GV Annual Meeting 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lunar Impact Crater Identification and Age Estimation with Chang’E
ARTICLE https://doi.org/10.1038/s41467-020-20215-y OPEN Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning ✉ Chen Yang 1,2 , Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2, ✉ ✉ Xingguo Zeng 2, Renchu Guan 3 , Chunlai Li 2 & Ziyuan Ouyang1,2 1234567890():,; Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang’E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti- mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis. 1 College of Earth Sciences, Jilin University, 130061 Changchun, China. 2 Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4 Department of Information Engineering and Computer ✉ Science, University of Trento, I-38122 Trento, Italy. -
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
Exploring the Bombardment History of the Moon
EXPLORING THE BOMBARDMENT HISTORY OF THE MOON Community White Paper to the Planetary Decadal Survey, 2011-2020 September 15, 2009 Primary Author: William F. Bottke Center for Lunar Origin and Evolution (CLOE) NASA Lunar Science Institute at the Southwest Research Institute 1050 Walnut St., Suite 300 Boulder, CO 80302 Tel: (303) 546-6066 [email protected] Co-Authors/Endorsers: Carlton Allen (NASA JSC) Mahesh Anand (Open U., UK) Nadine Barlow (NAU) Donald Bogard (NASA JSC) Gwen Barnes (U. Idaho) Clark Chapman (SwRI) Barbara A. Cohen (NASA MSFC) Ian A. Crawford (Birkbeck College London, UK) Andrew Daga (U. North Dakota) Luke Dones (SwRI) Dean Eppler (NASA JSC) Vera Assis Fernandes (Berkeley Geochronlogy Center and U. Manchester) Bernard H. Foing (SMART-1, ESA RSSD; Dir., Int. Lunar Expl. Work. Group) Lisa R. Gaddis (US Geological Survey) 1 Jim N. Head (Raytheon) Fredrick P. Horz (LZ Technology/ESCG) Brad Jolliff (Washington U., St Louis) Christian Koeberl (U. Vienna, Austria) Michelle Kirchoff (SwRI) David Kring (LPI) Harold F. (Hal) Levison (SwRI) Simone Marchi (U. Padova, Italy) Charles Meyer (NASA JSC) David A. Minton (U. Arizona) Stephen J. Mojzsis (U. Colorado) Clive Neal (U. Notre Dame) Laurence E. Nyquist (NASA JSC) David Nesvorny (SWRI) Anne Peslier (NASA JSC) Noah Petro (GSFC) Carle Pieters (Brown U.) Jeff Plescia (Johns Hopkins U.) Mark Robinson (Arizona State U.) Greg Schmidt (NASA Lunar Science Institute, NASA Ames) Sen. Harrison H. Schmitt (Apollo 17 Astronaut; U. Wisconsin-Madison) John Spray (U. New Brunswick, Canada) Sarah Stewart-Mukhopadhyay (Harvard U.) Timothy Swindle (U. Arizona) Lawrence Taylor (U. Tennessee-Knoxville) Ross Taylor (Australian National U., Australia) Mark Wieczorek (Institut de Physique du Globe de Paris, France) Nicolle Zellner (Albion College) Maria Zuber (MIT) 2 The Moon is unique. -
Peter D. Ward – Curriculum Vitae Born May 12, 1949, Seattle Washington, USA Married, Two Children
1 Peter D. Ward – Curriculum Vitae Born May 12, 1949, Seattle Washington, USA Married, two children 1. Education B.S., 1971 Interdisciplinary Studies (Paleoecology), University of Washington, Seattle M.S., 1973 Geology, University of Washington, Seattle Ph.D., 1976 Geology, McMaster University, Hamilton, Ontario, Canada Employment 1976-1978 Assistant Professor, Department of Geology, Ohio State University 1978-1981 Assistant Professor, Department of Geology, University of California, Davis 1981-1983 Associate Professor with Tenure, Department of Geology and Division of Environmental Sciences, University of California, Davis 1982 Visiting Scientist, Laboratoire Arago (C.N.R.S.), Banyuls, France 1984 Professor, Department of Geology, University of California, Davis 1985 Associate Professor, University of Washington 1986 Professor, Department of Geological Sciences, and Adjunct Professor, Department of Zoology, University of Washington 1989- 1996 Curator of Invertebrate Paleontology, Thomas Burke Memorial Museum, University of Washington 1991. Visiting Scientist, South African Museum 1992-1996 Chairman and Head, Division of Geology and Paleontology, Thomas Burke Memorial Museum, University of Washington 2000. Visiting Scientist, South African Museum 2001 – present, Adjunct Professor, Department of Astronomy, University of Washington 2003- present, Professor, Dept. of Biology, and Professor, Department of Earth and Space Sciences, The University of Washington 2007- Adjunct Curator, Burke Museum of Natural History and Culture, University of -
Gaia's Evil Twin: Is Life Its Own Worst Enemy? Page 1 of 5 Gaia's Evil Twin
Gaia's evil twin: Is life its own worst enemy? - life - 17 June 2009 - New Scientist Page 1 of 5 Home | Life | Environment | In-Depth Articles | Back to article Gaia's evil twin: Is life its own worst enemy? 17 June 2009 by Peter Ward Magazine issue 2713. Subscribe and save For similar stories, visit the Endangered Species and Evolution Topic Guides ADVERTISEMENT Interactive graphic: Medean extinctions throughout evolutionary history THE twin Viking landers that defied the odds to land on Mars in 1976 and 1977 had one primary goal: to find life. To the disappointment of nearly all concerned, the data they sent back was a sharp dash of cold water. The Martian surface was harsh and antibiotic and there was no sign of life. To two NASA scientists, James Lovelock and Dian Hitchcock, this came as no surprise - in fact, they would have been amazed to see Toxic gases and mass extinctions mean Earth isn't any evidence of life on Mars. A decade always life friendly (Image: Sarah Howell) before Viking, Lovelock and Hitchcock, both Enlarge image atmospheric scientists, had used observations of the Martian atmosphere to 1 more image deduce that there could be no life on the planet. From their research arose one of the most influential, ground-breaking scientific ideas of the 20th century - the Gaia hypothesis, named after the ancient Greek goddess of the Earth, a nurturing "mother" of life. But is it correct? New scientific findings suggest that the nature of life on Earth is not at all like Gaia. If we were to choose a mythical mother figure to characterise the biosphere, it would more accurately be Medea, the murderous wife of Jason of the Argonauts. -
