Geochronological and Geochemical Constraints on the Origin of the Paleoproterozoic Union Island Group Mafic Magmatism, East Arm Basin, N.W.T

Total Page:16

File Type:pdf, Size:1020Kb

Geochronological and Geochemical Constraints on the Origin of the Paleoproterozoic Union Island Group Mafic Magmatism, East Arm Basin, N.W.T Geochronological and geochemical constraints on the origin of the Paleoproterozoic Union Island Group mafic magmatism, East Arm Basin, N.W.T. by Alex I-Fan Sheen A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Earth and Atmospheric Sciences University of Alberta © Alex I-Fan Sheen, 2017 ABSTRACT The Slave craton underwent widespread extension during the Paleoproterozoic. In the southern Slave craton, this extension is manifest in multiple periods of continental mafic magmatism emplaced between 2.3–2.2 Ga and prior to 2.0–1.9 Ga calc-alkaline magmatism of the Taltson and Thelon zones along the Slave-Rae boundary. During this time the East Arm basin of Great Slave Lake was formed and now preserves a protracted sedimentary and volcanic record along the southeastern margin of the Slave craton. Within the East Arm basin package, the Union Island Group represents voluminous mafic volcanism with subordinate interbedded carbonate/shale sedimentary strata. Previous stratigraphic interpretations posit that the ca. 1928 Ma Wilson Island Group is the base of the East Arm basin stratigraphy, and that the Union Island Group is younger. This relationship is however equivocal; the Wilson Island Group is structurally isolated, and new field observations indicate that the Union Island Group was deposited unconformably on Archean granitic basement, the latter considered to be derived from the nearby Slave craton. We report the first U–Pb baddeleyite crystallization age, 2042.7±3.0 Ma, for a diabase body which intrudes volcaniclastic horizons belonging to the Union Island Group lower basalt unit; the diabase intrusion is geochemically identical to flows of the lower basalt unit and is therefore interpreted as a feeder to these flows. The diabase crystallization age demonstrates that the Union Island Group is the oldest identified supracrustal package in the East Arm basin and that the East Arm basin is ~115 Myr older than previously thought. Our new stratigraphic interpretation is supported by detrital zircon provenance age distribution in two Union Island Group sedimentary samples. These detrital zircons are dominated by 2.76–2.56 Ga ages reflecting prominent input from the Archean basement. The youngest detrital zircons have ages indistinguishable from the emplacement age of the diabase. Zircon ages from the 1.9–2.0 Ga Taltson and Thelon magmatism, are absent from the ii Union Island Group sedimentary rocks while being prominent in all other strata of the East Arm basin; further confirming that the Union Island Group is the oldest strata in the East Arm basin. The Union Island Group contains two stratigraphically and geochemically distinct mafic volcanic packages. The lower magmatism is predominantly alkaline, is characterized by high enrichment levels of incompatible elements and a large compositional range (108–438 ppm Zr, 13–62 ppm Nb), and preserves an OIB-like chemical signature. The upper magmatism, in contrast, is tholeiitic, displays much lower levels of incompatible elements with a uniform composition (83–101 ppm Zr, 2–4 ppm Nb), and has a DM-like chemical signature. Both packages display overlapping depleted time-integrated εNd(i) values (+1.1 – +3.2). Petrological modeling suggests that the lower magmatism originated from interaction between upwelling asthenosphere and a depleted mantle reservoir; the upper magmatism was produced by decompression melting of the shallow mantle consisting mostly of the depleted reservoir. The petrogenesis established in this study is consistent with a continental rift origin for the Union Island Group magmatism and is further supported by geochemical similarities with Proterozoic and Phanerozoic rift successions. Combing geochronological and geochemical findings, we propose that the Union Island Group represents an incipient rift sequence during the ca. 2043 Ma rifting at the southern margin of the Slave craton. The proposed tectonic model is consistent with the break-up of the Slave craton from a pre-Laurentia supercontinent during the 2.23–2.01 Ga period. Our conclusions further suggest an intraplate origin for the Taltson and Thelon magmatism, and that the Slave craton and the Rae domain were a contiguous crustal unit as early as ca. 2043 Ma. iii PREFACE