Salton Sea SCH Project Paleontological Resources Monitoring and Mitigation Plan

Total Page:16

File Type:pdf, Size:1020Kb

Salton Sea SCH Project Paleontological Resources Monitoring and Mitigation Plan Salton Sea Species Conservation Habitat Project Paleontological Resources Monitoring and Mitigation Plan Prepared for July 2019 California Department of Water Resources 1416 Ninth Street, Room 452-1 Sacramento, CA 95814 Salton Sea Species Conservation Habitat Project Paleontological Resources Monitoring and Mitigation Plan Prepared for July 2019 California Department of Water Resources 1416 Ninth Street, Room 452-1 Sacramento, CA 95814 ESA Task Order Manager: Candace Ehringer, M.A., RPA Principal Investigator/Author: Joe Stewart, Ph.D. 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 r ESA 213.599.4300 www.esassoc.com ~ Irvine Sacramento Los Angeles San Diego Oakland San Francisco Orlando Santa Monica Pasadena Seattle Petaluma Tampa Portland Woodland Hills 170020.15 OUR COMMITMENT TO SUSTAINABILITY | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper. TABLE OF CONTENTS Salton Sea Species Conservation Habitat Project – Paleontological Resources Monitoring and Mitigation Plan Page 1.0 Introduction..................................................................................................................... 1 1.1 Personnel ................................................................................................................... 2 1.2 Project Location ......................................................................................................... 2 1.3 Project Description ..................................................................................................... 4 2.0 Regulatory Framework .................................................................................................. 5 2.1 Federal ....................................................................................................................... 5 2.2 State ........................................................................................................................... 5 2.3 Local ........................................................................................................................... 6 2.4 Professional Standards .............................................................................................. 6 3.0 Project Impacts ............................................................................................................... 9 3.1 Construction Methods ............................................................................................... 9 3.2 Paleontological Resource Potential ......................................................................... 12 4.0 Mitigation and Monitoring Plan .................................................................................. 14 4.1 Qualified Personnel .................................................................................................. 14 4.2 Preconstruction Survey ............................................................................................ 16 4.3 Construction Worker Training .................................................................................. 16 4.4 Monitoring Requirements ......................................................................................... 17 4.5 Inadvertent Discoveries ............................................................................................ 17 4.6 Laboratory Procedures ............................................................................................. 18 4.7 Reporting .................................................................................................................. 19 4.8 Curation .................................................................................................................... 19 5.0 Notification Procedures ............................................................................................... 20 5.1 Chain of Command .................................................................................................. 20 5.2 Contact Information .................................................................................................. 20 References .............................................................................................................................. 21 List of Figures Figure 1 Project Location ......................................................................................................... 3 Figure 2 Geology .................................................................................................................... 13 Figure 3 Project Vicinity Fossil Sites ...................................................................................... 