Substituent Effects on the Solubility and Electronic Properties of the Cyanine Dye Cy5: Density Functional and Time-Dependent Density Functional Theory Calculations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brief Guide to the Nomenclature of Organic Chemistry
1 Brief Guide to the Nomenclature of Table 1: Components of the substitutive name Organic Chemistry (4S,5E)-4,6-dichlorohept-5-en-2-one for K.-H. Hellwich (Germany), R. M. Hartshorn (New Zealand), CH3 Cl O A. Yerin (Russia), T. Damhus (Denmark), A. T. Hutton (South 4 2 Africa). E-mail: [email protected] Sponsoring body: Cl 6 CH 5 3 IUPAC Division of Chemical Nomenclature and Structure suffix for principal hept(a) parent (heptane) one Representation. characteristic group en(e) unsaturation ending chloro substituent prefix 1 INTRODUCTION di multiplicative prefix S E stereodescriptors CHEMISTRY The universal adoption of an agreed nomenclature is a key tool for 2 4 5 6 locants ( ) enclosing marks efficient communication in the chemical sciences, in industry and Multiplicative prefixes (Table 2) are used when more than one for regulations associated with import/export or health and safety. fragment of a particular kind is present in a structure. Which kind of REPRESENTATION The International Union of Pure and Applied Chemistry (IUPAC) multiplicative prefix is used depends on the complexity of the provides recommendations on many aspects of nomenclature.1 The APPLIED corresponding fragment – e.g. trichloro, but tris(chloromethyl). basics of organic nomenclature are summarized here, and there are companion documents on the nomenclature of inorganic2 and Table 2: Multiplicative prefixes for simple/complicated entities polymer3 chemistry, with hyperlinks to original documents. An No. Simple Complicated No. Simple Complicated AND overall -
Singlet/Triplet State Anti/Aromaticity of Cyclopentadienylcation: Sensitivity to Substituent Effect
Article Singlet/Triplet State Anti/Aromaticity of CyclopentadienylCation: Sensitivity to Substituent Effect Milovan Stojanovi´c 1, Jovana Aleksi´c 1 and Marija Baranac-Stojanovi´c 2,* 1 Institute of Chemistry, Technology and Metallurgy, Center for Chemistry, University of Belgrade, Njegoševa 12, P.O. Box 173, 11000 Belgrade, Serbia; [email protected] (M.S.); [email protected] (J.A.) 2 Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia * Correspondence: [email protected]; Tel.: +381-11-3336741 Abstract: It is well known that singlet state aromaticity is quite insensitive to substituent effects, in the case of monosubstitution. In this work, we use density functional theory (DFT) calculations to examine the sensitivity of triplet state aromaticity to substituent effects. For this purpose, we chose the singlet state antiaromatic cyclopentadienyl cation, antiaromaticity of which reverses to triplet state aromaticity, conforming to Baird’s rule. The extent of (anti)aromaticity was evaluated by using structural (HOMA), magnetic (NICS), energetic (ISE), and electronic (EDDBp) criteria. We find that the extent of triplet state aromaticity of monosubstituted cyclopentadienyl cations is weaker than the singlet state aromaticity of benzene and is, thus, slightly more sensitive to substituent effects. As an addition to the existing literature data, we also discuss substituent effects on singlet state antiaromaticity of cyclopentadienyl cation. Citation: Stojanovi´c,M.; Aleksi´c,J.; Baranac-Stojanovi´c,M. Keywords: antiaromaticity; aromaticity; singlet state; triplet state; cyclopentadienyl cation; substituent Singlet/Triplet State effect Anti/Aromaticity of CyclopentadienylCation: Sensitivity to Substituent Effect. -
Some New Nitrogen Bridgehead Heterocyclic Cyanine Dyes