Research presented in this study is part of a larger project investigating the origin and evolution of the East Arm basin, a collaboration between the University of Alberta and the Northwest Territories Geological Survey. The unconformity between the Union Island Group and the Archean basement, shown in Fig. 2.4b, was discovered by L. Ootes and A. Bekker during additional fieldwork in the Union Island area. The photograph of the unconformity was taken by L. Ootes. Geochemical studies presented in this thesis include re-analysis of samples originally presented in the late Stephen Goff’s 1984 Ph.D. thesis, entitled The magmatic and metamorphic history of the East Arm of the Great Slave Lake, N.W.T. Standard materials WGB-1, TDB-1, and SY-2 were provided by Bruce Kjarsgaard at the Geological Survey of Canada. U–Pb purification of baddeleyite fractions #1 and #2 of sample LH14-27 was done by Dr. Larry Heaman, with ID-TIMS analysis conducted by James LeBlanc. U–Pb detrital zircon LA-ICPMS study of sample LH15-EA51 was conducted by Madisen Janzen as a research assistant under Dr. Larry Heaman; the detrital zircon study is included in this thesis with her consent. All ideas presented in this thesis are my own, although they have been developed through discussions with my supervisor, Dr. Larry Heaman. All writing and figures presented here are my own work. iv ACKNOWLEDGEMENTS Funding for this project was supported by the Polar Continental Shelf Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants Northern Research Supplements Program (RGPNS; Grant #444185, to L. Heaman). Additional funding was supported by the Canada Graduate Scholarship-Master's (CGS M) from NSERC, the Walter H. Johns Graduate Fellowship and Eugene Brody Graduate Scholarship from the University of Alberta, and the Graduate Student Scholarship from Student Aid Alberta. First and foremost, I would like to thank my supervisor Dr. Larry Heaman for the incomparable opportunity to explore the Precambrian puzzle and for his unfailing guidance and support over the past three years. His encouragement motivated me to explore beyond what was envisioned at the start of the project, learning with excitement the numerous facets of research in the process; the abundance of information included in this thesis—big and small—is a testament to this. Through relentless edits, comments, and discussions Larry has immensely helped me develop the skills to communicate academic research. I am equally grateful for his guidance during fieldwork and for the maxim that good research is one that uncovers more questions. Secondly, I would like to thank Luke Ootes for his fabulous mentorship in the field and for his far- reaching support in every aspect of the fieldwork and other parts of the project. Luke's wealth of knowledge in everything Slave (and beyond) helped me grasp the significance of our findings and realize, at the same time, how one craton alone holds far more wonders and mysteries than one could possibly ever comprehend. Luke has also provided valuable feedback and suggestions regarding figures in chapters 1 and 2. Also, we owe Luke a big one for locating the Union Island Group basal unconformity. I would also like to thank the Heaman geochronology research group for training me, formally or informally, on the various sample preparation and processing protocols: Barry Herchuk, for teaching me to keep things clean at all times and without whose reminder to rinse thoroughly I would never had recovered enough baddeleyite for dating; James LeBlanc, for helping me overcome the anxiety of remotely operating the large and delicate TIMS instrument; Madisen Janzen and Barry Shaulis, for everything zircon-related (and for being wonderful field v companions); Ilona Ranger and Stephanie Nichols, for heartwarming moral support and the odd mantle-related chit-chats. Robert Creaser and Chiranjeeb Sarkar provided laboratory training for the tracer isotope studies. Thank you also to the following people for other various training, analysis, and logistics associated with this project: Lisa Budney, Diane Caird, Andy DuFrane, Nathan Gerein, Marilyn Huff, Mark Labbe, Andrew Locock, Martin von Dollen, and Barbara Ziger. Extra shoutout to Shyra Craig for never being annoyed whenever I came to sign out the mill room keys. Bruce Kjarsgaard of the GSC provided valuable mentorship during fieldwork and in subsequent geochemical discussions. Other members of the field parties deserve a special thank you as well: Andrey Bekker, Jordan Burke, Murray Gingras, and Jesse Reimink. Thank you to my family for always being there for me. Many friends have also poured out unending moral support in high times and in low. As it would take another thesis just to thank you all, I will give special shoutouts to the following few: Ricky, for being the best ever roommate and my moral compass; Devon, for your perpetual optimism and humour; Mike, for your candid sincerity that I can only aspire to possess; and Megan and Joel, for all our musical escapades. And lastly—cheesy as it may sound—thank you to all the wonderful people I have met in Edmonton over the last three years. As a good friend puts it, hibernation is common during the long
