The Draft Genome Sequence of the Yersinia Entomophaga Entomopathogenic Type Strain MH96T

Total Page:16

File Type:pdf, Size:1020Kb

The Draft Genome Sequence of the Yersinia Entomophaga Entomopathogenic Type Strain MH96T Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S1 of S87 Supplementary Materials: The Draft Genome Sequence of the Yersinia entomophaga Entomopathogenic Type Strain MH96T Mark R. H. Hurst, Amy Beattie, Eric Altermann, Roger M. Moraga, Lincoln A. Harper, Joanne Calder and Aurelie Laugraud Table S1. Yersinia entomophaga unique regions 1 and 2. For graphic depiction refer to Figure 2 of the associated manuscript. Yersinia entomophaga unique region 1. Closest BlastP Orthologue [Species] Length: Amino Acid Length of Orthologue Locus % Identity/% Similarity (Over the Indicated Range of Amino Acid Residues) in Relation Accession Number (Amino Acid Residues) to Target Sequence. Protein Domain branched-chain amino acid ABC transporter substrate-binding protein [Yersinia nurmii] Length: 423 WP_049597723.1 95/97(423) 1–423 PL78_03820 (423) Aliphatic amidase expression-regulating protein [Beauveria bassiana D1-5] Length: 648 gbKGQ13304.1 92/95(420) 226–645 urea ABC transporter permease [Yersinia nurmii] Length: 524 WP_049597583.1 92/94(524) 1–524 PL78_03825 (524) MULTISPECIES: urea ABC transporter permease [Enterobacteriaceae] Length: 524 WP_048332627.1 73/81(507) 1–524 amino acid ABC transporter permease [Yersinia nurmii] Length: 357 WP_049597584.1 96/96(357) 1–357 PL78_03830 (357) amino acid ABC transporter permease [Buttiauxella agrestis] Length: 357 WP_034495296.1 88/93(357) 1–357 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S2 of S87 urea ABC transporter ATP-binding protein [Yersinia nurmii] Length: 265 WP_049597585.1 96/97(265)1–265 PL78_03835 (265) urea ABC transporter ATP-binding protein [Cedecea neteri] Length: 265 WP_038472477.1 89/94(265) 1–265 urea ABC transporter ATP-binding protein [Yersinia nurmii] Length: 232 WP_049597586.1 98/99(232) 1–232 PL78_03840 (232) urea ABC transporter ATP-binding protein [Buttiauxella agrestis] Length: 232 WP_034455625.1 86/93(232) 1–232 LuxR family transcriptional regulator [Yersinia nurmii] Length: 247 WP_049597724.1 98/99(247) 1–247 PL78_03845 (261) LuxR family transcriptional regulator [Yersinia ruckeri] Length: 247 WP_004719049.1 80/89(246) 1–247 acyl-homoserine-lactone synthase [Yersinia nurmii] Length: 216 WP_049597587.1 99/100(216)1–216 PL78_03850 (216) acyl-homoserine-lactone synthase [Yersinia ruckeri] Length: 216 WP_038245616.1 87/92(216) 1–216 membrane protein [Yersinia nurmii] Length: 231 WP_049597588.1 96/98(231) 1–231 PL78_03855 (237) hypothetical protein [Yersinia intermedia] Length: 237 WP_050077576.1 72/87(236) 1–236 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S3 of S87 hypothetical membrane protein [Azoarcus sp. BH72] Length: 149 embCAL95245.1 51/72(86) 68–149 PL78_03860 (238) hypothetical protein [Photorhabdus luminescens] Length: 207 WP_052739685.1 31/49(209)13–207 hydrolase [Mesorhizobium loti] Length: 259 WP_027033575.1 59/78(32)226–257 PL78_03862 (81) carbon monoxide dehydrogenase form II large subunit [uncultured bacterium] Length: 315 gbAAW66018.1 37/53(52) 14–65 ERF family protein [uncultured Mediterranean