Some New Nitrogen Bridgehead Heterocyclic Cyanine Dyes A. I. M. KORAIEM, H. A. SHINDY, and R. M. ABU EL-HAMD Department of Chemistry, Aswan Faculty of Science, Aswan, Egypt Received 21 July 1998 Accepted for publication 30 December 1999 New monomethine, trimethine, and azomethine cyanine dyes of pyrazolo^o'iSjôJÍpyrazinio/l^- oxa£Ínio)[2,3,4-ij']quinolin-ll-ium bromides were prepared. These cyanines were identified by ele mental and spectral analyses. The visible absorption spectra of some selected dyes were investigated in single and mixed solvents, and also in aqueous buffer solutions. The spectral shifts are discussed in relation to molecular structure and in terms of medium effects. Molecular complex formation with DMF was verified through mixed-solvent studies. As an extension to our earlier work on the syn Extra quaternization of the former intermediates thesis and studies of cyanine dyes [1—3], some new using an excess amount of ethyl iodide under con nitrogen bridgehead heterocyclic cyanine dye moi trolled conditions gave 9-ethyl-8-R-10-methylpyrazo- eties have been synthesized in view of the applica lo[4^5^5,6](pyrazinio/l,4-oxazinio) [2,3,4- zj']quinolin- bility of such compounds in production of photother- ll(9)-ium bromides iodides (IVa—IVe). Further re mographic imaging materials [4], electrophotographic action of the latter compounds with iV-methylpyridi- lithographic printing material for semiconductor laser nium, -quinolinium, resp. -isoquinolinium iodide in exposure [5], and as indicator and pH sensors [6], or volving active hydrogen atom in the position 11 or as antitumour agents [7]. 8 under piperidine catalysis gave the correspond Within these respects, pyrazolo[4',5':5,6](pyrazi- ing unsymmetrical bromides iodides of 9-ethyl-8-R- nio/1,4-oxazinio) [2,3,4- i,j\ quinolin-11-ium bromides pyrazolo[4^5^5,6](pyrazinio/l,4-oxazinio) [2,3,4- i,j]- Ilia—IIIc were used as key intermediates for the dye quinolin-ll-ium-10[4(l)]-monomethine cyanine dyes synthesis. -
Cyanine Dye–Nucleic Acid Interactions
Top Heterocycl Chem (2008) 14: 11–29 DOI 10.1007/7081_2007_109 © Springer-Verlag Berlin Heidelberg Published online: 23 February 2008 Cyanine Dye–Nucleic Acid Interactions Bruce A. Armitage Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA [email protected] 1Introduction................................... 12 2 Symmetrical Cyanines ............................. 14 2.1 NoncovalentBinding.............................. 14 2.2 CovalentBinding................................ 16 3 Unsymmetrical Cyanines ............................ 17 3.1 NoncovalentBinding.............................. 17 3.1.1InsightsintoPhotophysics........................... 17 3.1.2NewUnsymmetricalDyes............................ 18 3.1.3Applications................................... 21 3.2 CovalentBinding................................ 23 3.2.1DNA-ConjugatedDyes............................. 24 3.2.2PNA-ConjugatedDyes.............................. 25 3.2.3Peptide-andProtein-ConjugatedDyes.................... 26 4Conclusions................................... 27 References ....................................... 28 Abstract Cyanine dyes are widely used in biotechnology due to their ability to form fluor- escent complexes with nucleic acids. This chapter describes how the structure of the dye determines the mode in which it binds to nucleic acids as well as the fluorescence prop- erties of the resulting complexes. Related dyes, such as hemicyanines and styryl dyes, are briefly described as well. In addition, covalent conjugates -
Nomenclature of Alkanes
Nomenclature of alkanes methane CH4 ethane CH3CH3 propane CH3CH2CH3 butane CH3CH2CH2CH3 pentane CH3CH2CH2CH2CH3 hexane CH3CH2CH2CH2CH2CH3 heptane CH3CH2CH2CH2CH2CH2CH3 octane CH3CH2CH2CH2CH2CH2CH2CH3 nonane CH3CH2CH2CH2CH2CH2CH2CH2CH3 decane CH3CH2CH2CH2CH2CH2CH2CH2CH2CH3 undecane CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH3 dodecane CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH3 Funky groups/alkanes iso- CH3 R isopropyl HC R CH3 isobutane/isobutyl R = CH3/CH2R (4 C’s) R isopentane/isopentyl R = CH2CH3/CH2CH2R (5 C’s) R isohexane/isohexyl R = CH2CH2CH3/CH2CH2R (6 C’s) R neo- CH3 neopentyl H3C C CH2 R R CH3 neopentane R = H (5 C’s) neohaxane/neohexyl