15 Salton Sea Species Conservation Habitat Plan Project i ESA / 170020.15 Paleontological Resources Monitoring and Mitigation Plan July 2019 SALTON SEA SPECIES CONSERVATION HABITAT PLAN PROJECT Paleontological Resources Monitoring and Mitigation Plan 1.0 Introduction Environmental Science Associates (ESA) has been retained by the California Department of Water Resources (DWR) to prepare a Paleontological Resources Monitoring and Mitigation Plan (PRMMP) for the Salton Sea Species Conservation Habitat Plan Project (SCH Project or Project). The Project would restore shallow water habitat lost due to the Salton Sea’s ever-increasing salinity and reduced area as the sea recedes. This is a design/build project, so plans have been evolving, and specific plans are not available at this time. DWR and the California Department of Fish and Game (CDFW) prepared the Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) on behalf of the U.S. Army Corps of Engineers (federal lead agency) and California Natural Resource Agency (state lead agency). It was certified on August 5, 2013. This PRMMP provides guidance for the monitoring and protection of paleontological resources during ground-disturbing activities for the SCH Project and has been prepared in compliance with Mitigation Measures PALEO-1, PALEO-2, and PALEO-3 listed in the Mitigation Monitoring and Reporting Program (MMRP) of the FEIS/EIR. Mitigation Measure PALEO-1: Prepare and implement a survey plan and a paleontological monitoring plan. A plan for the survey of SCH Project areas will be prepared to facilitate identification of paleontological resources prior to initiation of ground-disturbing activities. Additionally, prior to construction, a certified paleontologist retained by the lead agencies will supervise monitoring of construction excavations and produce a Paleontological Resource Management Recovery Plan. Paleontological monitoring will include inspection of exposed rock units and microscopic examination of matrix to determine if fossils are present. The monitor will have authority to temporarily divert grading away from exposed fossils to recover the fossil specimens. Monitoring will take place on a full-time basis when construction occurs at depths greater than 5 feet, part-time (4 hours a day) when excavations exceed 2 feet, and on a spotcheck basis on excavations less than 2 feet. The paleontologist will document interim results of the construction monitoring program with monthly progress reports. Additionally, at each fossil locality, field data forms will record that locality, stratigraphic columns will be measured, and appropriate scientific samples will be submitted for analysis. Salton Sea Species Conservation Habitat Plan Project 1 ESA / 170020.15 Paleontological Resources Monitoring and Mitigation Plan July 2019 Paleontological Resources Monitoring and Mitigation Plan Mitigation Measure PALEO -2: Conduct worker training. Construction supervisors and crew will receive training by a certified paleontologist in the procedures for identifying and protecting paleontological resources, as well as procedures to be implemented in the event fossil remains are encountered during ground-disturbing activities. Mitigation Measure PALEO -3: Prepare and implement a paleontological resource data recovery plan. If fossils are encountered during construction, construction activities will be temporarily diverted from the discovery, and the monitor will notify all concerned parties and collect matrix for testing and processing as directed by the Project paleontologist. To expedite removal of fossil-bearing matrix, the monitor will be empowered to request heavy machinery to assist in moving large quantities of matrix out of the path of construction to designated stockpile areas. Construction will resume at the discovery location once all the necessary matrix is stockpiled, as determined by the paleontological monitor. Testing of stockpiles will consist of screen washing small samples to determine if important fossils are present. If such fossils are present, the additional matrix from the stockpiles will be water screened to ensure recovery of a scientifically significant sample. Samples collected will be limited to a maximum of 6,000 pounds per locality. The Project paleontologist will direct identification, laboratory processing, cataloguing, analysis, and documentation of the fossil collections. When appropriate,
Recommended publications
  • Murphey Et Al. 2019 Best Practices in Mitigation Paleontology
    PROCEEDINGS of the San Diego Society of Natural History Founded 1874 Number 47 1 May 2019 BEST PRACTICES IN MITIGATION PALEONTOLOGY By Paul C. Murphey Paleo Solutions, 2785 Speer Boulevard, Suite 1, Denver, CO 80211, U.S.A.; [email protected]; Department of Paleontology, San Diego Natural History Museum, 1788 El Prado, San Diego, CA 92101, U.S.A.; [email protected] Department of Earth Sciences, Denver Museum of Nature and Science, 2001 Colorado Boulevard, Denver, CO 80201, U.S.A. Georgia E. Knauss SWCA Environmental Consultants, 1892 S. Sheridan Avenue, Sheridan, WY 82801 U.S.A.; [email protected] Lanny H. Fisk PaleoResource Consultants, 550 High Street, Suite 108, Auburn, CA 95603, U.S.A. (deceased) Thomas A. Deméré Department of Paleontology, San Diego Natural History Museum, 1788 El Prado, San Diego, CA 92101, U.S.A.; [email protected] Robert E. Reynolds Department of Paleontology, San Diego Natural History Museum, 1788 El Prado, San Diego, CA 92101, U.S.A.; [email protected] For correspondence, write to: Paul C. Murphey, Paleo Solutions, 4614 Lonespur Ct. Oceanside, CA 92056 Email: [email protected] [email protected] bpmp-19-01-fm Page 2 PDF Created: 2019-4-12: 9:20:AM 2 Paul C. Murphey, Georgia E. Knauss, Lanny H. Fisk, Thomas A. Deméré, and Robert E. Reynolds TABLE OF CONTENTS Abstract . 4 Introduction . 4 History and Scientific Contributions . 5 History of Mitigation Paleontology in the United States . 5 Methods Best Practice Categories . 7 1. Qualifications. 7 Confusion between Resource Disciplines . 7 Professional Geologists as Mitigation Paleontologists. 8 Mitigation Paleontologist Categories .
