Genes, Memes, Culture, and Mental Illness [email protected] Hoyle Leigh

Total Page:16

File Type:pdf, Size:1020Kb

Genes, Memes, Culture, and Mental Illness Hoyle.Leigh@Gmail.Com Hoyle Leigh Genes, Memes, Culture, and Mental Illness [email protected] Hoyle Leigh Genes, Memes, Culture, and Mental Illness Toward an Integrative Model 123 [email protected] Hoyle Leigh University of California San Francisco California USA [email protected] ISBN 978-1-4419-5670-5 e-ISBN 978-1-4419-5671-2 DOI 10.1007/978-1-4419-5671-2 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010921915 © Hoyle Leigh, 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) [email protected] For Vinnie, My Partner in this Epigenetic Journey Of Genes, Memes, Culture, and much more.... [email protected] [email protected] Preface How do genes interact with the environment? How does the environment actually enter the body to affect the genes? When we perceive the environment, bits of infor- mation are encoded within the brain as memory, which consists of a series of neural connections, a brain code (see Chapter 9). When perception occurs, the new sensory input interacts with existing memory and creates new memory. Primitive memory formed by trial and error died with the organism. With the evolution of complex brains, however, memory in the form of brain codes acquired the ability to skip from one brain to another, first by imitation as a shortcut to trial and error, and later, with language, as knowledge and information. When memory achieved portability, it became memes, bits of replicating information (see Chapters 8 and 9). Memes, like genes, undergo Darwinian evolution in a complex relationship with genes. In our time, it is the gene × meme × environment interaction that is fundamental in understanding mental health and illness. This book integrates the concepts of genes and memes in understanding men- tal illness as a final common pathway brain dysfunction. The brain dysfunction is manifested by the symptoms and signs of mental illness that are determined by both genes and memes. In Part I. What is Mental Illness? An Epigenetic Model, we consider the current model of mental illness based on gene × environment interaction and stress. The concept of epigenesis – how genes are switched on or off by the environment – is discussed. I introduce the concept of memes as perception and memory, neural entities introduced from the environment and interacting with genes and existing memes, and build a case for gene × meme × environment interaction model of mental illness. In Part II. Evolution and Mental Health: Genes, Memes, Culture, and the Individual, we discuss and integrate the basic concepts of genetics, evolution, and memes and how learning led to the emergence of memes. We then examine how memes are actually stored in the brain, and how they evolve within the brain as well as outside the brain as elements of culture. We discuss beneficial, symbiotic, and pathogenic memes and how the latter may enter the brain “under the radar.” I dis- cuss mental health and mental illness in the light of gene × meme × environment interaction and propose that mental health is achieved when a democracy of memes representing the self (selfplexes) is achieved in the brain. vii [email protected] viii Preface In Part III. Principles of Diagnosis and Treatment of Mental Illness, I propose a new psychiatric diagnostic scheme based on gene × meme interaction, epigen- esis, and the concept of final common pathway brain dysfunction with replication of pathologic memes. I propose that the diagnostic scheme should be multiaxial, and that Axis I should be for phenomenological, neurophysiomemetic diagnosis based on a continuum of brain function while Axis II should be for genetic and neuroscience diagnosis. I then discuss existing and to-be-developed techniques for making a memetic diagnosis. I propose that effective treatment for mental illness should be geared toward both genes and memes, and discuss memetic therapeutic approaches. Memetic therapy may be broad-spectrum or specific. I discuss existing psy- chotherapies from a memetic perspective as well as the need for novel meme- oriented therapies. Virtual reality therapy utilizing avatars (virtual image of oneself with desirable attributes) is a promising novel technique. Prevention is of utmost importance as vulnerable individuals could be identified in early childhood and immunization against toxic memes may prevent an epigenetic cascade toward mental illness. Education plays a crucial role in strengthening the meme-filtering, meme-sorting, and other meme-processing skills. In Part IV. Specific Psychiatric Syndromes, I discuss specific proposed Axis I (neurophysiomemetic) psychiatric syndromes under the categories of (1) attention- cognition spectrum syndromes (delirium, dementia, attention deficit and impulse control syndromes, obsessions, compulsions), (2) anxiety-mood spectrum syn- dromes (anxiety, panic, phobias, acute stress disorder (ASD), PTSD, borderline, mania, dependent traits and personality, avoidant