phage uvMED] Length: 201 dbjBAR33765.1 33/50(55) 41–94 PL78_03865 (100) PREDICTED: sarcoma antigen 1-like, partial [Callithrix jacchus] Length: 276 XP_008989763.1 33/54(46) 169–213 glycosyl transferase [Yersinia nurmii] Length: 336 WP_049597589.1 95/96(336) 1–336 PL78_03870 (336) glycosyl transferase [Yersinia pseudotuberculosis] Length: 326 WP_012303433.1 70/83(325) 1–336 dipeptidyl carboxypeptidase II [Yersinia nurmii] Length: 723 WP_049597590.1 95/97(723) 1–723 PL78_03875 (723) Dipeptidyl carboxypeptidase Dcp [Yersinia ruckeri] Length: 729 embCEK27267.1 82/89(726) 1–726 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S4 of S87 hypothetical protein [Yersinia nurmii] Length: 519 WP_049597591.1 97/97(519) 1–519 PL78_03880 (519) hypothetical protein [Brenneria goodwinii] Length: 534 WP_048636529.1 62/79(516)1–516 malate permease [Yersinia nurmii] Length: 453 WP_049597592.1 99/99(519) 1–453 PL78_03885 (453) malate permease [Yersinia ruckeri] Length: 453 WP_045844043.1 92/96(452) 1–452 transcriptional regulator [Yersinia nurmii] Length: 239 WP_049597593.1 99/99(239)1–239 PL78_03890 (239) transcriptional regulator [Yersinia ruckeri] Length: 239 WP_038242277.1 93/96(239) 1–239 histidine kinase [Yersinia nurmii] Length: 543 WP_049597594.1 97/98(543) 1–543 PL78_03895 (543) histidine kinase [Yersinia ruckeri] Length: 543 WP_042524781.1 87/94(543) 1–543 2-oxoglutarate translocator [Yersinia nurmii] Length: 470 WP_049597595.1 99/98(470) 1–470 PL78_03900 (470) 2-oxoglutarate translocator [Yersinia ruckeri] Length: 470 WP_038275783.1 91/95(470)1–470 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S5 of S87 iron reductase [Yersinia aldovae] Length: 254 WP_042546885.1 94/96(254) 1–254 PL78_03905 (254) iron reductase [Yersinia nurmii] Length: 254 WP_049597596.1 94/98(254) 1–254 cytochrome C biogenesis protein CcmH [Yersinia aldovae] Length: 519 WP_042546884.1 96/97(519) 1–519 PL78_03910(519) cytochrome C biogenesis protein CcmH [Yersinia nurmii] Length: 519 WP_049597597.1 96/97(519) 1–519 putative siderophore biosynthetic enzyme [Yersinia aldovae] Length: 434 embCNL58692.1 97/98(434) 1–434 PL78_03915 (434) putative siderophore biosynthetic enzyme [Yersinia nurmii] Length: 434 embCNE39394.1 95/96(434) 1–434 siderophore biosynthesis protein [Yersinia aldovae] Length: 198 WP_049596217.1 95/97(197) 1–197 PL78_03920 (190) siderophore biosynthesis protein [Yersinia aldovae] Length: 198 WP_042546883.1 95/97(197) 1–197 siderophore biosynthesis protein IucA [Yersinia aldovae] Length: 611 WP_042839931.1 96/97(611) 1–611 PL78_03925 (612) siderophore biosynthesis protein IucA [Yersinia aldovae] Length: 611 WP_042546882.1 96/97(611) 1–611 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S6 of S87 putative iron-siderophore transport system %2CATP-binding component [Yersinia aldovae] Length: 287 embCNL53775.1 94/95(287) 1–287 PL78_03930 (287) putative iron-siderophore transport system %2CATP-binding component [Yersinia aldovae] Length: 287 embCNL58815.1 94/95(287) 1–287 iron ABC transporter permease [Yersinia aldovae] Length: 346 WP_049689070.1 97/97(216) 31–346 PL78_03935 (346) iron ABC transporter permease [Yersinia nurmii] Length: 346 WP_049597600.1 96/98(206) 41–346 iron ABC transporter permease [Yersinia nurmii] Length: 