    [Show full text]
  • Paleoenvironmental Constraints from Paleosol-Loess Sequences: Evaluating Clumped (∆47) Isotopic Records in Biogenic and Pedogenic Carbonate
    Paleoenvironmental constraints from paleosol-loess sequences: evaluating clumped (∆47) isotopic records in biogenic and pedogenic carbonate Katharine Huntington, Department of Earth and Space Sciences The project goal was to advance understanding of how the geochemistry of biogenic and pedogenic (formed in soil) carbonates record surface environmental temperatures and soil water compositions relevant to the interpretation of proxy records in Quaternary loess-paleosol sequences and cultural layers. Reconstructing Quaternary paleoenvironments is important for a broad range of paleoclimate, geology, biology, anthropology and archaeology studies. The geochemistry of carbonate minerals formed at and near the Earth surface can provide quantitative environmental constraints including the δ18O values of water, δ13C-based information about vegetation, and most recently, estimates of Earth-surface temperatures from clumped isotope (∆47) thermometry. Early efforts to develop clumped isotope thermometry in modern-Holocene soils raise many 18 questions about how to interpret not only ∆47 temperatures but also conventional δ O and δ13C values in soil and loess carbonates. We conducted a study of biogenic, pedogenic, and geogenic carbonates of different types from two Quaternary paleosol-loess deposits, the Nussloch (Rhine Valley, SW Germany) and Palouse (eastern Washington state) loess-paleosol sequences. Carbonate δ18O, δ13C 14 and ∆47 analyses were conducted in the University of Washington IsoLab as well as C dating of carbonates to determine their age and pedogenic vs. geogenic nature. In the 18 13 Nussloch, the δ O, δ C and Δ47 data for multiple carbonate types revealed the effects of geogenic carbonate input, pedogenesis and environmental factors on the isotopic variations, and showed that geogenic “bulk loess” carbonates that are poor environmental proxies can still provide important context for interpreting the isotopic signature of pedogenic and biogenic carbonates (Zamanian et al., in revision).
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Anatomy of a Sub-Cambrian Paleosol in Wisconsin
    Anatomy of a Sub-Cambrian Paleosol in Wisconsin: Mass Fluxes of Chemical Weathering and Climatic Conditions in North America during Formation of the Cambrian Great Unconformity L. Gordon Medaris Jr.,1,* Steven G. Driese,2 Gary E. Stinchcomb,3 John H. Fournelle,1 Seungyeol Lee,1,4 Huifang Xu,1,4 Lyndsay DiPietro,2 Phillip Gopon,5 and Esther K. Stewart6 1. Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, USA; 2. Department of Geosciences, Terrestrial Paleoclimatology Research Group, Baylor University, Waco, Texas 76798, USA; 3. Department of Geosciences and Watershed Studies Institute, Murray State University, Murray, Kentucky 42071, USA; 4. NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin 53706, USA; 5. Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom; 6. Wisconsin Geological and Natural History Survey, Madison, Wisconsin 53705, USA ABSTRACT A paleosol beneath the Upper Cambrian Mount Simon Sandstone in Wisconsin provides an opportunity to evaluate the characteristics of Cambrian weathering in a subtropical climate, having been located at 207S paleolatitude 500 My ago. The 285-cm-thick paleosol resulted from advanced chemical weathering of a gabbroic protolith, recording a total mass loss of 50%. Weathering of hornblende and plagioclase produced a pedogenic assemblage of quartz, chlorite, kaolinite, goethite, and, in the lowest part of the profile, siderite. Despite the paucity of quartz in the protolith and 40% removal of SiO2 from the profile, quartz constitutes 11%–23% of the pedogenic mineral assemblage. Like many other Precambrian and Cambrian paleosols in the Lake Superior region, the paleosol experienced potassium metasomatism, now con- taining 10%–25% mixed-layer illite-vermiculite and 5%–44% potassium feldspar.