traits and personality, depression- neurotic and major depressive syndrome, adjustment disorders), (3) reality per- ception spectrum syndromes (imagination, dissociation, conversion, somatoform, misattribution somatization, psychosis), (4) pleasure spectrum syndromes (sub- stance use/abuse, addictions to substances, beliefs, fanaticism), (5) primary memetic syndromes (eating disorders, factitious disorders, malingering, meme-directed destructive behaviors). We focus on the memetic diagnosis, gene–meme inter- action in development, and genetic–memetic treatment for each category. In the last chapter, Future Challenges, I briefly discuss the testable hypotheses deriv- able from our model of gene × meme × environment interaction, and the need to develop new techniques in memetic diagnosis and treatment as well as their ethical considerations. The seemingly perennial dichotomy of mind and body becomes irrelevant with the concept of memes – there is no single mind but a sea of memes in the brain. What is perceived as my mind at a particular time is but a large wave crashing on the shore of my consciousness. This work is intended to integrate the seemingly disparate languages and meth- ods of biological and social sciences around the indivisible organism, the patient. It is intended to stimulate thinking and hopefully innovations among psychiatrists, physicians of other specialties, health-care professionals, psychologists, sociol- ogists, anthropologists, and others who are interested in human behavior and emotions. [email protected] Preface ix I am grateful to my colleagues and students who have stimulated my thinking through discussions and arguments. I thank Janice Stern of Springer for her support and help in all phases of this work, and Vinnie for putting up with my late and early hours of writing and exchanging genes, memes, culture, and much more. Fresno and San Francisco, CA Hoyle Leigh, MD October, 2009 [email protected] [email protected] Contents Part I What Is Mental Illness? An Epigenetic Model 1 Genes and Mental Illness ....................... 3 1.1 The Evolution of the Concept of Mental Illness ........ 3 1.2 Gene-Environment Interaction and Brain Morphology and Function ........................... 4 1.3 Gene–Environment Interaction: Serotonin Transporter GeneasanExemplar...................... 5 1.4 Emerging Model of Mental Illness: Gene × Meme Interaction 7 References ................................ 8 2 How Does Stress Work? The Role of Memes in Epigenesis ..... 11 2.1 Stress,Aging,andDisease................... 11 2.2 Stress,Memes,andtheBrain.................. 12 2.3 Role of Stress and Nurturing in Development: Epigenesis . 15 2.4 Environment Changes Epigenome . ............. 16 2.5 Memes and Epigenesis . .................. 20 2.6 Stress Awakens Dormant Memes Resulting in Mental Illness . 21 References ................................ 22 3 Culture and Mental Illness ....................... 25 3.1 CultureandPresentingSymptoms............... 25 3.2 Culture-Specific Psychiatric Syndromes ............ 26 3.3 EnculturationandMemes.................... 26 3.4 MemesforBeingIll....................... 26 References ................................ 27 4 Genetic–Memetic Model of Mental Illness – Migration and Natural Disasters as Illustrations ................. 29 4.1 Migration............................ 29 4.2 NaturalDisasters........................ 32 References ................................ 33 xi [email protected] xii Contents Part II Evolution and Mental Health: Genes, Memes, Culture, and the Individual 5 What Do We Inherit from Our Parents and Ancestors? ....... 37 5.1 LikeParent,LikeChild..................... 37 5.2 HowDoesCultureAffectBehavior?.............. 38 5.3 Memes and Cultural Change .................. 38 5.4 Memeplexes........................... 39 References ...............................
Recommended publications
  • Lunar Impact Crater Identification and Age Estimation with Chang’E
    ARTICLE https://doi.org/10.1038/s41467-020-20215-y OPEN Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning ✉ Chen Yang 1,2 , Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2, ✉ ✉ Xingguo Zeng 2, Renchu Guan 3 , Chunlai Li 2 & Ziyuan Ouyang1,2 1234567890():,; Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang’E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti- mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis. 1 College of Earth Sciences, Jilin University, 130061 Changchun, China. 2 Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4 Department of Information Engineering and Computer ✉ Science, University of Trento, I-38122 Trento, Italy.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Exploring the Bombardment History of the Moon
