Neutral Hydrogen Gas in Interacting Galaxies: the NGC 6221/6215 Galaxy Group

Total Page:16

File Type:pdf, Size:1020Kb

Neutral Hydrogen Gas in Interacting Galaxies: the NGC 6221/6215 Galaxy Group Mon. Not. R. Astron. Soc. 348, 1255–1274 (2004) doi:10.1111/j.1365-2966.2004.07444.x Neutral hydrogen gas in interacting galaxies: the NGC 6221/6215 galaxy group , B¨arbel Koribalski1 and John M. Dickey2 1 1Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 2University of Minnesota, Department of Astronomy, 116 Church Street, S.E., Minneapolis, MN 55455, USA Accepted 2003 November 18. Received 2003 November 11; in original form 2003 September 15 ABSTRACT Neutral hydrogen observations of the spiral galaxies NGC 6221 and 6215 with the Australia Telescope Compact Array (ATCA) reveal a wide, two-stranded bridge of at least 3 × 108 M which can be traced between the two galaxies over a projected distance of 100 kpc. The velocity gradient of the H I bridge provides a rough estimate for the time since the encounter of 500 Myr. For NGC 6221, the brightest and most massive galaxy of the group, we derive a dynamical 10 mass of Mtot = 8 × 10 M, while its companion NGC 6215 has a mass of only Mtot ∼ 2 × 109 M. Further, we find three low-surface-brightness dwarf galaxies (Dwarfs 1, 2 and 3) in the neighbourhood of NGC 6221/15 with H I masses of 3.3, 0.6 and 0.3 × 108 M, respectively. The smallest, previously uncatalogued galaxy, Dwarf 3, lies between NGC 6221 and 6215, and may have formed out of bridge material. The brightest part of the H I bridge lies roughly halfway between the interacting galaxies, indicating that bridge gas close to NGC 6221 and 6215 may have fallen back to the galaxies. The asymmetric extensions to the H I envelope of NGC 6221 are likely to be reaccreted gas, still settling in. Also, the peculiar velocity field of NGC 6215 may be explained by accreted bridge material settling into a plane offset from the old disc. Key words: galaxies: individual: NGC 6215 – galaxies: individual: NGC 6221 – galaxies: interactions. (about five times the optical diameter of NGC 6221). Adopting a 1 INTRODUCTION −1 −1 distance of D = 18 Mpc (H 0 = 75 km s Mpc ) for the NGC NGC 6221 and 6215 are a nearby pair of southern spiral galaxies 6221/15 galaxy group (1 arcsec = 87 pc) results in a projected (see Fig. 1). Their relative proximity, and the peculiar appearance of distance between the two main galaxies of ∼100 kpc. NGC 6221 in the optical, Hα and H I (see Pence & Blackman 1984) NGC 6221 (Fig. 2, top) is a barred spiral galaxy with an optical suggest they are interacting. Individually, both galaxies have been diameter of ∼3.5 × 2.5 arcmin2 (18 × 13 kpc2) and a position angle studied over a large range of wavelengths: e.g. CO (Harnett, Loiseau (PA) of 5◦. Large amounts of dust are visible in both spiral arms & Reuter 1990; Aalto et al. 1995), Hα (Durret & Bergeron 1987; as well as along the bar. NGC 6215 (Fig. 2, bottom) is generally Ryder & Dopita 1993; Vega Beltr´an et al. 1998), X-rays (Levenson classified as a non-barred spiral galaxy and has a smaller optical et al. 2001), deep B- and H-band images (Eskridge et al. 2002), as diameter of ∼2.1 × 1.8 arcmin2 (11 × 9 kpc2), PA = 78◦. Both well as Two-Micron All Sky Survey (2MASS) J-, H- and K-band galaxies are moderately inclined with inclination angles of i = 43◦ images (Jarrett et al. 2003). For stellar population studies of NGC and 38◦, respectively. Eskridge et al. (2002) give morphological 6221, see, for example, Cid Fernandes et al. (2003) and Bonatto classifications derived from deep B- and H-band images of NGC et al. (1998). Here we present a detailed study of the neutral hydro- 6221 (SABcd, SBb) and NGC 6215 (Scd, SABbc), respectively. gen (H I) gas distribution and kinematics in NGC 6221, 6215 and For a summary of the galaxy properties, see Table 1. their surroundings. Preliminary results were reported by Koribalski The bar in NGC 6221, which is clearly visible in optical and (1996a,b). infrared images (Laustsen, Madsen & West 1987; Sandage & Bedke ◦ The systemic velocities of NGC 6221 and 6215, vHI = 1481 ± 1994), lies at a PA of 118 (Pence & Blackman 1984) and has a length 11 and 1555 ± 7kms−1 (Reif et al. 1982; see also Table 1), differ of ∼1 arcmin (5.2 kpc). Two spiral arms extend symmetrically from by less than 100 km s−1. The galaxies are separated by 18.6 arcmin the ends of the bar for ∼1 arcmin. Beyond this, the northern arm sharply turns (>90◦) and continues for another ∼2 arcmin toward the southeast. This peculiar