    [Show full text]
  • Parameters Related to the Identification of Paleosols in the Geologic Record
    6206) V96 nd. K3-776 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Parameters Related to the Identification of Paleosols in the Geologic Record by Robert A. Miller and Wayne R. Sigleo 601ijiLv!h7"'104 \ir: a A.4.1 Ni() V 071983 44 Open-File Report $3-776 This report is preliminary and has not been reviewed for conformity with U.S. Gelogical Survey editorial standards. CONTENTS Page Introduction 1 Color 2 Biogenic Properties 2 Soil Structure 3 Clay Minerals and Sesquioxides 4 Concretions 4 Summary 5 References Cited 6 FIGURES Figure 1. Pedologic profile of a soil (after Ruhe, 1965) 1 Figure 2. General description of soil structure 3 ii Parameters Related to the Identification of Paleosols in the Geologic Record by Robert A. Miller and Wayne R. Sigleo Introduction Paleosols or fossil soils occur in most geologic environments, and where consistent recognition is possible, they can provide important evidence to interpret and correlate local and regional stratigraphic successions (North American Code of Stratigraphic Nomenclature, 1983). A paleosol, whether buried, exhumed, or relict, may indicate a hiatus in deposition, and may be the only record of a certain time interval. Studies of paleosols, especially in conjunction with paleobotanical and geochemical research, are particularly useful in deciphering paleoenvironments, climates, and landscape evolution. The study of modern soils or pedology provides the basic framework to understand and interpret fossil soils (Fitzpatrick, 1971; Oilier, 1969). Although there is no simple definition for a modeorn soil; most soils include all of the material which differs from underlying rock or parent material through weathering, and is capable of supporting vegetation.
    [Show full text]
  • Berino Paleosol, Late Pleistocene Argillic Soil Development on the Mescalero Sand Sheet in New Mexico
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2012 Berino Paleosol, Late Pleistocene Argillic Soil Development on the Mescalero Sand Sheet in New Mexico Stephen A. Hall Red Rock Geological Enterprises, Santa Fe, NM, [email protected] Ronald J. Goble University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Hall, Stephen A. and Goble, Ronald J., "Berino Paleosol, Late Pleistocene Argillic Soil Development on the Mescalero Sand Sheet in New Mexico" (2012). Papers in the Earth and Atmospheric Sciences. 325. https://digitalcommons.unl.edu/geosciencefacpub/325 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Berino Paleosol, Late Pleistocene Argillic Soil Development on the Mescalero Sand Sheet in New Mexico Stephen A. Hall1,* and Ronald J. Goble2 1. Red Rock Geological Enterprises, 3 Cagua Road, Santa Fe, New Mexico 87508, U.S.A.; 2. Department of Earth and Atmospheric Sciences, 214 Bessey Hall, University of Nebraska, Lincoln, Nebraska 68588, U.S.A. ABSTRACT The Berino paleosol is the first record of a directly dated Aridisol in the American Southwest where paleoclimatic conditions during the time of pedogenesis can be estimated.
    [Show full text]
  • Global Soil Change
    GLOBAL SOIL CHANGE Report of an International lnstitute for Applied System Analysis, International Society of Soil Science, United Nations Environmental Programme Task Force on the Role of Soil in Global Change Editors: R. W. ARNOLD, I. SZABOLCS, V. 0. TARGULIAN International lnstitute for Applied Systems Analysis Laxenburg, Austria 1990 CONTENTS FtXd ........................................................ 7 Prefaae ........................................................ 9 Editorial Preface ............................................... 11 Q=@=I In- ...................................... 15 Chapter 11 Pedospkre ....................................... 21 Chapter I11 Soil axe.r of t.h?Wrld ........................... 31 Chapterm Types of Soil Prooesses and Changes ............... 41 Chapter v Pdleosols in the ca-ltext of Envirmm?ntal Changes .......................................... 63 Chaptern An-c Effects cm Soils .................... 69 Chapter VII EUture Changes of tk Pedospkre .................. 87 Chapter VIII Spatial Soil Databases ard kdeling ............... 91 mpter IX amclusions and &amendations ................... lo3 FOREWORD The International Institute for Applied Systems, is a non-governmental, interdisciplinary research organization founded in 1972. Arrang its mst relevant abjectives are "the initiation and supprt of individual and col- lakorative research on problems associated with environmental chanqe, and thereby to assist scientific camunities throughout the world in tackling such problems". One mans to this goal
    [Show full text]
  • Pliocene Paleoenvironments in the Meade Basin, Southwest Kansas, U.S.A