405 01.Ps, Page 1-22 @ Normalize ( 405 01.Qxd )
Geological Society of America Special Paper 405 2006 The record of impact processes on the early Earth: A review of the first 2.5 billion years Christian Koeberl† Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria ABSTRACT Collisions and impact processes have been important throughout the history of the solar system, including that of the Earth. Small bodies in the early solar system, the planetesimals, grew through collisions, ultimately forming the planets. The Earth started growing ca. 4.56 Ga in this way. Its early history was dominated by violent impacts and collisions, of which we only have circumstantial evidence. The Earth was still growing and had reached ~70%–80% of its present mass when at ca. 4.5 Ga a Mars- sized protoplanet collided with Earth, leading to the formation of the moon—at least according to the currently most popular hypothesis of lunar origin. After its forma- tion, the moon was subjected to intense post-accretionary bombardment between ca. 4.5 and 3.9 Ga. In addition, there is convincing evidence that the Moon experienced an interval of intense bombardment with a maximum at ca. 3.85 ± 0.05 Ga; subsequent mare plains as old as 3.7 or 3.8 Ga are preserved. It is evident that if a late heavy bom- bardment occurred on the Moon, the Earth must have been subjected to an impact flux at least as intense as that recorded on the Moon. The consequences for the Earth must have been devastating, although the exact consequences are the subject of debate (total remelting of the crust versus minimal effects on possibly emerging life forms). -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 299 (2011) 110–128 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Ecology and evolution of Devonian trees in New York, USA Gregory J. Retallack a,⁎, Chengmin Huang b a Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA b Department of Environmental Science and Engineering, University of Sichuan, Chengdu, Sichuan 610065, China article info abstract Article history: The first trees in New York were Middle Devonian (earliest Givetian) cladoxyls (?Duisbergia and Wattieza), Received 16 January 2010 with shallow-rooted manoxylic trunks. Cladoxyl trees in New York thus postdate their latest Emsian evolution Received in revised form 17 September 2010 in Spitzbergen. Progymnosperm trees (?Svalbardia and Callixylon–Archaeopteris) appeared in New York later Accepted 29 October 2010 (mid-Givetian) than progymnosperm trees from Spitzbergen (early Givetian). Associated paleosols are Available online 5 November 2010 evidence that Wattieza formed intertidal to estuarine mangal and Callixylon formed dry riparian woodland. -
The Cronus Hypothesis – Extinction As a Necessary and Dynamic Balance to Evolutionary Diversification
The Cronus hypothesis – extinction as a necessary and dynamic balance to evolutionary diversification Corey J. A. Bradshaw1,2 and Barry W. Brook1 1The Environment Institute and School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia 2South Australian Research and Development Institute, P.O. Box 120, Henley Beach, South Australia 5022, Australia [email protected]; [email protected] Abstract The incredible diversity of life on Earth veils the tumultuous history of biodiversity loss over deep time. Six mass extinction events since the Cambrian species explosion (including the current Anthropocene), and many smaller extinction spasms, have terminated 99 % of all species that have ever existed. Evolution and extinction, as universal processes, have been unified previously under James Lovelock’s Gaia hypothesis, and most recently, under Peter Ward’s Medea hypothesis. Gaia (the Greek Earth mother) posits that life on Earth functions like a single, self-regulating organism, whereas Medea (siblicidal wife of Jason of the Argonauts) describes instead a self-destructive feedback where life ‘seeks’ to destroy itself. We argue that these contrasting views are actually extremes of a scale-invariant stability-entropy spectrum of speciation and extinction for all life on Earth, much as the abundance and stability of a metapopulation of an individual species is the emergent property of births, deaths and migration. In this context, we propose a new metaphor called the Cronus hypothesis (patricidal son of Gaia) to explain how these processes can be quantified with existing mathematical tools and so be used to describe the ebb and flow of life on Earth along a thermodynamic spectrum. -
Lunar Impact Craters Identification and Age Estimation with Chang'e Data
