Seismic Imaging of the Scandinavian Caledonides to Define ICDP Drilling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland
44 by David G. Gee1, Haakon Fossen2, Niels Henriksen3, and Anthony K. Higgins3 From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland 1 Department of Earth Sciences, Uppsala University, Villavagen Villavägen 16, Uppsala, SE-752 36, Sweden. E-mail: [email protected] 2 Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway. E-mail: [email protected] 3 The Geological Survey of Denmark and Greenland, Øster Voldgade 10, Dk 1350 Copenhagen, Denmark. E-mail: [email protected], [email protected] The Caledonide Orogen in the Nordic countries is exposed in Norway, western Sweden, westernmost Fin- Introduction land, on Svalbard and in northeast Greenland. In the The Caledonide Orogen is preserved on both sides of the North mountains of western Scandinavia, the structure is dom- Atlantic Ocean, in the mountains of western Scandinavia and north- inated by E-vergent thrusts with allochthons derived eastern Greenland; it continues northwards from northern Norway, across the Barents Shelf and Svalbard to the edge of the Eurasian from the Baltoscandian platform and margin, from out- Basin (Figure 1). The orogen is notable for its thrust systems, board oceanic (Iapetus) terranes and with the highest E-vergent in Scandinavia and W-vergent in Greenland. The width of the orogen, prior to Cenozoic opening of the North Atlantic, was in thrust sheets having Laurentian affinities. The other the order of at least 700–800 km, the deformation fronts on both side of this bivergent orogen is well exposed in north- sides of the orogen being defined by thrusts that, in the Devonian, eastern Greenland, where W-vergent thrust sheets probably reached substantially further onto the foreland platforms than they do today. -
The Terrane Concept and the Scandinavian Caledonides: a Synthesis
The terrane concept and the Scandinavian Caledonides: a synthesis DAVID ROBERTS Roberts , D. 1988: The terrane concept and the Scandinavian Caledonides: a synthesis. Nor. geol . unders . Bull. 413. 93-99. A revised terrane map is presented for the Scandinavian Caledcnldes. and an outline is given of the principal suspect and exot ic terranes and terrane-complexe s identified outboa rd from the Baltoscand ian miogeocline. The outermost part of the Baltoscandian continental margin is itself suspect , in the terrane sense. since the true palaeogeographical location s of rocks now represented in the Seve and serey-seuano Nappes, while inferred, are not known. The orogen -internal exotic terranes embrace the oceanic/eugeoclinal elements of the Caledonides, represented by the mag matosed imentary assemblages of the Koli Nappes, including ophiolite fragments and island arc products. Even more exot ic terranes occur in the highest parts of the tectonostratigraphy, inclu ding units which are thought possibly to derive from the Laurentian side of lapetus . D. Roberts. Norges geologiske uruierseketse, Postboks 3006. Lade, N-7002 Trondbeim , Norway . Introduction Project 233 has been to prepare a preliminary Earlier in this decade much of the research terrane map' at 1:5 M scale (Roberts et al. effort in the Caledonides of Scandinavia was 1986) for a larger, circum-Atlantic compilation. channelled through the highly successfu l IGCP This map, much simplified, is really one of Project 27 The Caledonide Orogen ' (Gee & palaeo-environments (marginal basins, vol Sturt 1985). An important aspect of the collabo canic arc comp lexes, overstep sequences , rative work in this project was that of map etc.), and not of terranes in the true sense. -
Rare-Earth Elements in the Swedish Alum Shale Formation: a Study Of
Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2019: 29 Rare-Earth Elements in the Swedish Alum Shale Formation: A Study of Apatites in Fetsjön, Västerbotten Sällsynta jordartsmetaller i Sveriges alunskiffer: en studie av apatiter i Fetsjön, Västerbotten Fredrik Engström DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2019: 29 Rare-Earth Elements in the Swedish Alum Shale Formation: A Study of Apatites in Fetsjön, Västerbotten Sällsynta jordartsmetaller i Sveriges alunskiffer: en studie av apatiter i Fetsjön, Västerbotten Fredrik Engström Copyright © Fredrik Engström Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2019 Abstract Rare-Earth Elements in the Swedish Alum Shale Formation: A Study of Apatites in Fetsjön, Västerbotten Fredrik Engström The Caledonian alum shales of Sweden host a vast number of economically interesting metals. In Fetsjön, Västerbotten, the shales contain significant amounts of rare-earth elements, vanadium, molybdenum and uranium. As metals with a multitude of high- technological applications, the former rare-earth elements (REEs) are particularly attractive in a world where the supply may be exhausted as the demand continuously increase while new deposits are not being discovered fast enough. Meanwhile, the latter uranium notably constitutes as an unwanted secondary product during the extraction of rare-earth elements. As the mineral association of the REEs in Fetsjön is unknown, the intent of this study is to analyze and thus determine their mineralogical expression. The assumed REE- bearing mineral apatite was confirmed to host the rare-earths in the Fetsjön shales after microscopy and spectrometry analyses. -
Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events. -
Geochronology and Geochemistry of Zircon from the Northern Western Gneiss Region: Insights Into the Caledonian Tectonic History of Western Norway
Lithos 246–247 (2016) 134–148 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Geochronology and geochemistry of zircon from the northern Western Gneiss Region: Insights into the Caledonian tectonic history of western Norway Stacia M. Gordon a,⁎, Donna L. Whitney b, Christian Teyssier b, Haakon Fossen c, Andrew Kylander-Clark d a Department of Geological Sciences, University of Nevada, Reno, NV 89557, USA b Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA c Department of Earth Science and Museum of Natural History, University of Bergen, N-5020 Bergen, Norway d Department of Earth Science, University of California, Santa Barbara, CA 93106, USA article info abstract Article history: The Western Gneiss Region (WGR) of Norway is divided by the Møre-Trøndelag shear zone (MTSZ) into a south- Received 6 September 2015 ern region that contains domains of Caledonian ultrahigh-pressure (UHP) metamorphic rocks (N2.5 GPa) and a Accepted 25 November 2015 northern area of similar Caledonian-aged rocks that record a maximum pressure reported thus far of ~1.5 GPa. Available online 17 December 2015 Although both regions contain similar lithologies (primarily migmatitic quartzofeldspathic gneiss containing mafic lenses) and structural relationship of basement rocks to infolded nappes, this difference in maximum pres- Keywords: sure implies a difference in tectonic history (continental subduction south of the shear zone, none to the north) Western Gneiss Region Zircon and raises questions about the role of the MTSZ in the metamorphic history (including exhumation) of the WGR. Split-stream Previous geochronology results indicated a difference in timing of peak metamorphism (older in north, younger LA-ICPMS in south). -
A Reflection Seismic Image of Caledonian Structure in Central Sweden
H. PALM, D.G. GEE, D. DYRELIUS AND L. BJORKLUND A REFLECTION SEISMIC IMAGE OF CALEDONIAN STRUCTURE IN CENTRAL SWEDEN UPPSALA 1991 SVERIGES GEOLOGISKA UNDERSOKNING SER Ca AVHANDLINGAR OCH UPPSATSER NR 75 H. PALM, D.G. GEE, D. DYRELIUS AND L. BJORKLUND A REFLECTION SEISMIC IMAGE OF CALEDONIAN STRUCTURE IN CENTRAL SWEDEN UPPSALA 1991 ISBN 9 1-7 158-489-7 ISSN 0348- 1352 Ham Palm and Dan Dyrelius Department of Solid Earth Physics University of Uppsala Box 556, S-7 5 1 22 Uppsala, Sweden David Gee and Lennart Bjijrklund Department of Geology University of Lund Sijlvegatan 1 3, S-223 62 Lund, S weden Redigering och layout : SGU, Uppsala Tryck: Offsetcenter AB, Uppsala 199 1 CONTENTS ABSTRACT ....................................................... Alternative interpretations ................................. INTRODUCTION ................................................ Uppermost structure ......................................... Outline of the geology ......................................... Tannfors Synform ....................................... Autochthon ................................................... Mullfjallet Antiform .................................... Lower Allochthon ........................................... Are Synform .............................................. Middle Allochthon .......................................... Gently hinterland-dipping reflections .............. Upper Alloch thon ........................................... Deeper structure of the upper crust ....................... Structure ...................................................... -
Early Caledonian Tectonothermal Evolution in Outboard Terranes, Central Scandinavian Caledonides: New Constraints from U-Pb Zircon Dates
Journal of the Geological Society, London, Vol. 150, 1993, pp. 51-56, 4 figs, 1 table. Printed in Northern Ireland Early Caledonian tectonothermal evolution in outboard terranes, central Scandinavian Caledonides: new constraints from U-Pb zircon dates M. B. STEPHENS l,K. KULLERUD 2'3&S.CLAESSON 2 ~Geological Survey of Sweden, Box 670, S-751 28 Uppsala, Sweden 2Museum of Natural History, Laboratory of Isotope Geology, Box 50007, S-104 05 Stockholm, Sweden 3present address: Department of Geology, University of Oslo, Box 1047, N-0316 Oslo 3, Norway Abstract: Early Caledonian deformation in an outboard terrane (Stort]fillet) in the central Scandinavian Caledonides is constrained to the time-period Arenig to Caradoc on the basis of U-Pb zircon age determin- ations. A trondhjemite clast in a conglomerate belonging to a supracrustal sequence that was affected by the early deformational event yields an age of 489_+10 5 Ma. A granite intruded after this event defines an age of 44 J-6~ + 24 Ma. The clast is similar in age to a trondhjemite intrusion in a contiguous terrane (Gjersvik) dated at 483+~Ma and the granite age is in agreement with a Rb-Sr whole-rock isochron of 438 5= 6 Ma determined in a previous study. The three new ages provide further evidence for the separation of igneous events in outboard terranes in the Scandinavian Caledonides into older (Tremadoc to Arenig) and younger (Late Ordovician to Early Silurian) episodes. More critically, they argue against simple correlation of early Caledonian deformational events in outboard terranes with the Late Cambrian to Early Ordovician tectonometamorphic history along the margin of the continent Baltica (the so-called Finnmarkian orogenic phase). -