339 WP_049597601.1 94/95(339) 1–339 PL78_03940 (339) iron ABC transporter permease [Yersinia aldovae] Length: 339 WP_042839929.1 95/96(336) 1–339 periplasmic binding family protein [Yersinia aldovae 670-83] Length: 37 gbAJJ64399.1 96/97(376)1–376 PL78_03945 (341) iron-siderophore ABC transporter substrate-binding protein [Yersinia aldovae] Length: 362 WP_042546879.1 97/98(362)1–362 TonB-dependent receptor [Yersinia aldovae] Length: 749 WP_042839927.1 96/97(749) 1–749 PL78_03950 (749) TonB-dependent receptor [Yersinia aldovae] Length: 749 WP_042546878.1 96/97(749) 1–749 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S7 of S87 IucA/IucC family protein [Yersinia aldovae] Length: 609 WP_049596218.1 97/97(609) 1–609 PL78_03955 (609) siderophore biosynthesis protein IucA [Yersinia aldovae] Length: 609 WP_042546877.1 96/97(609) 1–609 serine 3-dehydrogenase [Yersinia intermedia] Length: 479 WP_050086263.1 86/93(478) 1–479 PL78_03960 (478) serine 3-dehydrogenase [Yersinia nurmii] Length: 478 WP_049597605.1 96/97(478 )1–478 serine 3-dehydrogenase [Yersinia nurmii] Length: 481 WP_049597606.1 96/97(464) 18–481 PL78_03965 (464) serine 3-dehydrogenase [Yersinia intermedia] Length: 485 WP_005182588.1 80/87(464)1–485 metalloprotease [Yersinia nurmii] Length: 482 embCNE39855.1 93/95(482) 1–482 PL78_03970 (482) serine 3-dehydrogenase [Yersinia ruckeri] Length: 477 WP_042524782.1 55/67(442) 40–477 PL78_03975 (77) No similarity ‐ Proteinase inhibitor precursor [Yersinia nurmii] Length: 138 embCNE39896.1 97/100(109) 30–138 PL78_03980 (109) alkaline proteinase inhibitor [Yersinia intermedia] Length: 138 WP_050086261.1 78/87(109) 30–138 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S8 of S87 peptidase [Yersinia nurmii] Length: 580 WP_049597607.1 98/99(580) 1–580 PL78_03985 (580) peptidase [Yersinia intermedia] Length: 580 WP_050312322.1 91/94(580) 1–580 hemolysin D [Yersinia nurmii] Length: 443 WP_049597608.1 98/99(443) 1–443 PL78_03990 (434) hemolysin D [Yersinia intermedia] Length: 443 WP_050312323.1 87/93(443) 1–443 pfam00529 peptidase [Yersinia nurmii] Length: 447 WP_049597609.1 99/99(447) 1–447 PL78_03995 (440) peptidase [Yersinia intermedia] Length: 447 WP_050086258.1 91/96(447) 1–447 cytochrome B561 [Yersinia nurmii] Length: 205 WP_049597610.1 96/96 (2025) 1–205 PL78_04000 (195) cytochrome B561 [Yersinia ruckeri] Length: 206 WP_042524786.1 84/90(205) 2–206 Toxins 2016, 8, 143; doi:10.3390/toxins8050143 S9 of S87 hypothetical protein [Yersinia nurmii] Length: 262 putative sulfite oxidase subunit YedY [Yersinia nurmii] WP_049597611.1 Sequence ID: emb|CNE40096.1| PL78_04005 (262) Length: 262 Number of Matches: 97/98(262) 1–262 hypothetical protein [Yersinia ruckeri] Length: 262 WP_042524787.1 90/94(262) 1–262 pentapeptide MXKDX repeat protein [Yersinia nurmii] Length: 123 embCNE40130.1 89/90(123) 1–123 PL78_04010 (112) hypothetical protein [Yersinia ruckeri] Length: 112 WP_042524788.1 77/90(112) 1–112 multidrug DMT transporter permease [Yersinia nurmii] Length: 300 WP_049597612.1 96/98(300) 1–300 PL78_04015 (300) membrane protein [Yersinia ruckeri] Length: 300 WP_004720598.1 87/93(289) AraC family transcriptional regulator [Yersinia nurmii] Length: 292 WP_049597613.1 99/99(292) 1–292 PL78_04020 (292) AraC family transcriptional regulator [Yersinia ruckeri] Length: 292 WP_004720600.1 90/94(292)
