Histoire De La Cosmologie

Total Page:16

File Type:pdf, Size:1020Kb

Histoire De La Cosmologie Histoire de la cosmologie Un cours offert aux étudiants de la Faculté des lettres, de la Faculté de biologie et de médecine, de la Faculté de géosciences et environnement, de la Faculté des sciences sociales et politiques et de la Faculté de théologie et de sciences des religions de l’Université de Lausanne dans le cadre de « Sciences au carré » Histoire de la cosmologie Histoire de la cosmologie 10 – Etoiles et galaxies 10.1 Etoiles et amas d’étoiles 10.2 Naissance des étoiles 10.3 Diagrammes H-R et C-M 10.4 Mort des étoiles Prof. Georges Meylan 10.5 Nébuleuse ou galaxie Laboratoire d’astrophysique 10.6 La Voie lactée, notre Galaxie Ecole Polytechnique Fédérale de Lausanne 10.7 Classification morphologique des galaxies 10.8 Groupes et amas de galaxies Site web du laboratoire et du cours : http://lastro.epfl.ch Voir le fichier 10-EtoilesetGalaxies.pdf sur le site web du laboratoire et du cours : http://lastro.epfl.ch Histoire de la cosmologie 10.1 10 – Etoiles et galaxies Bibliographie succincte Etoiles et amas d’étoiles • CELNIKIER, Ludwik M. Find a Hotter Place ! A History of Nuclear Astrophysics. London : World Scientific, 2006. • CHABERLOT, Frédéric. La Voie Lactée : Histoire des conceptions et des modèles de notre Galaxie des temps anciens aux années 1930. Paris : CNRS Editions, 2003. • COLLIN-ZAHN, Suzy. Des quasars aux trous noirs. Paris : EDP, 2009. • LEQUEUX, James. Naissance, évolution et mort des étoiles. Paris: EDP, 2011 • LUMINET, Jean-Pierre. Le destin de l’Univers. Paris : Fayard, 2006. APOD APOD 2010 April 18 2010 April 18 Grande Grande éruption éruption solaire solaire Satellite Stereo Satellite Stereo NASA NASA Notre Soleil est une étoile isolée rayon = 700’000 km rayon = 700’000 km à 150’000’000 km de la Terre à 150’000’000 km de la Terre Un amas ouvert tel que les Pléiades contient quelques centaines d’étoiles Amas ouvert h et χ Per L’amas globulaire 47 Tucanae Un amas globulaire contient quelques millions d’étoiles Un amas globulaire tel que ω Centauri contient quelques millions d’étoiles WFI camera at the 2.2-m MPG-ESO telescope at La Silla Observatory Un amas globulaire tel que ω Centauri Un amas globulaire tel que ω Centauri contient quelques millions d’étoiles contient quelques millions d’étoiles WFI camera at the 2.2-m MPG-ESO telescope at La Silla Observatory WFI camera at the 2.2-m MPG-ESO telescope at La Silla Observatory l’amas globulaire géant Omega Centauri VST ESO Paranal Chili Un amas globulaire tel que ω Centauri contient quelques millions d’étoiles June 2011 l’amas globulaire géant Omega Centauri VST ESO Paranal Chili l’amas globulaire géant Omega Centauri VST ESO Paranal Chili June 2011 June 2011 Visible/infrared comparison views of the newly discovered globular cluster VVV CL001 Problème à N corps Let a number, N, of particles interact classically through Newton's Laws of Motion and Newton's inverse square Law of Gravitation. The resulting equations of motion provide an approximate mathematical model with numerous applications in astrophysics, including the motion of the moon and other bodies in the Solar System (planets, asteroids, comets and meteor particles); stars in stellar systems ranging from binary and other multiple stars to star clusters and galaxies; and the motion of dark matter particles in cosmology. For N=1 and N=2 the equations can be solved analytically. The case N=3 provides one of the richest of all unsolved dynamical problems -- the general three-body problem. For problems dominated by one massive body, as in many planetary problems, approximate methods based on perturbation expansions have been developed. In stellar dynamics, astrophysicists have developed numerous numerical and theoretical approaches to the problem for larger values of N, including