extension of the northern spiral arm E-mail: [email protected] is relatively faint in the infrared images (see Fig. 2). The turning C 2004 RAS 1256 B. Koribalski and J. M. Dickey Figure 1. Optical UK Schmidt Telescope (UKST) B-band mosaic of the field containing the galaxies NGC 6221 (left) and 6215 (right), obtained from the Super COSMOS Sky Survey. The high density of stars in the foreground is due to the low Galactic latitude (b ∼−10◦) of the galaxies. East is to the left and North to the top. point (north of the nucleus) is marked by a blue H II region complex 1984; Vega Beltran´ et al. 1998) revealed very large non-circular mo- (Wray 1988) suggesting recent star formation, possibly induced by tions of the ionized gas, possibly as a result of streaming motions the interaction (see Section 3). In addition to this most peculiar, along the bar and tidal interactions with NGC 6215. Recent Hα south-turning arm, there are another two southern extensions which Fabry–Perot´ observations of NGC 6221 and 6215 by Oddone et al. are best seen in deep optical exposures (Pence & Blackman 1984): (1999) are promising, and we are looking forward to detailed ve- the southern spiral arm itself which seems to continue straight and, locity fields of the ionized gas. to the west of it, a faint stellar extension which has no obvious NGC 6221 and 6215 have both been detected in CO(1–0). connection to the spiral arms. All three features together give NGC Using the 15-m Swedish–ESO Submillimetre Telescope (SEST), −1 6221 a triangular appearance in deep optical images, with the base Harnett et al. (1990) obtained flux densities of I CO = 20.0 K km s toward the south. Ryder & Dopita (1993) point out that the southern (NGC 6221) and 7.1 K km s−1 (NGC 6215) at their respective arm may have split in two, with one part continuing on southward central positions. Aalto et al. (1995) measured slightly higher −1 and the other part almost joining the northern arm as if trying to CO(1–0) flux densities of I CO = 21.8 ± 0.3Kkms (NGC 6221) establish a ring. There appears to be a large amount of diffuse stellar and 8 ± 1 K km s−1 (NGC 6215). This corresponds to central = × 9 emission surrounding the peculiar southern features. molecular gas masses of MH2 1.2 10 M (NGC 6221) and Durret & Bergeron (1987) detect ionized gas from the nuclear 4.4 × 108 M (NGC 6215) assuming a standard conversion fac- / = × 20 −2 −1 −1 region (approximately the inner 10 arcsec) as well as numerous tor of N H2 I CO 2.3 10 H2 cm (K km s ) (Strong et al. H II regions along the spiral arms. The two brightest H II region 1988). complexes in the spiral arms, NE and N of the nuclear region, appear The galaxy NGC 6300, which was suggested as a group member as blue star-forming regions in the colour image by Wray (1988). by Harnett et al. (1990), has a systemic velocity of vHI = 1110 ± − The nuclear spectrum of NGC 6221 is the superposition of an H II 14 km s 1 (Reif et al. 1982; Ryder et al. 1996) and lies SE of region-like spectrum and a very weak Seyfert 2 nucleus (Veron,´ NGC 6221 at a projected distance of 278.5 arcmin (∼1.5 Mpc). Its Veron´ & Zuiderwijk 1981; Pence & Blackman 1984; Boisson & velocity and projected separation suggest that it is not part of the −1 Durret 1986; Levenson et al. 2001). Cid Fernandes et al. (2003) give NGC 6221/15 group. The galaxies NGC 6215A (vsys = 2740 km s ) 7.4±1.1 2 −1 a mean starburst age of 10 yr for the central 10 × 20 arcsec and ESO138–G001 (vsys = 2894 km s ) lie at projected distances of of NGC 6221. 11.0 and 16.2 arcmin, respectively, from NGC 6221. Their systemic Kinematical studies of NGC 6221 using several long-slit spectra velocities indicate that they are much more distant than NGC 6221 of the Hα line emission out to radii of 80 arcsec (Pence & Blackman and not dynamically related. C 2004 RAS, MNRAS 348, 1255–1274 Neutral hydrogen gas in interacting galaxies 1257 Table1. Some basic parameters of the observed spiral galaxies. References: 2 OBSERVATION AND DATA REDUCTION (1) de Vaucouleurs et al. (1991), RC3; (2) Buta (1995); (3) Boisson & Durret (1986); (4) Reif et al. (1982); (5) Harnett et al. (1990); (6) Pence & Blackman The neighbouring galaxies NGC 6221 and 6215 were observed with (1984); (7) Aalto et al. (1995); (8) Sanders et al. (1995); (9) Jarrett et al. the Australia Telescope Compact Array (ATCA) in 1995 March and (2003). August. H I line (IF 1) and wide-band 20-cm radio continuum (IF 2) data were obtained simultaneously using two ∼12-h observations NGC 6221 NGC 6215 Ref.