    EXPLORING THE BOMBARDMENT HISTORY OF THE MOON Community White Paper to the Planetary Decadal Survey, 2011-2020 September 15, 2009 Primary Author: William F. Bottke Center for Lunar Origin and Evolution (CLOE) NASA Lunar Science Institute at the Southwest Research Institute 1050 Walnut St., Suite 300 Boulder, CO 80302 Tel: (303) 546-6066 [email protected] Co-Authors/Endorsers: Carlton Allen (NASA JSC) Mahesh Anand (Open U., UK) Nadine Barlow (NAU) Donald Bogard (NASA JSC) Gwen Barnes (U. Idaho) Clark Chapman (SwRI) Barbara A. Cohen (NASA MSFC) Ian A. Crawford (Birkbeck College London, UK) Andrew Daga (U. North Dakota) Luke Dones (SwRI) Dean Eppler (NASA JSC) Vera Assis Fernandes (Berkeley Geochronlogy Center and U. Manchester) Bernard H. Foing (SMART-1, ESA RSSD; Dir., Int. Lunar Expl. Work. Group) Lisa R. Gaddis (US Geological Survey) 1 Jim N. Head (Raytheon) Fredrick P. Horz (LZ Technology/ESCG) Brad Jolliff (Washington U., St Louis) Christian Koeberl (U. Vienna, Austria) Michelle Kirchoff (SwRI) David Kring (LPI) Harold F. (Hal) Levison (SwRI) Simone Marchi (U. Padova, Italy) Charles Meyer (NASA JSC) David A. Minton (U. Arizona) Stephen J. Mojzsis (U. Colorado) Clive Neal (U. Notre Dame) Laurence E. Nyquist (NASA JSC) David Nesvorny (SWRI) Anne Peslier (NASA JSC) Noah Petro (GSFC) Carle Pieters (Brown U.) Jeff Plescia (Johns Hopkins U.) Mark Robinson (Arizona State U.) Greg Schmidt (NASA Lunar Science Institute, NASA Ames) Sen. Harrison H. Schmitt (Apollo 17 Astronaut; U. Wisconsin-Madison) John Spray (U. New Brunswick, Canada) Sarah Stewart-Mukhopadhyay (Harvard U.) Timothy Swindle (U. Arizona) Lawrence Taylor (U. Tennessee-Knoxville) Ross Taylor (Australian National U., Australia) Mark Wieczorek (Institut de Physique du Globe de Paris, France) Nicolle Zellner (Albion College) Maria Zuber (MIT) 2 The Moon is unique.
    [Show full text]
  • Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon
    minerals Article Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon Claire L. McLeod 1,* and Barry J. Shaulis 2 1 Department of Geology and Environmental Earth Sciences, 203 Shideler Hall, Miami University, Oxford, OH 45056, USA 2 Department of Geosciences, Trace Element and Radiogenic Isotope Lab (TRaIL), University of Arkansas, Fayetteville, AR 72701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-9662 Received: 5 July 2018; Accepted: 8 October 2018; Published: 16 October 2018 Abstract: The abundance of the rare earth elements (REEs) in Earth’s crust has become the intense focus of study in recent years due to the increasing societal demand for REEs, their increasing utilization in modern-day technology, and the geopolitics associated with their global distribution. Within the context of chemically evolved igneous suites, 122 REE deposits have been identified as being associated with intrusive dike, granitic pegmatites, carbonatites, and alkaline igneous rocks, including A-type granites and undersaturated rocks. These REE resource minerals are not unlimited and with a 5–10% growth in global demand for REEs per annum, consideration of other potential REE sources and their geological and chemical associations is warranted. The Earth’s moon is a planetary object that underwent silicate-metal differentiation early during its history. Following ~99% solidification of a primordial lunar magma ocean, residual liquids were enriched in potassium, REE, and phosphorus (KREEP). While this reservoir has not been directly sampled, its chemical signature has been identified in several lunar lithologies and the Procellarum KREEP Terrane (PKT) on the lunar nearside has an estimated volume of KREEP-rich lithologies at depth of 2.2 × 108 km3.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • Persistence and Origin of the Lunar Core Dynamo
    Persistence and origin of the lunar core dynamo Clément Suaveta,1, Benjamin P. Weissa, William S. Cassatab, David L. Shusterc,d, Jérôme Gattaccecaa,e, Lindsey Chanf, Ian Garrick-Bethellf,g, James W. Headh, Timothy L. Grovea, and Michael D. Fulleri aDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bChemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550; cDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; dBerkeley Geochronology Center, Berkeley, CA 94709; eCentre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, Centre National de la Recherche Scientifique, Université Aix-Marseille 3, 13545 Aix-en-Provence, France; fDepartment of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064; gSchool of Space Research, Kyung Hee University, Yongin 446–701, South Korea; hDepartment of Geological Sciences, Brown University, Providence, RI 02912; and iHawai’i Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI 96822 Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved April 16, 2013 (received for review January 22, 2013) The lifetime of the ancient lunar core dynamo has implications for its 10017 as a constraint on the lunar dynamo. Instead, these authors power source and the mechanism of field generation. Here, we report relied on their analyses of 10049, whose subsamples were found to analyses of two 3.56-Gy-old mare basalts demonstrating that they carry a unidirectional magnetization (17) with a seemingly weak were magnetized in a stable and surprisingly intense dynamo mag- paleointensity (4–10 μT). However, our reanalysis of their data netic field of at least ∼13 μT.