Recommended publications
  • Tese Carlos 2018
    UFRRJ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA, TECNOLOGIA E INOVAÇÃO EM AGROPECUÁRIA TESE Estudo da Microbiota Bacteriana Endofítica de Cana-de-açúcar por Métodos Independentes de Cultivo: Diversidade, Perfil Taxonômico e Predição de Funções de Interesse Biotecnológico Carlos Magno dos Santos 2018 UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA, TECNOLOGIA E INOVAÇÃO EM AGROPECUÁRIA ESTUDO DA MICROBIOTA BACTERIANA ENDOFÍTICA DE CANA- DE-AÇÚCAR POR MÉTODOS INDEPENDENTES DE CULTIVO: DIVERSIDADE, PERFIL TAXONÔMICO E PREDIÇÃO DE FUNÇÕES DE INTERESSE BIOTECNOLÓGICO CARLOS MAGNO DOS SANTOS Sob a Orientação do Pesquisador Stefan Schwab e Coorientação do Pesquisador José Ivo Baldani Tese submetida como requisito parcial para obtenção do grau de Doutor, no Programa de Pós- graduação em Ciência, Tecnologia e Inovação em Agropecuária, Área de Concentração em Agrobiologia Seropédica, RJ Fevereiro, 2018 Santos, Carlos Magno dos, 1990- S237e Estudo da microbiota bacteriana endofítica de cana de-açúcar por métodos independentes de cultivo: diversidade, perfil taxonômico e predição de funções de interesse biotecnológico / Carlos Magno dos Santos Santos. - 2018. 131 f.: il. Orientador: Stefan Schwab. Coorientador: José Ivo Baldani. Tese(Doutorado). -- Universidade Federal Rural do Rio de Janeiro, Ciência, Tecnologia e Inovação em Agropecuária, 2018. 1. Enriquecimento celular. 2. Independente de cultivo. 3. Líquido do apoplasto. 4. Colmo. 5. Sphingomonas. I. Schwab, Stefan, 1975-, orient. II. Baldani, José Ivo, 1953-, coorient. III Universidade Federal Rural do Rio de Janeiro. Ciência, Tecnologia e Inovação em Agropecuária. IV. Título. É permitida a cópia parcial ou total desta Tese, desde que citada a fonte.
    [Show full text]
  • Yersinia Enterocolitica
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Mikrobielle Ökologie Regulation und Freisetzung des insektiziden Komplexes in Yersinia enterocolitica Mandy Starke Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.- Prof. Dr. W. Liebl Prüfer der Dissertation: 1. apl. Prof. Dr. T. Fuchs 2. Univ.-Prof. Dr. M. Hofrichter (nur schriftliche Beurteilung) Technische Universität Dresden Univ.-Prof. Dr. S. Scherer (nur mündliche Prüfung) 3. Univ.-Prof. Dr. J. Heesemann (i.R.) Ludwigs-Maximilians-Universität München Die Dissertation wurde am 10.11.2014 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 17.03.2015 angenommen. “Alles Wissen und alle Vermehrung unseres Wissens endet nicht mit einem Schlusspunkt, sondern mit einem Fragezeichen.“ -Hermann Hesse- Inhaltsverzeichnis I Inhaltsverzeichnis ABBILDUNGSVERZEICHNIS ........................................................................................................... V TABELLENVERZEICHNIS .............................................................................................................. VII ABKÜRZUNGSVERZEICHNIS ..................................................................................................... VIII ZUSAMMENFASSUNG ...................................................................................................................