    Journal of Sedimentary Research, 2019, v. 89, 416–439 Research Article DOI: http://dx.doi.org/10.2110/jsr.2019.24 PLIOCENE PALEOENVIRONMENTS IN THE MEADE BASIN, SOUTHWEST KANSAS, U.S.A. WILLIAM E. LUKENS,1,2 DAVID L. FOX,3 KATHRYN E. SNELL,4 LOGAN A. WIEST,2 ANTHONY L. LAYZELL,5 KEVIN T. UNO,6 PRATIGYA 6 7 8 9 J. POLISSAR, ROBERT A. MARTIN, KENA FOX-DOBBS, AND PABLO PELAEZ-CAMPOMANES´ 1School of Geosciences, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, U.S.A. 2Terrestrial Paleoclimatology Research Group, Department of Geosciences, Baylor University, Waco, Texas 76798, U.S.A. and Mansfield University of Pennsylvania, Department of Geosciences, Mansfield, Pennsylvania 16933, U.S.A. 3Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A. 4Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, U.S.A. 5Kansas Geological Survey, Lawrence, Kansas 66407, U.S.A. 6Division of Biology and Paleo Environment, Lamont Doherty Earth Observatory of Columbia University, Palisades, New York 10964, U.S.A. 7Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, U.S.A. 8Department of Geology, University of Puget Sound, Tacoma, Washington 98416, U.S.A. 9 Department of Paleobiology, National Museum of Natural History, Madrid, Spain ABSTRACT: Terrestrial paleoenvironmental reconstructions from the Pliocene Epoch (5.3–2.6 Ma) of the Neogene Period are rare from the North American continental interior, but are important because they provide insight into the evolutionary context of modern landscapes and ecological systems. Pliocene marine records indicate that global climate was warmer and atmospheric pCO2 was higher than pre-industrial conditions, spurring efforts to understand regional climate and environmental variability under conditions potentially analogous to future warming scenarios.
    [Show full text]
  • Precambrian Paleosols As Indicators of Paleoenvironments on the Early Earth
    PRECAMBRIAN PALEOSOLS AS INDICATORS OF PALEOENVIRONMENTS ON THE EARLY EARTH by Sherry Lynn Stafford B.S., University of Pittsburgh at Johnstown, 1995 M.S., University of Pittsburgh, 1999 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2007 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Sherry Lynn Stafford It was defended on July 12, 2005 and approved by Hiroshi Ohmoto, Ph.D., Pennsylvania State University Charles E. Jones, Ph.D., University of Pittsburgh Edward G. Lidiak, Ph.D., University of Pittsburgh Brian W. Stewart, Ph.D., University of Pittsburgh Dissertation Advisor: Rosemary C. Capo, Ph.D., University of Pittsburgh ii Copyright © by Sherry Lynn Stafford 2007 iii PRECAMBRIAN PALEOSOLS AS INDICATORS OF PALEOENVIRONMENTS ON THE EARLY EARTH Sherry Lynn Stafford, Ph.D. University of Pittsburgh, 2007 Paleosols, or fossil soils, document past atmospheric composition, climate, and terrestrial landscapes and are key to understanding the composition and evolution of the Earth’s atmosphere and the environments in which life developed and evolved. Micromorphological, geochemical and isotopic studies of two Precambrian weathering profiles (Steep Rock, Canada and Hokkalampi, Finland) place constraints on the age of soil formation, document pedogenic processes and post-pedogenic alteration and metamorphism, and yield information about the terrestrial environment at a critical time in Earth history. The textures and geochemistry of the Early Proterozoic Hokkalampi paleosol and the Archean Steep Rock paleosol are consistent with in situ, subaerial weathering under varying soil redox conditions. The upper portion of both profiles have lost >40% of their iron relative to the parent material, similar to Phanerozoic vertisols, while retaining Fe3+/Fe2+ ratios >1.
    [Show full text]
  • Organic Matter in Holocene Paleosols in the US Mid-Continent Llewin Hugh Froome Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Organic matter in Holocene paleosols in the US Mid-Continent Llewin Hugh Froome Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Environmental Sciences Commons, Geology Commons, and the Soil Science Commons Recommended Citation Froome, Llewin Hugh, "Organic matter in Holocene paleosols in the US Mid-Continent" (2016). Graduate Theses and Dissertations. 15701. https://lib.dr.iastate.edu/etd/15701 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Organic matter in Holocene paleosols in the US Mid-Continent by Llewin H. Froome A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Soil Science (Soil Chemistry) Program of Study Committee: Michael L. Thompson, Major Professor C. Lee Burras Robert Horton Jr. Iowa State University Ames, Iowa 2016 Copyright © Llewin H. Froome, 2016. All rights reserved. ii DEDICATION This thesis is dedicated to my family, friends, classmates, and teachers. iii TABLE OF CONTENTS Page LIST OF FIGURES ..................................................................................................