    [Show full text]
  • Detrital Zircon Provenance of North Gondwana Palaeozoic Sandstones from Saudi Arabia
    Geological Magazine Detrital zircon provenance of north Gondwana www.cambridge.org/geo Palaeozoic sandstones from Saudi Arabia Guido Meinhold1,2 , Alexander Bassis3,4, Matthias Hinderer3, Anna Lewin3 and Jasper Berndt5 Original Article 1School of Geography, Geology and the Environment, Keele University, Keele, Staffordshire, ST5 5BG, UK; Cite this article: Meinhold G, Bassis A, 2Abteilung Sedimentologie/Umweltgeologie, Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Hinderer M, Lewin A, and Berndt J (2021) Goldschmidtstraße 3, 37077 Göttingen, Germany; 3Institut für Angewandte Geowissenschaften, Technische Detrital zircon provenance of north Gondwana 4 Palaeozoic sandstones from Saudi Arabia. Universität Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany; Eurofins water&waste GmbH, 5 Geological Magazine 158:442–458. https:// Eumigweg 7, 2351 Wiener Neudorf, Austria and Institut für Mineralogie, Westfälische Wilhelms-Universität doi.org/10.1017/S0016756820000576 Münster, Corrensstraße 24, 48149 Münster, Germany Received: 12 February 2020 Abstract Revised: 18 May 2020 Accepted: 18 May 2020 We present the first comprehensive detrital zircon U–Pb age dataset from Palaeozoic sand- First published online: 24 June 2020 stones of Saudi Arabia, which provides new insights into the erosion history of the East African Orogen and sediment recycling in northern Gondwana. Five main age populations Keywords: U–Pb geochronology; sediment provenance; are present in varying amounts in the zircon age spectra, with age peaks at ~625 Ma, detrital zircon; Palaeozoic; north Gondwana; ~775 Ma, ~980 Ma, ~1840 Ma and ~2480 Ma. Mainly igneous rocks of the Arabian– Saudi Arabia Nubian Shield are suggested to be the most prominent sources for the Ediacaran to middle Tonian zircon grains. Palaeoproterozoic and Archaean grains may be xenocrystic zircons or Author for correspondence: Guido Meinhold, Email: [email protected] they have been recycled from older terrigenous sediment.
    [Show full text]
  • Hadean-Archean Habitability
    Hadean - Early Archean: 4.4 to ~ 3.5 Ga How to build a habitable planet? Jack Hills in Australia meta-conglomerat with the oldest minerals on Earth 4.4 Ga Geological time scale 1 : Hadean 2 : Archean Quasi no rock record Rock record First cooling of magma ocean Alteration of basalt to produce serpentinite crust ~ as today on seafloor 146 142 Sm → Nd (T1/2= 103 Ma) silicate/silicate fractionation before total decay of 146Sm ⇒ < 150 Ma, done early Hadean Acasta (Canada) oldest rocks on Earth, end of Hadean, 4.01 Ga Acasta (Canada) oldest rocks on Earth, end of Hadean, 4.01 Ga Acasta (Canada) oldest rocks on Earth, end of Hadean, 4.01 Ga Zircon ages Jack Hills (Australia) meta-conglomerat Archean in age but contains very old zircons Jack Hills (Australia) meta-conglomerat Archean in age but contains very old zircons Jack Hills (Australia) meta-conglomerat Archean in age but contains very old zircons ZrSiO4 1 mm U-Pb age at 4.4 Ga Part of the grain crystalized shortly after end of magma ocean Age distribution of zircons Different dates on different zircon layers Several age populations Oldest Quartz, micas and plagioclase ∂18O in zircons = 5 to 7.4 ‰ Original magma’s = ∂18O ~ 8.5 to 9.5‰ (La/Lu)N zircons⇒(La/Lu)N of magma~ 200 = TTG magma 4.4 Gyr zircons not so different from actual zircons Granitic inclusions present in zircons Quartz, micas and plagioclase ∂18O in zircons = 5 to 7.4 ‰ Original magma’s = ∂18O ~ 8.5 to 9.5‰ (La/Lu)N zircons⇒(La/Lu)N of magma~ 200 = TTG magma 4.4 Gyr zircons not so different from actual zircons Continental
    [Show full text]
  • South Pole-Aitken Basin
    Feasibility Assessment of All Science Concepts within South Pole-Aitken Basin INTRODUCTION While most of the NRC 2007 Science Concepts can be investigated across the Moon, this chapter will focus on specifically how they can be addressed in the South Pole-Aitken Basin (SPA). SPA is potentially the largest impact crater in the Solar System (Stuart-Alexander, 1978), and covers most of the central southern farside (see Fig. 8.1). SPA is both topographically and compositionally distinct from the rest of the Moon, as well as potentially being the oldest identifiable structure on the surface (e.g., Jolliff et al., 2003). Determining the age of SPA was explicitly cited by the National Research Council (2007) as their second priority out of 35 goals. A major finding of our study is that nearly all science goals can be addressed within SPA. As the lunar south pole has many engineering advantages over other locations (e.g., areas with enhanced illumination and little temperature variation, hydrogen deposits), it has been proposed as a site for a future human lunar outpost. If this were to be the case, SPA would be the closest major geologic feature, and thus the primary target for long-distance traverses from the outpost. Clark et al. (2008) described four long traverses from the center of SPA going to Olivine Hill (Pieters et al., 2001), Oppenheimer Basin, Mare Ingenii, and Schrödinger Basin, with a stop at the South Pole. This chapter will identify other potential sites for future exploration across SPA, highlighting sites with both great scientific potential and proximity to the lunar South Pole.