    [Show full text]
  • Priscila Jane Romano De Oliveira Gonçalves Caracterização E
    Priscila Jane Romano de Oliveira Gonçalves Caracterização e avaliação do papel do gene wcbE de Burkholderia seminalis linhagem TC3.4.2R3 na interação microbiana. Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do título de Doutora em Microbiologia. Área de concentração: Microbiologia Orientador: Prof. Dr. Welington Luiz de Araújo Versão original. São Paulo 2017 Priscila Jane Romano de Oliveira Gonçalves Characterization and evaluation of the role of wcbE gene from Burkholderia seminalis strain TC3.4.2R3 in microbial interaction. Thesis presented to the Microbiology Department of Instituto de Ciências Biomédicas from Universidade de São Paulo, as requirement for the degree of Doctor of Philosophy in Microbiology. Concentration area: Microbiology Supervisor: Prof. Dr. Welington Luiz de Araújo Original version. São Paulo 2017 RESUMO GONÇALVES, P. J. R. O. Caracterização e avaliação do papel do gene wcbE de Burkholderia seminalis linhagem TC3.4.2R3 na interação microbiana. 2017. 149 f. Tese (Doutorado em Microbiologia) – Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2017. Burkholderia seminalis tem sido encontrada como um micro-organismo não patogênico, promotor de crescimento vegetal, nodulador de raízes, biorremediador, agente de biocontrole e, também, como organismo patogênico em algumas plantas e pacientes com fibrose cística. O gene wcbE codifica uma glicosiltransferase e pertence ao cluster wcb, que está relacionado à síntese de cápsula e interações ambientais. O objetivo deste trabalho foi investigar o papel do gene wcbE e da temperatura nas interações microbianas de B. seminalis TC3.4.2R3. A produção de biofilme, EPS e compostos antifúngicos foi maior a 28 ºC.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Characterisation of the Type VI Secretion System in Pantoea Ananatis
    Characterisation of the type VI secretion system in Pantoea ananatis BY Shyntum Divine Yufetar Submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy In the Faculty of Natural and Agricultural Sciences, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa February 2014 Approved by supervisory committee Teresa A. Coutinho, Ph.D. Lucy N. Moleleki, Ph.D. Stephanus A. Venter, Ph.D. Ian K. Toth, Ph.D. i DECLARATION I declare that the thesis “Characterisation of the type VI secretion system in Pantoea ananatis”, which I hereby submit for the Doctor of Philosophy degree at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. SIGNATURE:………………………………………….. DATE:......……….. Shyntum Divine Yufetar i ACKNOWLEDGEMENTS I am deeply grateful to God for having taken me this far in my life. I would want to acknowledge the invaluable supervision of Prof. TA Coutinho, Dr. Lucy Moleleki, Prof. SN Venter and Dr. Ian Toth who guided me professionally. Many thanks also to Prof. Jacques Theron for your invaluable technical assistance, most of all thank you for helping me think outside the box. Many thanks to my siblings and parents for being there for me all these years. Thanks also to Mr John Menjo and his wife Ruth Menjo for providing me an escape from the rigors of academic work during the weekends and holidays. Special thanks to Ms Vimbai Siziba for all her support, you stood by me, listened and supported me through what I consider the hardest part of my PhD studies.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Santa Barbara Delivery and Activity Of
    UNIVERSITY OF CALIFORNIA Santa Barbara Delivery and activity of toxic effector domains from contact-dependent growth inhibition systems in Escherichia coli A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular, Cellular, and Developmental Biology by Julia Laura Elizabeth Willett Committee in charge: Professor Christopher S. Hayes, Chair Professor Anthony de Tomaso Professor David Low Professor Denise Montell June 2016 The dissertation of Julia Laura Elizabeth Willett is approved. _____________________________________________ Anthony de Tomaso _____________________________________________ David Low _____________________________________________ Denise Montell _____________________________________________ Christopher S. Hayes, Committee Chair February 2016 Delivery and activity of toxic effector domains from contact-dependent growth inhibition systems in Escherichia coli Copyright © 2016 by Julia Laura Elizabeth Willett iii To Jason iv ACKNOWLEDGEMENTS I would first and foremost like to thank Chris for being a great advisor and for allowing me to investigate a variety of engrossing research questions throughout my graduate work in his lab. I’m appreciative of all the opportunities that I have had to grow as a scientist and writer, present my research at conferences, and interact with incredible seminar speakers and colleagues. His enthusiasm for science and research is contagious. A number of collaborations made this work possible. I’m extremely grateful for our close (both literally and figuratively) collaboration with David Low and his research group, particularly former members Stephanie Aoki, Sanna Koskiniemi, Travis Smith, and Julia Webb. David is a tremendous scientist with whom scientific conversations are always inspiring. I am also grateful for our collaboration with Robert Morse and Celia Goulding at UC Irvine, as their crystallography expertise has provided invaluable insight into the structural world of CDI.