    [Show full text]
  • Paleosols and Soil Surface Analog Systems”, September 21-25, 2010, Petrified Forest National Park, Arizona” ______
    Program Volume for SEPM-NSF Workshop “Paleosols and Soil Surface Analog Systems”, September 21-25, 2010, Petrified Forest National Park, Arizona” __________________________________________________________________________________________ Tuesday, September 21, 2010 –Flight arrivals at Albuquerque, NM airport (afternoon and evening) Evening, dual-occupancy accommodations for registrants pre-booked at Fairfield Inn, 2400 Centre SE, Albuquerque, NM 87106; 505-232-5800 – complimentary shuttle from airport to hotel (no planned workshop activities) Problems: e-mail [email protected] or [email protected] __________________________________________________________________________________________ Wednesday, September 22, 2010 –Depart Albuquerque, NM hotel (morning) and arrive in Holbrook for afternoon sightseeing at Petrified Forest National Park (PEFO) 8:00 AM Depart Fairfield Inn, driving northwest 3.5 hours to Holbrook, AZ 12:00 noon Arrive in Holbrook, AZ; check in to dual-occupancy accommodations for registrants pre-booked at Holiday Inn Express Hotel, 1303 Navajo Boulevard, Holbrook, AZ 86025; 928-524-1466; eat lunch (not provided as part of workshop fee) in Holbrook; option to rest during the afternoon, or ……………………. 2:00 PM Depart Holbrook for Petrified Forest National Park (PEFO); tour of Aislyn Trendell and PEFO Visitor Center and Gift Shop (north entrance), petrified log Baylor Geology Grad localites, Interpretive Center (south entrance) students 6:00 PM Return to Holbrook hotel; dinner in Holbrook (not provided) 8:00 PM PEFO Park history and general geologic overview (in hotel) Dr. Bill Parker, NPS _________________________________________________________________________________________ 1 Thursday, September 23, 2010 – Keynote and Invited Oral Presentations (morning) 7:30 AM Depart Holbrook for PEFO 8:00-8:15 AM Welcoming remarks from organizers and Superintendent Steven G. Driese and PEFO Superintendent 8:15-8:45 AM A short history and long future of paleopedology Gregory J.
    [Show full text]
  • Paleosol Classification: Problems and Solutions
    Catena 41Ž. 2000 61±92 www.elsevier.comrlocatercatena Paleosol classification: Problems and solutions W.D. Nettleton, C.G. Olson), D.A. Wysocki USDA, NRCS, NSSC, 100 Centennial Mall North, Lincoln, NE 68508, USA Abstract Paleosols are soils that formed on landscapes of the geologic past. Three kinds exist Ð buried, exhumed, and relict. To help reconstruct paleoenvironments and for ease of comparison, we suggest a property-based classification system linked to genetic processes. We use enduring properties because alteration of paleosols following burial is common. Morphological properties such as horizonation, soil fabric, root and worm casts, and redoximorphic features are resistant to alteration and thus are valuable as criteria. Field-observable and micromorphological properties, degree of weathering, and proportion of resistant minerals are also useful as criteria for paleosol orders. Total chemical analysis provides a proxy measure for base saturation and clay mineralogy. We use proxy criteria to help classify paleosols that have changed markedly or have been lithified during or after burial. To an earlier version of the system, we add two new orders and include buried, relict, lithified, and exhumed units at the suborder level. Our system clearly separates paleosol taxon names from those of all ground soils. We use the prescript paleo- at the order level, and kryptic to designate the buried, enduric to designate the relict, lithic to designate the lithified, and emergent to designate the exhumed paleosol suborders. We use prescript modifiers to describe the physical characteristics of the paleosols and postscripts for parent material origin and the extensiveness of the paleosol landscape. We present data and classify a number of paleosols as examples of the system.
    [Show full text]