R = CH3/CH2R (6 C’s) R 1° primary (n-) 2° secondary (sec-, s-) 3° tertiary (tert-, t-) H C H C H3C 3 3 CH CH2 CH CH2 CH CH2 H C CH H C CH H3C CH3 3 3 3 3 n- often used with strait chain compounds though it is not actually necessary. sec- sec-butyl H the substituent is attached s-butyl to a 2° C of butane (4 C’s) H3C CH2 C R CH3 no other "sec-" group tert- tert-butyl CH3 a substituent is attached to t-butyl the 3° C of a 4 C H3C C R molecule/unit CH3 tert-pentyl CH3 a substituent is attached to t-pentyl the 3° of a 5 C molecule/unit H3C CH2 C R CH3 no other "tert-" group Form of name #-followed by substituent name followed by parent hydrocarbon name • Determine longest continuous chain. o This is the parent hydrocarbon o If compound has two or more chains of the same length, parent hydrocarbon is chain with greatest number of substituents • Cite the name of substituent before the name of the parent hydrocarbon along with the number of the carbon to which it is attached--Substituents are listed in alphabetical order – neglecting prefixes such as di- tri- tert- etc. -
Synthesis of Near-Infrared Heptamethine Cyanine Dyes
Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry 4-26-2010 Synthesis of Near-Infrared Heptamethine Cyanine Dyes Jamie Loretta Gragg Georgia State University, [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Gragg, Jamie Loretta, "Synthesis of Near-Infrared Heptamethine Cyanine Dyes." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/chemistry_theses/28 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SYNTHESIS OF NEAR-INFRARED HEPTAMETHINE CYANINE DYES by JAMIE L. GRAGG Under the Direction of Dr. Maged M. Henary ABSTRACT Carbocyanine dyes are organic compounds containing chains of conjugated methine groups with electron-donating and electron-withdrawing substituents at the terminal 1 2 + - heterocycles of the general formula [R -(CH)n-R ] X . The synthetic methodology and optical properties of carbocyanines will be discussed. This thesis consists of two parts: (A) synthesis and optical properties of novel carbocyanine dyes substituted with various amines and the synthesis of unsymmetrical carbocyanine dyes containing monofunctional groups for bioconjugation. (B) synthesis of heptamethine carbocyanine dyes to be used for image-guided surgery. ii In part A, the synthesis of carbocyanine dyes functionalized with various amines and studies of their optical properties with respect to absorbance, fluorescence, quantum yield and extinction coefficient will be presented. These property studies will aid in designing efficient dyes for future biomedical applications. -
Two-Photon Excited Photoconversion of Cyanine-Based Dyes
Two-photon excited photoconversion of cyanine-based dyes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kwok, Sheldon J. J. et al. “Two-Photon Excited Photoconversion of Cyanine-Based Dyes.” Scientific Reports 6 (2016): 23866. © 2016 Macmillan Publishers Limited As Published http://dx.doi.org/10.1038/srep23866 Publisher Nature Publishing Group Version Final published version Citable link http://hdl.handle.net/1721.1/108348 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ www.nature.com/scientificreports OPEN Two-photon excited photoconversion of cyanine-based dyes Sheldon J. J. Kwok1,2,*, Myunghwan Choi1,3,*, Brijesh Bhayana1, Xueli Zhang4,5, Chongzhao Ran4 & Seok-Hyun Yun1,2 Received: 14 October 2015 The advent of phototransformable fluorescent proteins has led to significant advances in optical Accepted: 15 March 2016 imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these Published: 31 March 2016 proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine- based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. -
Marvin Charton - Correlation Analyst Par Excellence