LETTE Lunar impact craters identification and age estimation with Chang'E data by deep and transfer learning Chen Yang1,2*, Haishi Zhao3, Lorenzo Bruzzone4, Jon Atli Benediktsson5, Yanchun Liang3, Bin Liu2, Xingguo Zeng2, Renchu Guan3*, Chunlai Li2* & Ziyuan Ouyang 2,6 Impact craters, as "lunar fossils", are the most dominant lunar recognized and age constrained craters are not adequate enough to surface features and occupy most of the Moon’s surface. Their reveal their evolutionary history and process. formation and evolution record the history of the Solar System. Lunar craters have the same genesis, i.e., impacts create craters that Sixty years of triumphs in the lunar exploration projects look similar in a near-circular depression structure. This is the main accumulated a large amount of lunar data. Currently, there are basis for the identification of craters. Different experiences, i.e., the 9137 existing recognized craters. However, only 1675 of them have formation and long-term alteration, lead to craters having a different been determined age, which is obviously not satisfactory to reveal complex morphology. Typical characteristics can demonstrate the evolution of the Moon. Identifying craters is a challenging task differences in orders of magnitude in size of the diameters, e.g. the due to their enormous difference in size, large variations in shape largest craters have a diameter of a few hundred kilometers, whereas and vast presence. Furthermore, estimating the age of craters is the smallest ones have a diameter of a few meters. They also show extraordinarily difficult due to their complex and different large variations in shape due to an overlap with other craters (see morphologies. -
Science Concept 3: Key Planetary
Science Concept 6: The Moon is an Accessible Laboratory for Studying the Impact Process on Planetary Scales Science Concept 6: The Moon is an accessible laboratory for studying the impact process on planetary scales Science Goals: a. Characterize the existence and extent of melt sheet differentiation. b. Determine the structure of multi-ring impact basins. c. Quantify the effects of planetary characteristics (composition, density, impact velocities) on crater formation and morphology. d. Measure the extent of lateral and vertical mixing of local and ejecta material. INTRODUCTION Impact cratering is a fundamental geological process which is ubiquitous throughout the Solar System. Impacts have been linked with the formation of bodies (e.g. the Moon; Hartmann and Davis, 1975), terrestrial mass extinctions (e.g. the Cretaceous-Tertiary boundary extinction; Alvarez et al., 1980), and even proposed as a transfer mechanism for life between planetary bodies (Chyba et al., 1994). However, the importance of impacts and impact cratering has only been realized within the last 50 or so years. Here we briefly introduce the topic of impact cratering. The main crater types and their features are outlined as well as their formation mechanisms. Scaling laws, which attempt to link impacts at a variety of scales, are also introduced. Finally, we note the lack of extraterrestrial crater samples and how Science Concept 6 addresses this. Crater Types There are three distinct crater types: simple craters, complex craters, and multi-ring basins (Fig. 6.1). The type of crater produced in an impact is dependent upon the size, density, and speed of the impactor, as well as the strength and gravitational field of the target. -
Gaia Hypothesis
Gaia hypothesis The Gaia hypothesis /ˈɡaɪ.ə/, also known as the Gaia theory or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self- regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet. The hypothesis was formulated by the chemist James Lovelock[1] and co-developed by the microbiologist Lynn Margulis in the 1970s.[2] Lovelock named the idea after Gaia, the primordial goddess who personified the Earth in Greek mythology. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.[3] The study of planetary habitability is Topics related to the hypothesis include how the biosphere and the partly based upon extrapolation from evolution of organisms affect the stability of global temperature, knowledge of the Earth's conditions, salinity of seawater, atmospheric oxygen levels, the maintenance of as the Earth is the only planet a hydrosphere of liquid water and other environmental variables that currently known to harbour life (The affect the habitability of Earth. Blue Marble, 1972 Apollo 17 photograph) The Gaia hypothesis was initially criticized for being teleological and against the principles of natural selection, but later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology.[4][5][6] Lovelock also once described the "geophysiology" of the Earth.[7] Even so, the Gaia hypothesis -
Genes, Memes, Culture, and Mental Illness [email protected] Hoyle Leigh
Genes, Memes, Culture, and Mental Illness [email protected] Hoyle Leigh Genes, Memes, Culture, and Mental Illness Toward an Integrative Model 123 [email protected] Hoyle Leigh University of California San Francisco California USA [email protected] ISBN 978-1-4419-5670-5 e-ISBN 978-1-4419-5671-2 DOI 10.1007/978-1-4419-5671-2 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010921915 © Hoyle Leigh, 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) [email protected] For Vinnie, My Partner in this Epigenetic Journey Of Genes, Memes, Culture, and much more.... [email protected] [email protected] Preface How do genes interact with the environment? How does the environment actually enter the body to affect the genes? When we perceive the environment, bits of infor- mation are encoded within the brain as memory, which consists of a series of neural connections, a brain code (see Chapter 9).