Recommended publications
  • N6l0-Aistralian Observatory
    ^^—^^r N6L0-AISTRALIAN OBSERVATORY GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 V.D. Pence and C.P. BlackMn AAO PP 194 * Suonitted to: Mon.Not.R.astr.Soc. Distribution date: February, 1984 P.O. BOX 296. EPPING. N.S.W.. 2121 PHONE 868-1666. TELEX ASTRO 26230 „. *u~ - .*.SÄ._TNW. - Afto-<?(*-- ^M GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 W.D.Pence. Anglo-Australian Observatory. P.O. Box 296. Epplng. NSW. Australia. C.P.Blactanan. Department of Astronomy. Edinburgh University. Received t SUMMAKT - The gas velocity fields in the barred spiral galaxies NGC 7496 and 289 have been measured by means of long-slit spectra obtained with the Anglo-Australian Telescope. Pronounced deviations fro« circular motion of the type predicted by recent theoretical mooels are seen in NGC 74961 the isovelocity contours are distorted into a characteristic S-shaped pattern and there is a large velocity gradient across the bar. The velocity field is virtually identical to that of a previously observed barred spiral, NGC 5383 for which a number of models have been published. The nuclear [OUI] emission lines are very asymmetric with a wing extending to about 1000 km s-1 to the blue of the systemic velocity; this wing is only faintly seen in the Balmer lines. NGC 289 has a much smaller bar *nd consequently the noncircular motions are less pronounced. The most obvious effect is that the Xinematic major and minor axes are not perpendicular which is a signature of oval distortions. Both galaxies have a mass (within the 10 outermost velocity measurement) of 9 x iO M0 and M/Lß » 6.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Thesis Reference
    Thesis Multi-wavelenght Observations of INTEGRAL sources & the parameter space occupied by soft γ-ray emitting objects BODAGHEE, Arash Abstract Une vision synthétique des 500 sources détectées par INTEGRAL est présentée. Presque la moitié des sources étaient inconnues à ces énergies (>20 keV). Les études menées sur certains objets ont permis de les classifier comme des HMXBs composés d'étoiles à neutrons pulsantes qui agglomèrent le vent d'étoiles supergéantes. Ainsi, une nouvelle population de PULSARS enfouis a été mise en évidence. En moyenne, les IGRs galactiques sont 4 fois plus absorbées que les sources galactiques connues avant INTEGRAL. Des tendances non-négligeables ressortent des diagrammes Pulse-Absorption et Orbite-Absorption des HMXBs. Les populations de HMXBs OB et Be se séparent en des régions distinctes de ces diagrammes permettant de proposer une contrepartie à un HMXB qui est non-classifié. La distribution spatiale des HMXBs est compatible avec les complexes actifs en formation d'étoiles OB, et la rotation galactique n'améliore pas l'alignement entre les HMXBs et les bras spiraux. Les sources non identifiées ont une distribution spatiale qui rappelle celle des LMXBs. Reference BODAGHEE, Arash. Multi-wavelenght Observations of INTEGRAL sources & the parameter space occupied by soft γ-ray emitting objects. Thèse de doctorat : Univ. Genève, 2007, no. Sc. 3849 URN : urn:nbn:ch:unige-4771 DOI : 10.13097/archive-ouverte/unige:477 Available at: http://archive-ouverte.unige.ch/unige:477 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département d’astronomie Professeur T.