    [Show full text]
  • Epidemiology and Comparative Analysis of Yersinia in Ireland Author(S) Ringwood, Tamara Publication Date 2013 Original Citation Ringwood, T
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title Epidemiology and comparative analysis of Yersinia in Ireland Author(s) Ringwood, Tamara Publication date 2013 Original citation Ringwood, T. 2013. Epidemiology and comparative analysis of Yersinia in Ireland. PhD Thesis, University College Cork. Type of publication Doctoral thesis Rights © 2013, Tamara Ringwood http://creativecommons.org/licenses/by-nc-nd/3.0/ Item downloaded http://hdl.handle.net/10468/1294 from Downloaded on 2021-10-07T12:07:10Z Epidemiology and Comparative Analysis of Yersinia in Ireland by Tamara Ringwood A thesis presented for the Degree of Doctor of Philosophy National University of Ireland, Cork University College Cork Coláiste na hOllscoile Corcaigh Department of Microbiology Head of Department: Prof. Gerald F. Fitzgerald Supervisor: Prof. Michael B. Prentice April 2013 Contents List of Tables .............................................................................................................................................. iv List of figures ............................................................................................................................................. vi Declaration ............................................................................................................................................... viii Acknowledgements ................................................................................................................................
    [Show full text]
  • NZMS Annual Conference 2017
    NZMS Annual Conference 2017 20-23 November, AUT, Auckland PROGRAMME & ABSTRACTS MAJOR SPONSORS: WELCOME Welcome to the 2017 annual meeting of the New Zealand Microbiological Society. This year the theme of the NZ Microbiological Society (NZMS) conference is, “Our well-being and our microbes”. We are highlighting the dependence of our economy on maintaining and developing healthy microbial interactions while minimising diseases of concern for humans, livestock and plants. This conference covers the diverse field of microbiology and its disciplines including agricultural, environmental, food, medical and biotechnology sectors that rely on microbial knowledge, management and products. As our biggest city, Auckland and the surrounding regions has something for everyone, from hot springs to harbours, whale-watching to wine-tasting, mountains to museums and we look forward to hosting your stay here. CONFERENCE COMMITTEE Conference Chairs Gavin Lear (University of Auckland) | [email protected] Brent Seale (Auckland University of Technology) | [email protected] Organising Committee Steve Flint (Massey University) Kim Handley (University of Auckland) Heather Hendrickson (Massey University) Syrie Hermans – Student Representative (University of Auckland) Thomas Proft (University of Auckland) Mike Taylor (University of Auckland) Bevan Weir (Landcare Research) Weiqin Zhuang (University of Auckland) Rosemary Hancock (événements Limited) Conference Manager | [email protected] Lauren Williams (Auckland University of Technology) Event Co-ordinator WHILE AT THE CONFERENCE… o Registration desk contact phone number: Rosemary, ph 021 217 8298 o Please wear your name label to all conference sessions and social functions. These badges identify you as a NZMS conference participant. The venue is a public space and you may be asked to leave the catering areas if we cannot identify you! o Please take note of the location of the exits in all conference rooms and in your accommodation.
    [Show full text]
  • Clinical Isolates of Yersinia Enterocolitica in Finland 117 2013 117
    Leila M. Sihvonen Leila Leila M. Sihvonen Clinical isolates of Yersinia enterocolitica in Finland Leila M. Sihvonen Identification and Epidemiology Clinical isolates of Yersinia enterocolitica in Finland Identification and Epidemiology Clinical isolates of Clinical isolates Yersinia enterocolitica is a foodborne bacterium that causes gastroenteritis and post-infectious complications, such as reactive arthritis, in humans. Y. enterocolitica species is divided into six biotypes, which differ in their ability to cause illness. The Y. enterocolitica incidence in Finland has been among the highest in the EU, but there has been little information on the occurrence of different Y. enterocolitica biotypes. enterocolitica Yersinia In this thesis Y. enterocolitica strains isolated from Finnish patients were characterised and the symptoms and sources of infections were analysed RESEARCH RESEARCH in a case-control