Igarashi, Hiroshi AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Mizusawa Industrial Chem., Ltd. MC NL PT SE Tokyo 103-0022 (JP) Designated Extension States: • Kondo, Masami AL LT LV MK RO SI Mizusawa Industrial Chemicals, Ltd. Tokyo 103-0022 (JP) (30) Priority: 08.07.1999 JP 19511799 • Minagawa, Madoka Mizusawa Industrial Chem., Ltd. (71) Applicant: Mizusawa Industrial Chemicals Ltd. Tokyo 103-0022 (JP) Tokyo 103-0022 (JP) • Sato, Tetsu Mizusawa Industrial Chemicals, Ltd. Tokyo 103-0022 (JP) (72) Inventors: • Sato, Teiji Mizusawa Industrial Chemicals, Ltd. • Komatsu, Yoshinobu Tokyo 103-0022 (JP) Mizusawa Industrial Chem. Ltd. Tokyo 103-0022 (JP) (74) Representative: Benson, John Everett • Ishida, Hitoshi J. A. Kemp & Co., Mizusawa Industrial Chemicals, Ltd 14 South Square, Tokyo 103-0022 (JP) Gray’s Inn London WC1R 5JJ (GB) (54) COMPOSITE POLYBASIC SALT, PROCESS FOR PRODUCING THE SAME, AND USE (57) A composite metal polybasic salt containing a trivalent metal and magnesium as metal components and having a novel crystal structure, and a method of preparing the same. -
The Effect of Sodium Silicate on the Behaviour of Shotcretes for Tunnel Lining
Journal of Scientific Research & Reports 14(2): 1-8, 2017; Article no.JSRR.33641 ISSN: 2320-0227 SCIENCEDOMAIN international www.sciencedomain.org The Effect of Sodium Silicate on the Behaviour of Shotcretes for Tunnel Lining Luigi Coppola1, Alessandra Buoso1, Denny Coffetti1, Patricia Kara2*, Sergio Lorenzi1 and Franco D’Alessandro3 1DISA, University of Bergamo, Dalmine (BG), Italy. 2EMIB, Faculty of Applied Engineering, University of Antwerp, Belgium. 3BASF C.C. Underground Construction, Treviso (TV), Italy. Authors’ contributions This work was carried out in collaboration between all authors. Author LC designed the study. Authors AB, DC and FDA performed the statistical analysis and wrote the protocol. Authors PK and SL managed the analyses of the study, the literature searches, wrote the first draft of the manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JSRR/2017/33641 Editor(s): (1) Luigi dell'Olio, School of Civil Engineering, Channels and Ports, University of Cantabria, Cantabria, Spain. (2) Luigi Rodino, Professor of Mathematical Analysis, Dipartimento di Matematica, Università di Torino, Italy. Reviewers: (2) Halil Görgün, Dicle University, Turkey. (3) Leo Baldenegro, Center of Engineering and Industrial Development, Mexico. Complete Peer review History: http://www.sciencedomain.org/review-history/19001 Received 24th April 2017 th Case Study Accepted 4 May 2017 Published 10th May 2017 ABSTRACT Present case study investigates the rheological, mechanical and in-placing performances of fiber- reinforced shotcrete manufactured with different fibers (steel, glass and polypropylene) and with sodium silicate based set-accelerating admixture for tunnel linings. The study compares the performances of concretes manufactured and fully compacted with those shotcretes which are manufactured directly on the job-site.