Recommended publications
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • Detrital Zircon Provenance of North Gondwana Palaeozoic Sandstones from Saudi Arabia
    Geological Magazine Detrital zircon provenance of north Gondwana www.cambridge.org/geo Palaeozoic sandstones from Saudi Arabia Guido Meinhold1,2 , Alexander Bassis3,4, Matthias Hinderer3, Anna Lewin3 and Jasper Berndt5 Original Article 1School of Geography, Geology and the Environment, Keele University, Keele, Staffordshire, ST5 5BG, UK; Cite this article: Meinhold G, Bassis A, 2Abteilung Sedimentologie/Umweltgeologie, Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Hinderer M, Lewin A, and Berndt J (2021) Goldschmidtstraße 3, 37077 Göttingen, Germany; 3Institut für Angewandte Geowissenschaften, Technische Detrital zircon provenance of north Gondwana 4 Palaeozoic sandstones from Saudi Arabia. Universität Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany; Eurofins water&waste GmbH, 5 Geological Magazine 158:442–458. https:// Eumigweg 7, 2351 Wiener Neudorf, Austria and Institut für Mineralogie, Westfälische Wilhelms-Universität doi.org/10.1017/S0016756820000576 Münster, Corrensstraße 24, 48149 Münster, Germany Received: 12 February 2020 Abstract Revised: 18 May 2020 Accepted: 18 May 2020 We present the first comprehensive detrital zircon U–Pb age dataset from Palaeozoic sand- First published online: 24 June 2020 stones of Saudi Arabia, which provides new insights into the erosion history of the East African Orogen and sediment recycling in northern Gondwana. Five main age populations Keywords: U–Pb geochronology; sediment provenance; are present in varying amounts in the zircon age spectra, with age peaks at ~625 Ma, detrital zircon; Palaeozoic; north Gondwana; ~775 Ma, ~980 Ma, ~1840 Ma and ~2480 Ma. Mainly igneous rocks of the Arabian– Saudi Arabia Nubian Shield are suggested to be the most prominent sources for the Ediacaran to middle Tonian zircon grains. Palaeoproterozoic and Archaean grains may be xenocrystic zircons or Author for correspondence: Guido Meinhold, Email: [email protected] they have been recycled from older terrigenous sediment.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/08 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • Polar Bear Hunting: Three Areas \Vere Most Important for Hunting Was Less Mtensive South of Shaftesbury Inlet, Where Polar Bear
    1Ire8, whenever seen, most often when people • SlImmary: In compan on with othcr Kcc\\attn settlements. ibou or trappmg. the people of Chesterfield use a rclati\"cl) small arca of land. ÏlItt11iDl Hunting. 80th ringed and bearded seals Chesterfield is a small c1osc-knit seulement. and evcryone year rooud. In sommer people hunt along shares the land and game of the area. There is usually JnIet toParther Hope Point including Barbour suffieient supply of game nearby without their having to e coast from Whale Cove to Karmarvik Harbour, travel very far. Many people are also wage carners and are omiles mland. For mueh of the year people hunt Iimited to day and weekend hunting trips, exeept for holiday' 'h . d 1 oe èdge, which is usually three or four miles out ln t e spnng an summer. ement; however, the distance varies along The area most important to the people of Chesterfield is !'the pnncipal seal hunting season is spring, w en the mouth of the inlet. north along the coast from Cape the ice. At this time, too, young seals are hunted Silumiut to Daly Bay: and ülland to nearby caribou hunting lairs. The area from Baker Foreland to Bern­ and fishmg areas. ThiS rcglOn 15 nch ln gamc. and il COI1­ and along Chesterfield Inlet to Big Island is weil stitutes the traditional hunting ground for 1110st of the :Cape Silumiut area is extremely popular for week­ Chesterfield people. Il does not overlap with land cOJnmonly trips, and people often hunt atthe floe edge near used by any other seUlement, although people from Rankin t.