    [Show full text]
  • 405 01.Ps, Page 1-22 @ Normalize ( 405 01.Qxd )
    Geological Society of America Special Paper 405 2006 The record of impact processes on the early Earth: A review of the first 2.5 billion years Christian Koeberl† Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria ABSTRACT Collisions and impact processes have been important throughout the history of the solar system, including that of the Earth. Small bodies in the early solar system, the planetesimals, grew through collisions, ultimately forming the planets. The Earth started growing ca. 4.56 Ga in this way. Its early history was dominated by violent impacts and collisions, of which we only have circumstantial evidence. The Earth was still growing and had reached ~70%–80% of its present mass when at ca. 4.5 Ga a Mars- sized protoplanet collided with Earth, leading to the formation of the moon—at least according to the currently most popular hypothesis of lunar origin. After its forma- tion, the moon was subjected to intense post-accretionary bombardment between ca. 4.5 and 3.9 Ga. In addition, there is convincing evidence that the Moon experienced an interval of intense bombardment with a maximum at ca. 3.85 ± 0.05 Ga; subsequent mare plains as old as 3.7 or 3.8 Ga are preserved. It is evident that if a late heavy bom- bardment occurred on the Moon, the Earth must have been subjected to an impact flux at least as intense as that recorded on the Moon. The consequences for the Earth must have been devastating, although the exact consequences are the subject of debate (total remelting of the crust versus minimal effects on possibly emerging life forms).
    [Show full text]
  • Early Archean Asteroid Impacts on Earth
    dpg15 v.2007/06/04 Prn:6/06/2007; 11:09 F:dpg15041.tex; VTEX/JOL p. 1 aid: 15085 pii: S0166-2635(07)15085-4 docsubty: REV Earth’s Oldest Rocks Edited by Martin J. van Kranendonk, R. Hugh Smithies and Vickie C. Bennett Developments in Precambrian Geology, Vol. 15 (K.C. Condie, Series Editor) 1 © 2007 Elsevier B.V. All rights reserved. DOI: 10.1016/S0166-2635(07)15085-4 1 Chapter 8.5 1 2 2 3 3 4 EARLY ARCHEAN ASTEROID IMPACTS ON EARTH: 4 5 STRATIGRAPHIC AND ISOTOPIC AGE CORRELATIONS 5 6 6 7 AND POSSIBLE GEODYNAMIC CONSEQUENCES 7 8 8 9 ANDREW GLIKSON 9 10 Department of Earth and Marine Science and Planetary Science Institute, Australian 10 11 National University, Canberra, ACT 0200, Australia 11 12 12 13 13 14 14 15 8.5-1. INTRODUCTION 15 16 16 17 The heavily cratered surfaces of the terrestrial planets and moons testify to their long- 17 18 term reshaping by asteroid and comet impacts and related structural and melting processes. 18 19 Following accretion of Earth from the solar disc at ca. 4.56 Ga (see Taylor, this volume), 19 20 the Earth–Moon system is believed to have originated by a collision between a Mars- 20 21 size planet and Earth, followed by episodic bombardment by asteroids and comets, with a 21 22 peak documented at ca. 3.95–3.85 Ga – the Late Heavy Bombardment (LHB) – recorded 22 23 on the Moon, but not on Earth due to the paucity and high grade metamorphic state of 23 24 terrestrial rocks of this age (Wilhelm, 1987; Ryder, 1990, 1991, 1997; see Iizuka et al., 24 25 this volume).
    [Show full text]