treatments based on the Boltzmann equation and the Fokker-Planck equation; such N-body systems can also be modelled as self-gravitating gases, and thermodynamic insights underpin much of our qualitative understanding. Douglas Heggie http://fr.arxiv.org/abs/astro-ph/0503600v2 ESO VISTA October 2011 Les trois lois de la mécanique newtonienne Problème à deux corps • Lex prima : de Newton Tout corps persévère dans l’état de repos ou de mouvement rectiligne uniforme à moins que quelque force n’agisse sur lui et ne le contraigne à changer d’état » • Lex secunda : de Newton Les changements qui arrivent dans le mvt sont proportionnels à la force motrice et se font dans la ligne droite dans laquelle cette force a été imprimée » • Lex tertia : de Newton L’action est toujours égale et opposée à la réaction, i.e., que les actions de deux corps l’un sur l’autre sont toujours égales et de direction opposées » Problème à deux corps Problème à deux corps Problème à deux corps Problème à deux corps 10.2 Naissance des étoiles Zoom into IC 2948 showing(a(group(( of(thick(clouds( IC 2948 / IC 2944 (of(dust(known(as( Running Chicken the(Thackeray( Nebula globules( Gum 39 & Gum 41 effondrement gravitationnel de nuages de gaz et de poussière la turbulence crée une hiérarchie de condensations comme la turbulence diminue localement, la contraction s’amorce dans chacune des condensations tandis que des régions se contractent, comme la turbulence diminue localement, des condensations individuelles s’effondrent et forme des étoiles la contraction s’amorce dans chacune des condensations tandis que des régions se contractent, tandis que des régions se contractent, des condensations individuelles s’effondrent et forme des étoiles des condensations individuelles s’effondrent et forme des étoiles tandis que des régions se contractent, dans les amas d’étoiles denses, des condensations peuvent fusionner des condensations individuelles s’effondrent et forme des étoiles lors de leur effondrement et donc contenir plusieurs proto-étoiles dans les amas d’étoiles denses, des condensations peuvent fusionner dans les amas d’étoiles denses, des condensations peuvent fusionner lors de leur effondrement et donc contenir plusieurs proto-étoiles lors de leur effondrement et donc contenir plusieurs proto-étoiles dans les amas d’étoiles denses, des condensations peuvent fusionner dans les amas d’étoiles denses, des condensations peuvent fusionner lors de leur effondrement et donc contenir plusieurs proto-étoiles lors de leur effondrement et donc contenir plusieurs proto-étoiles les rencontres gravitationnelles dans les amas d’étoiles denses, peuvent induire l’éjection d’étoiles les effets dynamique à N-corps influencent la croissance des masses les vents stellaires mettent fin à la formation d’étoiles il résulte un amas d’étoiles, parfois entouré d’une région HII 30 Doradus HST NASA/ESA Equilibre hydrostatique Equilibre hydrostatique Durant la séquence principale, l'étoile est en équilibre hydrostatique, elle subit deux forces qui s'opposent et la maintiennent en équilibre : d'une part les réactions thermonucléaires qui ont lieu au cœur de l'étoile exercent une pression (gazeuse et radiative) qui tend à la faire augmenter de volume, ce qui entraîne une diminution de la température de l'étoile ; d'autre part les forces de gravité reprennent le dessus lorsque la pression (gazeuse et radiative) diminue, elles ont tendance à la faire se contracter et donc à augmenter la température de l'étoile, de sorte que les réactions nucléaires s'intensifient et que la pression (gazeuse et radiative) augmente à nouveau. en tout point, le gradient de pression équilibre la gravitation en tout point, le gradient de pression équilibre la gravitation La constellation d’Orion La constellation d’Orion contient une pouponnière d’étoiles La nébuleuse d’Orion vue par le Hubble