Rare-Earth Elements in the Swedish Alum Shale Formation: a Study Of
Total Page:16
File Type:pdf, Size:1020Kb
Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2019: 29 Rare-Earth Elements in the Swedish Alum Shale Formation: A Study of Apatites in Fetsjön, Västerbotten Sällsynta jordartsmetaller i Sveriges alunskiffer: en studie av apatiter i Fetsjön, Västerbotten Fredrik Engström DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Independent Project at the Department of Earth Sciences Självständigt arbete vid Institutionen för geovetenskaper 2019: 29 Rare-Earth Elements in the Swedish Alum Shale Formation: A Study of Apatites in Fetsjön, Västerbotten Sällsynta jordartsmetaller i Sveriges alunskiffer: en studie av apatiter i Fetsjön, Västerbotten Fredrik Engström Copyright © Fredrik Engström Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2019 Abstract Rare-Earth Elements in the Swedish Alum Shale Formation: A Study of Apatites in Fetsjön, Västerbotten Fredrik Engström The Caledonian alum shales of Sweden host a vast number of economically interesting metals. In Fetsjön, Västerbotten, the shales contain significant amounts of rare-earth elements, vanadium, molybdenum and uranium. As metals with a multitude of high- technological applications, the former rare-earth elements (REEs) are particularly attractive in a world where the supply may be exhausted as the demand continuously increase while new deposits are not being discovered fast enough. Meanwhile, the latter uranium notably constitutes as an unwanted secondary product during the extraction of rare-earth elements. As the mineral association of the REEs in Fetsjön is unknown, the intent of this study is to analyze and thus determine their mineralogical expression. The assumed REE- bearing mineral apatite was confirmed to host the rare-earths in the Fetsjön shales after microscopy and spectrometry analyses. Keywords: apatite, rare-earth elements, uranium, alum shales, caledonides Independent Project in Earth Science, 1GV029, 15 Credits, 2019 Supervisor: Jaroslaw Majka Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) The whole document is available at www.diva-portal.org Sammanfattning Sällsynta jordartsmetaller i Sveriges alunskiffer: en studie av apatiter i Fetsjön, Västerbotten Fredrik Engström Alunskiffern längs Sveriges Kaledoniska front innehåller ett flertal ekonomiskt attraktiva metaller. I Fetsjön, Västerbotten, består denna alunskiffer av höga halter med sällsynta jordartsmetaller, vanadin, molybden och uran. Sällsynta jordartsmetaller har ett flertal högteknologiska användningsområden och är därmed särskilt intressanta i dagsläget då tillgångarna kan sina allt eftersom den globala efterfrågan överstiger takten av att nya tillgångar hittas. Samtidigt medför uranhalten ett problem som en oönskad sekundärprodukt under utvinningen. Då kännedomen om vilka mineral som bär på de sällsynta jordartsmetallerna är okänd så är syftet med denna studie att analysera och därmed fastställa vilka mineral de är associerade med. Mineralet apatit som antogs vara bäraren av metallerna bekräftades även att innehålla dessa efter mikroskop- och spektrometeranalyser. Nyckelord: apatit, sällsynta jordartsmetaller, uran, alunskiffer, kaledoniderna Självständigt arbete i geovetenskap, 1GV029, 15 hp, 2019 Handledare: Jaroslaw Majka Institutionen för geovetenskap, Uppsala Universitet, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) Hela publikationen finns tillgänglig på www.diva-portal.org Table of Contents Introduction ............................................................................................................................................ 1 Background ............................................................................................................................................ 2 Geology .............................................................................................................................................. 2 Fetsjön ................................................................................................................................................ 3 Previous Work ....................................................................................................................................... 8 Method .................................................................................................................................................. 10 Results .................................................................................................................................................. 12 Discussion ............................................................................................................................................ 20 Recovery .......................................................................................................................................... 20 Conclusion ........................................................................................................................................... 20 Acknowledgements ............................................................................................................................ 21 References .......................................................................................................................................... 21 Introduction It is often said that rare-earth elements (REEs) ironically, are not that rare. This statement is applicable to the lighter REEs but does not apply to the heavier ones. More importantly, REEs are very unevenly distributed throughout the world, of which the vast majority – about 90% – is extracted in China. Rare-earth elements are critical resources used for a variety of high-technological applications, and as the demand for the heavy REEs increase drastically the world may soon face a supply shortage. Thus, new deposits of REEs are needed and exploration for the resources are ongoing (Kanazawa & Kamitani 2005). All the way from Finnmark in Norway to Skåne in Sweden, along the Scandinavian mountains, there is a thin shale formation deposited on the Baltoscandian platform. This Alum Shale Formation is significant in that it hosts a variety of economically interesting materials. In recent times, it has garnered attention as it contains vanadium, molybdenum, nickel, copper, and uranium but more importantly – rare-earth elements. The purpose of this study is to determine the minerals constituting the rare-earth elements in the alum shales of Fetsjön, an area currently being prospected by the company Eurobattery Minerals. Fetsjön is located in Västerbotten, 40 km northwest of the town Dorotea along the Caledonian Front. Analyses of drill core samples taken from SGU Malå will be performed using standard microscopy and spectrometry methods to confirm whether or not apatites carry the rare-earths. The shales of Fetsjön fall into two separate lithological categories that repeat throughout the stratigraphy of Fetsjön - phosphoritic and graphitic shale. Previous geochemical analyses of the shales in Fetsjön have been carried out by Mawson Resources and show high concentrations of rare-earth elements as well as uranium, vanadium, molybdenum, nickel and copper. The rare-earth elements and uranium appear to be associated with units of phosphoritic shale while V, Mo, Ni and Cu are enriched in graphitic shale units. However, knowledge regarding the mineral association of the mentioned elements is lacking. Due to their continually increased industrial importance, REEs are of particular interest in this study and requires a mineralogical examination so that the development of Fetsjön may continue. Furthermore, as the shales are uranium-bearing and because rare-earth elements often are found together with uranium, it is feasible that the REEs are associated with uranium, which would present itself as a problem due to the Swedish laws surrounding uranium according to minerallagen (1991:45). 1 Background Geology During the Silurian-Devonian, the continents of Avalonia, Laurentia and Baltica collided as a result of the Iapetus Ocean closing. Consequently, a large-scale mountain building era known as the Caledonian Orogeny initiated. The remnants of the orogeny can be found in the Appalachians of eastern North America, in Ireland and Scotland, in Svalbard and Greenland, as well as the Scandinavian mountains of northern Europe (Gee et al. 2010), see figure 1. It was during the Lower Paleozoic, a timeframe when the Baltoscandian platform was characterized by tectonic stability, that the alum shale formation was deposited (Andersson 1985). What follows is a description of the geological background and setting prior that deposition. The Scandian collisional orogeny took place in the Silurian-Devonian and led to the continent of Laurentia being underthrusted by Baltica (Gee et al. 2008). This orogen has been recognized to have been on the scale of Himalayan proportions. However, since then the mountains have undergone significant erosion (Gee et al. 2010). A distinct trait of this orogen is an array of nappes thrusts in a west to east direction, divided into a series of allochthons (figure 2). Deformation led to gentle and upright folds in the eastern part of the orogen and when going westwards, these gradually become tighter with isoclinal and recumbent elements (Gee & Sturt 1985). Figure 1. Map illustrating the Caledonian mountain chains areas during Early Devonian (Wikimedia Commons 2008). 2 Dominating the orogenic structure of the