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • Active Operator Report 10-1-19.Xlsx
    Active Meals and Rentals Tax Operators by Business Name as of October 1, 2019 Street Street License Business Entity Address Address Number Name Name Line 1 Line 2 City 47099 #6 RIVER & PINES CONDOMINIUMS WATTS WILLIAM 16 OLD RTE BARTLETT 65349 @RINCHA EKAPORN SAKTANASET 80 CONTINENTAL BLVD UNIT B MERRIMACK 64271 10 FRANCIS STREET 10 FRANCIS STREET LLC 10 FRANCIS ST HAMPTON 59441 10 RIDGEWOOD POINT RENTAL BOB AND SHANNON KRIEGER 10 RIDGEWOOD POINT RD SUNAPEE 46386 100 CLUB 100 CLUB CONCEPTS INC 100 MARKET ST STE 500 PORTSMOUTH 61097 100 MILE MARKET 100 MILE MARKET LLC 35 PLEASANT STREET CLAREMONT 63081 1025 LACONIA ROAD LAURA JOHNSON 1025 LACONIA RD TILTON 53640 104 DINER THE THE 104 DINER INC 752 ROUTE 104 NEW HAMPTON 60862 106 HAMEL RD SUNAPEE N.H. RENTAL MARK & HOLLY ADAMY 106 HAMEL RD SUNAPEE 58932 107 PIERCE RD WHITEFIELD NH MICHAEL & KRISTEN HARVEY 107 PIERCE ROAD WHITEFIELD 27480 107 PIZZERIA & RESTAURANT FREMONT HOUSE OF PIZZA INC 431 MAIN ST FREMONT 59204 108 EXPRESS MINI MART 108 EXPRESS MINI MART INC 21 SOUTH MAIN ST NEWTON 64309 110 GRILL 110 GRILL ES MANCHESTER LLC 875 ELM STREET MANCHESTER 59490 110 GRILL 110 GRILL TWO LLC 27 TRAFALGAR SQUARE NASHUA 61812 110 GRILL 110 GRILL RM ROCHESTER LLC 136 MARKETPLACE BLVD ROCHESTER 63344 110 GRILL 110 GRILL SL STRATHAM LLC 19 PORTSMOUTH AVE STRATHAM 64876 110 GRILL 110 GRILL WLNH, LLC 250 N PLAINFIELD ROAD WEST LEBANON 64113 12 LAKE STREET 12 LAKE STREET, LLC 144 LAKE ST UNIT #12 LACONIA 62017 12 OCEAN GRILL ELI SOKORELIS 12 OCEAN BLVD SEABROOK 38298 12% SOLUTION HAMEL MICHAEL 994
    [Show full text]
  • POL Volume 2 Issue 16 Back Matter
    THE POLAR RECORD INDEX NUMBERS 9—16 JANUARY 1935—JULY 1938 PRINTED IN GREAT BRITAIN FOR THE SCOTT POLAR RESEARCH INSTITUTE CAMBRIDGE: AT THE UNIVERSITY PRESS 1939 THE POLAR RECORD INDEX Nos. 9-16 JANUARY 1935—JULY 1938 The names of ships are in italics. Expedition titles are listed separately at Uie end Aagaard, Bjarne, II. 112 Alazei Mountains, 15. 5 Abruzzi, Duke of, 15. 2 Alazei Plateau, 12. 125 Adams, Cdr. .1. B., 9. 72 Alazei River, 14. 95, 15. 6 Adams, M. B., 16. 71 Albert I Peninsula, 13. 22 Adderley, J. A., 16. 97 Albert Harbour, 14. 136 Adelaer, Cape, 11. 32 Alberta, 9. 50 Adelaide Island, 11. 99, 12. 102, 103, 13. Aldan, 11. 7 84, 14. 147 Aldinger, Dr H., 12. 138 Adelaide Peninsula, 14. 139 Alert, 11. 3 Admiralty Inlet, 13. 49, 14. 134, 15. 38 Aleutian Islands, 9. 40-47, 11. 71, 12. Advent Bay, 10. 81, 82, 11. 18, 13. 21, 128, 13. 52, 53, 14. 173, 15. 49, 16. 15. 4, 16. 79, 81 118 Adytcha, River, 14. 109 Aleutian Mountains, 13. 53 Aegyr, 13. 30 Alexander, Cape, 11. GO, 15. 40 Aerial Surveys, see Flights Alexander I Land, 12. 103, KM, 13. 85, Aerodrome Bay, II. 59 80, 14. 147, 1-19-152 Aeroplanes, 9. 20-30, 04, (i5-(>8, 10. 102, Alcxamtrov, —, 13. 13 II. 60, 75, 79, 101, 12. 15«, 158, 13. Alexcyev, A. D., 9. 15, 14. 102, 15. Ki, 88, 14. 142, 158-103, 16. 92, 93, 94, 16. 92,93, see also unilcr Flights Alftiimyri, 15.