Space Telescope Gas in the Eagle Nebula (M16) : Pillars of Creation in a Star-Forming Region NASA/ESA 1995 visible IR Gas in the Eagle Nebula (M16) : Pillars of Creation in a Star-Forming Region NASA/ESA 2015 Gas in the Eagle Nebula (M16) : Pillars of Creation in a Star-Forming Region NASA/ESA 2015 VISIBLE IR 2015 WFC3 1995 WFPC2 Gas in the Eagle Nebula (M16) : Pillars of Creation in a Star-Forming Region NASA/ESA 2015 Gas in the Eagle Nebula (M16) : Pillars of Creation in a Star-Forming Region NASA/ESA Gas in the Eagle Nebula (M16) : Pillars of Creation in a Star-Forming Region NASA/ESA 1995 Gas in the Eagle Nebula (M16) : Pillars of Creation in a Star-Forming Region NASA/ESA 2015 HST NASA/ESA Carina HST NASA/ESA formation d’une étoile et d’un disque, lieu de futures planètes Illustration of disk evolution in relation to planet formation Herbig-Haro 110 is a geyser of hot gas from a newborn star that splashes up against and ricochets off the dense core of a cloud of molecular H. NASA/ESA 3 July 2012 Planet formation: this image illustrates a protoplanetary disk undergoing spiral wave instabilities as it would appear using a millimeter wave telescope. Today, it is generally thought that planets formed by the hierarchical accretion of larger and larger sized bodies, from dust to planets. Artist vision Indiana University 2004 the sharpest image ever taken by ALMA showing the protoplanetary disc HL Tauri : surrounding the young star HL Tauri. This is a composite image of the young star HL Tauri and its surroundings using data from ALMA (enlarged in box at upper right) and the NASA/ESA Hubble Space Telescope (rest of the picture). This is the first ALMA image where the image sharpness These new ALMA observations reveal substructures within the disc that have never been seen exceeds that normally attained with Hubble. before and even show the possible positions of planets forming in the dark patches within the Credit: ALMA (ESO/NAOJ/NRAO), Hubble (NASA/ESA) Nov. 2014 system. Credit: ALMA (ESO/NAOJ/NRAO) Les étoiles nous apparaissent globalement sous deux formes différentes • Les étoiles « proches » sont dites « résolues » lorsqu’elles sont observées 10.3 comme des points lumineux séparés les uns des autres.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • VISTA Views a Vast Ball of Stars 9 May 2012
    VISTA views a vast ball of stars 9 May 2012 sphere with a diameter of only about 25 times the distance between the Sun and the nearest star system, Alpha Centauri. About 160 globular clusters have been spotted encircling our galaxy, the Milky Way, mostly toward its bulging centre. The two latest discoveries, made using VISTA, were recently announced. The largest galaxies can have thousands of these rich collections of stars in orbit around them. Observations of globular clusters' stars reveal that they originated around the same time - more than 10 billion years ago - and from the same cloud of gas. As this formative period was just a few billion years after the Big Bang, nearly all of the gas on hand was the simplest, lightest and most common in the cosmos: hydrogen, along with some helium and much smaller amounts of heavier chemical elements such as oxygen and nitrogen. This striking view of the globular star cluster Messier 55 Being made mostly from hydrogen distinguishes in the constellation of Sagittarius (The Archer) was globular cluster residents from stars born in later obtained in infrared light with the VISTA survey eras, like our Sun, that are infused with heavier telescope at ESO's Paranal Observatory in Chile. This elements created in earlier generations of stars. vast ball of ancient stars is located at a distance of about The Sun lit up some 4.6 billion years ago, making it 17,000 light-years from Earth. Credit: ESO/J. only about half as old as the elderly stars in most Emerson/VISTA.