study. The majority of clinical isolates of Y. enterocolitica were found to belong to biotype 1A, the status of which as a true pathogen is controversial. Furthermore, the study investigated the microbiological identification and molecular typing methods for Y. enterocolitica. The MLVA method was found to be appropriate for investigating foodborne outbreaks. in Finland This study adds to the understanding of epidemiology of Y. enterocolitica in Finland and emphasises the importance of correct identification of Yersinia strains in order to evaluate the clinical importance of the microbiological findings. National Institute for Health and Welfare P.O. Box 30 (Mannerheimintie 166) FI-00271 Helsinki, Finland 117 Telephone: 358 29 524 6000 117 117 2013 ISBN 978-952-302-064-1 www.thl.fi RESEARCH NRO 117 2014 Leila M. Sihvonen Clinical isolates of Yersinia enterocolitica in Finland Identification and Epidemiology ACADEMIC DISSERTATION To be presented with the permission of the Faculty of Agriculture and Forestry, University of Helsinki, for public examination in Auditorium 1041, Biocenter 2, Viikinkaari 5, on 17.01.2014, at 12 noon.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Control Biológico De Insectos Plagas
    Volumen 1. Agentes de control biológico Capítulo 5 Bacterias entomopatógenas en Sección II el control biológico de insectos Control biológico Capítulo 6 Hongos entomopatógenos en de insectos plagas el control biológico de insectos plagas Capítulo 7 Virus entomopatógenos en el control biológico de insectos Capítulo 8 Las feromonas en el control de insectos Capítulo 9 Uso de depredadorescomo agentes de control biológico para insectos plaga Capítulo 10 Uso de parasitoides en el control biológico de insectos plagas en Colombia Volumen 1. Agentes de control biológico Capítulo 5 Contenido Bacterias entomopatógenas Introducción . .300 en el control biológico de insectos Historia . .301 Clasificación, huéspedes y uso en control biológico . .302 Chapter 5 Bacterias Gram-positivas . 302 Bacterias Gram-negativas . 316 Entomopathogenic bacteria Historias de éxito y aplicación . 322 in insect biological control Limitaciones en el uso de bacterias entomopatógenas . .324 Conclusiones y perspectivas . .325 Agradecimientos . 325 Referencias . 326 Erika Grijalba,1 Mark Hurst,2 Jorge E. Ibarra,3 Juan Luis Jurat-Fuentes,4 Trevor Jackson2 1 Corporación Colombiana de Investigación Agropecuaria (agrosavia) 2 AgResearch, Lincoln Research Centre y Bio-Protection Research Centre 3 Centro de Investigación y de Estudios Avanzados del ipn (cinvestav) 4 Departament of Entomology and Plant Pathology, University of Tennessee. Resumen Abstract Este capítulo presenta una revisión de las bacterias entomopatógenas que han This chapter reviews entomopathogenic bacteria that have been used in sido utilizadas para el control microbiológico de insectos considerados como microbial control of insect pests and covers their identification, mode of plaga, incluyendo su identificación, modo de acción y uso en el control de action and aspects of their use in pest control .
    [Show full text]
  • Microbial Biopesticides in Agroecosystems
    agronomy Review Microbial Biopesticides in Agroecosystems Luca Ruiu 1,2 1 Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy; [email protected]; Tel.: +39-079-229-326 2 Bioecopest Srl, Technology Park of Sardinia, 07041 Alghero (SS), Italy Received: 11 September 2018; Accepted: 22 October 2018; Published: 23 October 2018 Abstract: Microbial biopesticides include several microorganisms like bacteria, fungi, baculoviruses, and nematode-associated bacteria acting against invertebrate pests in agro-ecosystems. The biopesticide sector is experiencing a significant growth and many discoveries are being developed into new biopesticidal products that are fueling a growing global market offer. Following a few decades of successful use of the entomopathogenic bacterium Bacillus thuringiensis and a few other microbial species, recent academic and industrial efforts have led to the discovery of new microbial species and strains, and of their specific toxins and virulence factors. Many of these have, therefore, been developed into commercial products. Bacterial entomopathogens include several Bacillaceae, Serratia, Pseudomonas, Yersinia, Burkholderia, Chromobacterium, Streptomyces, and Saccharopolyspora species, while fungi comprise different strains of Beauveria bassiana, B. brongniartii, Metarhizium anisopliae, Verticillium, Lecanicillium, Hirsutella, Paecilomyces, and Isaria species. Baculoviruses are species-specific and refer to niche products active against chewing insects, especially Lepidopteran caterpillars. Entomopathogenic
    [Show full text]