Int. J. Mol. Sci. 2005, 6, 3-10 International Journal of Molecular Sciences ISSN 1422-0067 © 2005 by MDPI www.mdpi.org/ijms/ Marvin Charton - Correlation Analyst Par Excellence John Shorter 29A, Meadowfields, Whitby, North Yorkshire, YO21 1QF, UK. (Emeritus Reader in Chemistry, University of Hull), email: [email protected] Received: 10 September 2004 / Accepted: 19 October 2004 / Published: 31 January 2005 Abstract: Since the late 1950s Marvin Charton, physical organic chemist, of Pratt Institute, Brooklyn, New York has studied structure-property relationships through correlation analysis, and has become one of the leading authorities in this field. Keywords: Hammett equation, correlation analysis, linear free energy relationships, substituent effects and constants, biological activity. Introduction Marvin Charton, of Pratt Institute, Brooklyn, New York, describes his research interests in his CV as follows: "The study of structure-property quantitative relationships in chemistry and biology by means of correlation analysis. Applications of this work include chemical reaction mechanisms, the estimation of chemical and physical properties and chemical reactivities of chemical compounds, the design of bioactive molecules including medicinal drugs and pesticides, and the prediction of environmental toxicities and other properties." His first paper in this field appeared in 1958 and he has now published over 150 research papers and review articles. Marvin's forebears came to the USA from eastern Europe in the late 19th century. His surname may sound French, but his ancestry was Polish, and the relatives who came from Poland to America had the name of Charton. He sometimes suggests, half in fun, that one of his ancestors may have accompanied Napoleon from France to Moscow in 1812, but during the great retreat, by the time they reached Poland he was a little tired of marching, so he absented himself, and found a good place to live and a nice Polish girl to marry... -
Water-Soluble Pyrrolopyrrole Cyanine (Ppcy) NIR Fluorophores† Cite This: Chem
Erschienen in: Chemical Communications ; 2014, 50. - S. 4755-4758 ChemComm View Article Online COMMUNICATION View Journal | View Issue Water-soluble pyrrolopyrrole cyanine (PPCy) NIR fluorophores† Cite this: Chem. Commun., 2014, 50, 4755 Simon Wiktorowski, Christelle Rosazza, Martin J. Winterhalder, Ewald Daltrozzo Received 7th February 2014, and Andreas Zumbusch* Accepted 21st March 2014 DOI: 10.1039/c4cc01014k www.rsc.org/chemcomm Water-soluble derivatives of pyrrolopyrrole cyanines (PPCys) have been dyes, BODIPYs or others.7 Notable are also advances in other fields, synthesized by a post-synthetic modification route. In highly polar like the engineering of GFP-related fluorescing proteins or quantum media, these dyes are excellent NIR fluorophores. Labeling experiments dots, which have resulted in the synthesis of novel systems with NIR show how these novel dyes are internalized into mammalian cells. emission.8 To date, however, only a few water-soluble dyes with strong NIR absorptions and emissions have been known. Apart from the Near-infrared (NIR) light absorbing and emitting compounds have general scarcity of NIR absorbing molecules, the main reason for this attracted a lot of interest since the 1990’s.1 Initially, this was motivated is that NIR absorption is commonly observed in extended p-systems by their use in optical data storage or as laser dyes. Recently, however, which most often are hydrophobic. The incorporation of hydrophilic new applications of NIR dyes have emerged, which has led to a surge of functionalities into -
Chiral Indole Intermediates and Their Fluorescent