    [Show full text]
  • Desert Skies Since 1954 Spring 2015 Volume LXI, Issue 1
    Tucson Amateur Astronomy Association Observing our Desert Skies since 1954 Spring 2015 Volume LXI, Issue 1 Inside this issue: The Tadpoles in IC410 President’s 2 Letter Outreach 3, 5 New RideShare 7 Program Observing & 8 - 11 Imaging Featured 12, 14 Articles Classifieds 7 Sponsors 7 Contacts 15 Take Note! Science Fair and Book Festival Reports TAAA member Howard Bower photographed IC 410 which is found in Auriga TAAA RideShare Program using a Telescope Engineering Company TEC 140 ED apochromat refractor with Announced a field flattener resulting in f/7.4. This is a narrow band image with 34 exposures in Hydrogen Alpha (30 minutes each), 34 exposures in Oxygen III (binned 2x2 at Jupiter Opposition 2015 15 minutes each), and 34 exposures in Sulphur II (binned 2x2 at 15 minutes each). Report IC410 is a faint emission nebula surrounding the star cluster NGC 1893. At the Constellation of the top left of the nebula are two objects known as “The Tadpoles”. These are likely Season—Centaurus areas of stellar formation. Each tadpole is about 10 light years long. This object is at a distance of about 12,000 light years. © 2013 Howard Bower. Used by New Items in the Classifieds permission. Desert Skies Page 2 Volume LXI, Issue 1 From Our President As I reviewed the March Bulletin it was really heartwarming to see all of the activities in which we are involved. It takes a lot of Our mission is to provide opportunities for members dedication and hard work to put this all together and make it and the public to share the joy and excitement of work..
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Uncovering the Orbit of the Hercules Dwarf Galaxy
    MNRAS 000,1{15 (2019) Preprint 3 December 2019 Compiled using MNRAS LATEX style file v3.0 Uncovering the Orbit of the Hercules Dwarf Galaxy Alexandra L. Gregory1?, Michelle L. M. Collins1, Denis Erkal1, Erik Tollerud2, Maxime Delorme1, Lewis Hill1, David J. Sand3, Jay Strader4 Beth Willman5, 1Department of Physics, University of Surrey, Guildford, GU2 7XH, Surrey, UK 2Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA 3Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Rm. N204, Tucson, AZ 85721-0065, USA 4Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 5National Optical-Infrared Astronomy Research Laboratory, 950 North Cherry Avenue, Tucson, AZ 85719, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present new chemo{kinematics of the Hercules dwarf galaxy based on Keck II{ DEIMOS spectroscopy. Our 21 confirmed members have a systemic velocity of vHerc = −1 +1:4 −1 46:4 1:3 kms and a velocity dispersion σv;Herc = 4:4−1:2 kms . From the strength of the± Ca II triplet, we obtain a metallicity of [Fe/H]= 2:48 0:19 dex and dispersion +0:18 − ± of σ[Fe=H] = 0:63−0:13 dex. This makes Hercules a particularly metal{poor galaxy, placing it slightly below the standard mass{metallicity relation. Previous photometric and spectroscopic evidence suggests that Hercules is tidally disrupting and may be on a highly radial orbit. From our identified members, we measure no significant velocity gradient. By cross{matching with the second Gaia data release, we determine an ∗ uncertainty{weighted mean proper motion of µα = µα cos(δ) = 0:153 0:074 mas −1 −1 − ± yr , µδ = 0:397 0:063 mas yr .
