Signature Redacted Signature of Author
Total Page:16
File Type:pdf, Size:1020Kb
Development of Sodium Silicate Adhesives for Electrical Steel Bonding by Jordan Marks Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the iASACHUSETTS WSTIN9, TECHNOLOGY Massachusetts Institute of Technology JUN 0 4 2014 June 2014 LIBRARIES ©2014 Marks All Rights Reserved The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Signature of Author ............................................... J dan Marks Department of Materials Science and ngineering 2 May 2014 Signature redacted C ertified by ............................................ A7homas Eagar Professor of Materials Science and Engineering Thesis Supervisor Accepted by ........................................... Signature redacted V I V/ Professor Jeffrey C. Grossman Undergraduate Committee Chairman Development of Sodium Silicate Adhesives for Electrical Steel Bonding by Jordan Marks Submitted to the Department of Materials Science and Engineering on 2 May 2014 in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Materials Science and Engineering ABSTRACT Inorganic adhesives have several benefits over traditional joining methods for joining electrical steels used in magnetic cores of numerous industrial applications. As insulators with very high melting temperatures, the adhesives offer the possibility of increasing the efficiency of these machines. The aim of this project was to characterize sodium silicates as adhesives for such applications and develop methodology for their processing. The chemical and physical properties of the water-soluble sodium silicates were easily altered by changing the composition of Na2O, Si0 4, and water, offering a spectrum of properties to investigate. Several aspects of the electrical steel provided by POSCO were also investigated, including surface chemistry and microstructure due to processing of the steel sheets. Coating efficacy was evaluated based on the adhesive's ability to wet the substrate to form a uniform coating, as well as resistance to mechanical loads, including adhesion and flexural strain. Greater degree of alkalinity in the sodium silicates resulted in improved wetting, uniformity, adhesion, and flexural strain for the range of viscosities that supported these behaviors. The microstructure of the electrical steels influenced the interaction of the adhesive with the surface, but properties still improved with higher alkalinity. Firing parameters were used to alter the mechanical properties of the silicates, as well as to determine operability limits. The best mechanical properties occurred for those coupons fired between 600'C and 800*C. The efficacy did not degrade significantly with long exposure to high temperatures, offering promise for sodium orthosilicates as appropriate adhesives for the described applications. Further study of the environmental conditions under which the adhesives will be used, as well as full characterization of the insulating properties will allow the processes developed here to be scaled up for industrial use. Thesis Supervisor: Thomas Eagar Title: Professor of Materials Science and Engineering 2 Table of Contents 1. Introduction ............................................................................................................................. 5 1.1. Project M otivation and Background ............................................................................ 5 2. Theoretical Background ....................................................................................................... 7 2.1. Adhesion Fundam entals................................................................................................ 7 2.2. Adhesive Joint Design................................................................................................... 9 2.2.1. W ettability........................................................................................................... 10 2.2.2. Coating Unifom ity.............................................................................................. 10 2.2.3. Solidification to Increase Viscosity ..................................................................... 11 2.2.4. Pore M inim ization .............................................................................................. 12 2.3. Sodium Silicates............................................................................................................. 12 2.3.1. Inorganic Adhesives............................................................................................ 12 2.3.2. Sodium Silicates...................................................................................................... 12 2.4. Desired properties ....................................................................................................... 14 3. M ethods................................................................................................................................. 15 3.1. Coating W etting and Uniform ity................................................................................ 15 3.1.1. W etting .................................................................................................................... 15 3.1.2. Coating Application............................................................................................ 16 3.2. Processing Param eters................................................................................................. 16 3.2.1. Verification of Uniform ity.................................................................................. 17 3.3. M echanical Properties................................................................................................ 18 3.3.1. Cross Hatch Adhesion Tests............................................................................... 18 3.3.2. M andrel Tests...................................................................................................... 19 3.3.3. Three-Point Bending Tests ................................................................................. 19 3.4. Description of System s Tested.................................................................................... 20 4. Results and Analysis.......................................................................................................... 21 4.1. Contact Angle M easurem ents .................................................................................... 21 4.1.1. Degree of Alkalinity ........................................................................................... 22 4.1.2. Surface M orphology Effects ............................................................................... 23 4.1.3. Relative Surface Energies.................................................................................... 26 4.1.4. Analysis of Sessile Drop Method ........................................................................ 27 4.2. M icrostructure and adhesion ....................................................................................... 29 4.3. M echanical Tests........................................................................................................ 35 4.3.1. M andrel Tests...................................................................................................... 35 4.3.2. Three-Point Bending Tests ................................................................................. 37 4.3.3. Failure m odes...................................................................................................... 39 5. D iscussion and Conclusions.............................................................................................. 41 5. 1. Discussion: Sodium Silicates as Adhesives ................................................................... 41 5.2. Future W ork ................................................................................................................... 42 6. Biographical N otes............................................................................................................ 44 7. Acknow ledgm ents ............................................................................................................ 45 8. References ............................................................................................................................. 46 9. Appendix A ............................................................................................................................ 47 9.1. Developm ent of a Driving Profile............................................................................... 47 9.2. Surface Roughness M easurem ents............................................................................. 47 3 Table of Figures Figure 1. Layers of electrical steel separated by insulating layers ............................................. 5 Figure 2. Surface Tension brings the substrates together when joined with an adhesive........... 7 Figure 3. Actual Contact area between rough surfaces is significantly reduced. ........................ 8 Figure 4. Contact Angle Measurements provide a good indication of surface wettability........ 10 Figure 5. Non-uniformity of the surface due to different chemical potentials ............................. 11 Figure 6. Surface roughness should be designed to minimize the chance of crack