    [Show full text]
  • Charted Lakes List
    LAKE LIST United States and Canada Bull Shoals, Marion (AR), HD Powell, Coconino (AZ), HD Gull, Mono Baxter (AR), Taney (MO), Garfield (UT), Kane (UT), San H. V. Eastman, Madera Ozark (MO) Juan (UT) Harry L. Englebright, Yuba, Chanute, Sharp Saguaro, Maricopa HD Nevada Chicot, Chicot HD Soldier Annex, Coconino Havasu, Mohave (AZ), La Paz HD UNITED STATES Coronado, Saline St. Clair, Pinal (AZ), San Bernardino (CA) Cortez, Garland Sunrise, Apache Hell Hole Reservoir, Placer Cox Creek, Grant Theodore Roosevelt, Gila HD Henshaw, San Diego HD ALABAMA Crown, Izard Topock Marsh, Mohave Hensley, Madera Dardanelle, Pope HD Upper Mary, Coconino Huntington, Fresno De Gray, Clark HD Icehouse Reservior, El Dorado Bankhead, Tuscaloosa HD Indian Creek Reservoir, Barbour County, Barbour De Queen, Sevier CALIFORNIA Alpine Big Creek, Mobile HD DeSoto, Garland Diamond, Izard Indian Valley Reservoir, Lake Catoma, Cullman Isabella, Kern HD Cedar Creek, Franklin Erling, Lafayette Almaden Reservoir, Santa Jackson Meadows Reservoir, Clay County, Clay Fayetteville, Washington Clara Sierra, Nevada Demopolis, Marengo HD Gillham, Howard Almanor, Plumas HD Jenkinson, El Dorado Gantt, Covington HD Greers Ferry, Cleburne HD Amador, Amador HD Greeson, Pike HD Jennings, San Diego Guntersville, Marshall HD Antelope, Plumas Hamilton, Garland HD Kaweah, Tulare HD H. Neely Henry, Calhoun, St. HD Arrowhead, Crow Wing HD Lake of the Pines, Nevada Clair, Etowah Hinkle, Scott Barrett, San Diego Lewiston, Trinity Holt Reservoir, Tuscaloosa HD Maumelle, Pulaski HD Bear Reservoir,
    [Show full text]
  • C Larence Strait
    Strait Tumakof er Lake n m u S 134°0'0"W 133°0'0"W 132°0'0"W Whale Passage Fisherman Chuck Point Howard Lemon Point Rock Ruins Point Point BarnesBush Rock The Triplets LinLcionlcno Rlno Icskland Rocky Bay Mosman PointFawn Island North Island Menefee Point Francis, Mount Deichman Rock Abraham Islands Deer IslandCDL Mabel Island Indian Creek South Island Hatchery Lake Niblack Islands Sarheen Cove Barnacle RockBeck Island Trout Creek Pyramid Peak Camp Taylor Rocky Bay Etolin, Mount Howard Cove Falls CreekTrout Creek Tokeen Peak Stevenson Island Gull Rock Three Way Passage Isle Point Kosciusko Island Lake Bay Seward Passage Indian Creek RapidsKeg Point Fairway Island Mabel Creek Holbrook Coffman Island Lake Bay Creek Stanhope Island Jadski Cove Holbrook Mountain McHenry Inlet El Capitan Passage Point Stanhope Grassy Lake Chum Creek Standing Rock Lake Range Island Barnes Lake Coffman Cove Shakes, Mount 56°0'0"N Canoe Passage Ernest Sound Santa Anna Inlet Tokeen Bay Entrance Island Brownson Island Cape Decsion Coffman Creek Point Santa Anna Tenass Pass Tenass Island Clarence Strait Point Peters TablSea Mntoau Anntanina Tokeen BrockSmpan bPearsgs Island Gold and Galligan Lagoon Quartz Rock Change IslandSunny Bay 56°0'0"N Rocky Cove Luck Point Helen, Lake Decision Passage Point Hardscrabble Van Sant Cove Clam Cove Galligan Creek Avon Island Clam Island McHenry Anchorage Watkins Point Burnt Island Tunga Inlet Eagle Creek Brockman Island Salt Water Lagoon Sweetwater Lake Luck Kelp Point Brownson Peak Fishermans Harbor FLO Marble Island Graveyard
    [Show full text]