    [Show full text]
  • Gaia DR2 White Dwarfs in the Hercules Stream Santiago Torres1,2, Carles Cantero1, María E
    A&A 629, L6 (2019) Astronomy https://doi.org/10.1051/0004-6361/201936244 & c ESO 2019 Astrophysics LETTER TO THE EDITOR Gaia DR2 white dwarfs in the Hercules stream Santiago Torres1,2, Carles Cantero1, María E. Camisassa3,4, Teresa Antoja5, Alberto Rebassa-Mansergas1,2, Leandro G. Althaus3,4, Thomas Thelemaque6, and Héctor Cánovas7 1 Departament de Física, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860 Castelldefels, Spain e-mail: [email protected] 2 Institute for Space Studies of Catalonia, c/Gran Capità 2-4, Edif. Nexus 104, 08034 Barcelona, Spain 3 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina 4 Instituto de Astrofísica de La Plata, UNLP-CONICET, Paseo del Bosque s/n, 1900 La Plata, Argentina 5 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain 6 Industrial and Informatic Systems Deparment, EPF - École d’Ingénieurs, 21 boulevard Berthelot, 34000 Montpellier, France 7 European Space Astronomy Centre (ESA/ESAC), Operations Deparment, Villanueva de la Cañada, 28692 Madrid, Spain Received 5 July 2019 / Accepted 7 August 2019 ABSTRACT Aims. We analyzed the velocity space of the thin- and thick-disk Gaia white dwarf population within 100 pc by searching for signatures of the Hercules stellar stream. We aimed to identify objects belonging to the Hercules stream, and by taking advantage of white dwarf stars as reliable cosmochronometers, to derive a first age distribution. Methods. We applied a kernel density estimation to the UV velocity space of white dwarfs.
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a Spinning Universe
    Journal of High Energy Physics, Gravitation and Cosmology, 2021, 7, 98-122 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a Spinning Universe Puthalath Koroth Raghuprasad Independent Researcher, Odessa, TX, USA How to cite this paper: Raghuprasad, P.K. Abstract (2021) Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a This is the final article in our series dealing with the interplay of spin and Spinning Universe. Journal of High Energy gravity that leads to the generation, and continuation of celestial body mo- Physics, Gravitation and Cosmology, 7, tions in the universe. In our prior studies we focused on such interactions in 98-122. https://doi.org/10.4236/jhepgc.2021.71005 the elementary particles, and in the celestial bodies in the solar system. Fore- most among the findings was that, along with gravity, matter at all levels ex- Received: March 23, 2020 hibits axial spin. We further noted that all freestanding bodies outside our Accepted: December 19, 2020 solar system, including the largest such units, the stars and galaxies also spin Published: December 22, 2020 on their axes. Also, the axial rotation speed of planets in our solar system has Copyright © 2021 by author(s) and a linear positive relationship to their masses, thus hinting at its fundamental Scientific Research Publishing Inc. and autonomous nature. We have reported that this relationship between the This work is licensed under the Creative size of the body and its axial rotation speed extends to the stars and even the Commons Attribution International License (CC BY 4.0).
    [Show full text]
  • Binocular Challenges
    This page intentionally left blank Cosmic Challenge Listing more than 500 sky targets, both near and far, in 187 challenges, this observing guide will test novice astronomers and advanced veterans alike. Its unique mix of Solar System and deep-sky targets will have observers hunting for the Apollo lunar landing sites, searching for satellites orbiting the outermost planets, and exploring hundreds of star clusters, nebulae, distant galaxies, and quasars. Each target object is accompanied by a rating indicating how difficult the object is to find, an in-depth visual description, an illustration showing how the object realistically looks, and a detailed finder chart to help you find each challenge quickly and effectively. The guide introduces objects often overlooked in other observing guides and features targets visible in a variety of conditions, from the inner city to the dark countryside. Challenges are provided for viewing by the naked eye, through binoculars, to the largest backyard telescopes. Philip S. Harrington is the author of eight previous books for the amateur astronomer, including Touring the Universe through Binoculars, Star Ware, and Star Watch. He is also a contributing editor for Astronomy magazine, where he has authored the magazine’s monthly “Binocular Universe” column and “Phil Harrington’s Challenge Objects,” a quarterly online column on Astronomy.com. He is an Adjunct Professor at Dowling College and Suffolk County Community College, New York, where he teaches courses in stellar and planetary astronomy. Cosmic Challenge The Ultimate Observing List for Amateurs PHILIP S. HARRINGTON CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao˜ Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521899369 C P.