(19) TZZ_ _T (11) EP 1 525 265 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C09B 23/02 (2006.01) G01N 33/58 (2006.01) 20.07.2011 Bulletin 2011/29 G01N 33/533 (2006.01) C12Q 1/00 (2006.01) C07D 491/22 (2006.01) C07D 403/06 (2006.01) (21) Application number: 03808367.1 (86) International application number: (22) Date of filing: 09.05.2003 PCT/US2003/014632 (87) International publication number: WO 2004/039894 (13.05.2004 Gazette 2004/20) (54) CHIRAL INDOLE INTERMEDIATES AND THEIR FLUORESCENT CYANINE DYES CONTAINING FUNCTIONAL GROUPS CHIRALE INDOLE ALS ZWISCHENPRODUKTE UND DARAUS HERGESTELLTE CYANINFLUORESZENZFARBSTOFFE MIT FUNKTIONELLEN GRUPPEN INTERMEDIAIRES CHIRAUX D’INDOLE ET LEURS COLORANTS DE CYANINE FLUORESCENTS CONTENANT DES GROUPES FONCTIONNELS (84) Designated Contracting States: • WEST, Richard Martin, AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Amersham Biosciences UK Ltd. HU IE IT LI LU MC NL PT RO SE SI SK TR Buckinghamshire HP7 9NA (GB) (30) Priority: 10.05.2002 US 379107 P (74) Representative: Franks, Barry Gerard et al GE Healthcare Limited (43) Date of publication of application: Amersham Place 27.04.2005 Bulletin 2005/17 Little Chalfont Buckinghamshire HP7 9NA (GB) (60) Divisional application: 10178959.2 / 2 258 776 (56) References cited: WO-A-02/26891 US-A- 5 268 486 (73) Proprietors: US-A- 6 133 445 US-A- 6 133 445 • CARNEGIE MELLON UNIVERSITY US-B1- 6 180 087 Pittsburgh, Pennsylvania 15213 (US) • GE Healthcare Limited Remarks: Little Chalfont Thefilecontainstechnicalinformationsubmittedafter Buckinghamshire HP7 9NA (GB) the application was filed and not included in this specification (72) Inventors: • MUJUMDAR, Ratnaker, B. -
Orientation of Cyanine Fluorophores Terminally Attached to DNA Via Long, Flexible Tethers
1148 Biophysical Journal Volume 101 September 2011 1148–1154 Orientation of Cyanine Fluorophores Terminally Attached to DNA via Long, Flexible Tethers Jonathan Ouellet, Stephanie Schorr, Asif Iqbal, Timothy J. Wilson, and David M. J. Lilley* Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, United Kingdom ABSTRACT Cyanine fluorophores are commonly used in single-molecule FRET experiments with nucleic acids. We have previously shown that indocarbocyanine fluorophores attached to the 50-termini of DNA and RNA via three-carbon atom linkers stack on the ends of the helix, orienting their transition moments. We now investigate the orientation of sulfoindocarbocyanine fluorophores tethered to the 50-termini of DNA via 13-atom linkers. Fluorescence lifetime measurements of sulfoindocarbocya- nine 3 attached to double-stranded DNA indicate that the fluorophore is extensively stacked onto the terminal basepair at 15C, with properties that depend on the terminal sequence. In single molecules of duplex DNA, FRET efficiency between sulfoindo- carbocyanine 3 and 5 attached in this manner is modulated with helix length, indicative of fluorophore orientation and consistent with stacked fluorophores that can undergo lateral motion. We conclude that terminal stacking is an intrinsic property of the cyanine fluorophores irrespective of the length of the tether and the presence or absence of sulfonyl groups. However, compared to short-tether indocarbocyanine, the mean rotational relationship between the two fluorophores is changed by ~60 for the long- tether sulfoindocarbocyanine fluorophores. This is consistent with the transition moments becoming approximately aligned with the long axis of the terminal basepair for the long-linker species. -
USE and ASSESSMENT of MARKER DYES USED with HERBICIDES
SERA TR 96-21-07-03b USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Prepared by: Michelle Pepling1, Phillip H. Howard1, Patrick R. Durkin2, 1Syracuse Research Corporation 6225 Running Ridge Road North Syracuse, New York 13212-2509 2Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., Building 42C Fayetteville, New York 13066-0950 Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 TABLE OF CONTENTS TABLE OF CONTENTS .....................................................ii ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................. iii 1. INTRODUCTION .....................................................1 2. CURRENT PRACTICE .................................................2 3. GENERAL CONSIDERATIONS .........................................3 3.1. DEFINITIONS .................................................3 3.2. CLASSES OF DYES .............................................4 3.3.