    [Show full text]
  • Printmgr File
    ADVANCED SERIES TRUST SEMIANNUAL REPORT ‰ JUNE 30, 2015 Based on the variable contract you own or the portfolios you invested in, AST Advanced Strategies Portfolio you may receive additional reports that provide financial information on AST Balanced Asset Allocation Portfolio those investment choices. Please refer to your variable annuity or variable AST BlackRock Global Strategies Portfolio life insurance contract prospectus to determine which portfolios are AST BlackRock/Loomis Sayles Bond Portfolio available to you. AST Defensive Asset Allocation Portfolio AST FI Pyramis® Quantitative Portfolio The views expressed in this report and information about the Trust’s AST Franklin Templeton Founding Funds portfolio holdings are for the period covered by this report and are subject Plus Portfolio to change thereafter. AST Legg Mason Diversified Growth Portfolio AST PIMCO Limited Maturity Bond Portfolio* The accompanying financial statements as of June 30, 2015, were not AST Preservation Asset Allocation Portfolio audited and, accordingly, no auditor’s opinion is expressed on them. AST Prudential Growth Allocation Portfolio AST RCM World Trends Portfolio Please note that this document may include prospectus supplements that AST Schroders Global Tactical Portfolio are separate from and not a part of this report. Please refer to your variable AST Schroders Multi-Asset World annuity or variable life insurance contract prospectus to determine which Strategies Portfolio supplements are applicable to you. AST T. Rowe Price Asset Allocation Portfolio AST T. Rowe Price Growth Opportunities Portfolio For information regarding enrollment in the e-Delivery program, please see the inside front cover of this report. * Effective July 13, 2015, the AST PIMCO Limited Maturity Bond Portfolio has been renamed the AST BlackRock Low Duration Bond Portfolio.
    [Show full text]
  • Ellipticals in the CPG and in the Sample of Sramek (1975) 44
    RADIO AND OPTICAL PROPERTIES OF DOUBLE GALAXIES Item Type text; Dissertation-Reproduction (electronic) Authors Stocke, John T. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 19:19:08 Link to Item http://hdl.handle.net/10150/289608 INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material.
    [Show full text]
  • ASSA Top 100 Deep Sky Objects
    # Object ID Bennett ID Type Size Con RA Dec D Vis Interesting Facts Distance from Discoverer Earth (light- years) 1 NGC 55, LEDA 1014 Glxy 32’x5.6’ Scl 00 15 – 39 11 06,25 Sep–Feb The String of Pearls. A barred galaxy that is 7200000 James Dunlop on August 4, 1826 edge-on to us. It has a bright elongated center with a small round cloud to the east of it. If you look to the side of it while still concentrating on the object you might be able to see additional bright clouds and dark Ben 1 rifts in this galaxy. 2 NGC 104, 47 Tucanae Glcl 31’ Tuc 00 24 – 72 05 05,06 Sep–Feb The cluster appears roughly the size of the 16700 Abbe Lacaille from South Africa, 1751. At the full moon in the sky under ideal conditions. Cape, Abbé wanted to test Newton's theory of It is the second brightest globular cluster in gravitation and verify the shape of the earth in the the sky (after Omega Centauri), and is southern hemisphere. His results suggested the noted for having a very bright and dense Earth was egg-shaped not oval. In 1838, Thomas core. It is also one of the most massive Maclear who was Astronomer Royal at the Cape, globular clusters in the Milky Way, repeated the measurements. He found that de containing millions of stars Lacaille had failed to take into account the gravitational attraction of the nearby mountains. Ben 2 3 NGC 247, LEDA 2758 Glxy 18’ x 5’ Cet 00 47 – 20 46 06,25 Sep–Feb Very dusty galaxy therefore not bright, 11000000 ? Ben 3 magnitude 9.2, challenging to find.
    [Show full text]