    [Show full text]
  • ¼¼Çwªâðw¦¹Á¼ºëw£Àêëw ˆ†ˆ€ «ÆÊ¿Àäàww«¸ÂÀ ‰‡‡Œ†ˆ‰†‰Œ
    ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H NGC 7192 GALXY IND 22 06.8 -64 19 11.2 1.9 m 1.8 m Elliptical pB,S,R,pmbM 134 NGC 7219 GALXY TUC 22 13.1 -64 51 12.5 1.7 m 1 m 27 SBa pB,S,R,2st nr 134 NGC 7329 GALXY TUC 22 40.4 -66 29 11.3 3.7 m 2.7 m 107 SBbc Ring pB,pS,mE90 134 NGC 7417 GALXY TUC 22 57.8 -65 02 12.3 1.9 m 1.3 m 2 SBab Ring pB,cS,R,gpmbM 134 NGC 7637 GALXY OCT 23 26.5 -81 55 12.5 2.1 m 1.9 m Sc vF,pL,R,vlbM,* nr 134 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H Mel 227 OPNCL OCT 20 12.1 -79 19 5.3 50.0 m II 2 p 135 NGC 6872 GALXY PAV 20 17.0 -70 46 11.8 6.3 m 2.2 m 66 SBb/P F,pS,lE,glbM,1st of 4 135 NGC 6876 GALXY PAV 20 18.3 -70 52 11.1 3 m 2.6 m 80 E3 pB,S,R,eS* sf,2nd of 4 135 NGC 6877 GALXY PAV 20 18.6 -70 51 12.2 2 m 1 m 169 E6 vF,vS,R,3rd of 4 135 NGC 6880 GALXY PAV 20 19.5 -70 52 12.2 2.1 m 1.3 m 35 SBO-a F,S,R,r,vS* att,4 of 4 135 NGC 6920 GALXY OCT 20 44.0 -80 00 12.5 1.8 m 1.5 m SO pB,cS,R,psmbM 135 NGC 6943 GALXY PAV 20 44.6 -68 45 11.4 4 m 2.2 m 130 SBc pF,L,mE,vglbM vS* 135 IC 5052 GALXY PAV 20 52.1 -69 12 11.2 5.9 m 0.9 m 143 SBcd F,L,eE 140 deg 135 NGC 7020 GALXY PAV 21 11.3 -64 02 11.8 3.5 m 1.6 m 165 SBO-a Ring pB,cS,lE,pgbM 135 NGC 7083 GALXY IND 21 35.7 -63 54 11.2 3.6 m 2.1 m 5 Sbc pF,cL,vlE,vgpmbM,r 135 NGC 7096 GALXY IND 21 41.3 -63 55 11.9 1.8 m 1.6 m 130 Sa vF,S,R,vS** nf 135 NGC 7098 GALXY OCT 21 44.3 -75 07 11.3 4 m 2.6 m 74 SB Ring pF,R,g,psmbM,am st 135 NGC 7095 GALXY OCT 21 52.4 -81 32 11.5 4 m 3.3 m Sc F,pL,R,vglbM,*13 inv 135 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec.
    [Show full text]
  • Dust and CO Emission Towards the Centers of Normal Galaxies, Starburst Galaxies and Active Galactic Nuclei, I
    A&A 462, 575–579 (2007) Astronomy DOI: 10.1051/0004-6361:20047017 & c ESO 2007 Astrophysics Dust and CO emission towards the centers of normal galaxies, starburst galaxies and active galactic nuclei, I. New data and updated catalogue M. Albrecht1,E.Krügel2, and R. Chini3 1 Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie (MPIfR), Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomisches Institut der Ruhr-Universität Bochum (AIRUB), Universitätsstr. 150 NA7, 44780 Bochum, Germany Received 6 January 2004 / Accepted 27 October 2006 ABSTRACT Aims. The amount of interstellar matter in a galaxy determines its evolution, star formation rate and the activity phenomena in the nucleus. We therefore aimed at obtaining a data base of the 12CO line and thermal dust emission within equal beamsizes for galaxies in a variety of activity stages. Methods. We have conducted a search for the 12CO (1–0) and (2–1) transitions and the continuum emission at 1300 µmtowardsthe centers of 88 galaxies using the IRAM 30 m telescope (MRT) and the Swedish ESO Submillimeter Telescope (SEST). The galaxies > are selected to be bright in the far infrared (S 100 µm ∼ 9 Jy) and optically fairly compact (D25 ≤ 180 ). We have applied optical spectroscopy and IRAS colours to group the galaxies of the entire sample according to their stage of activity into three sub-samples: normal, starburst and active galactic nuclei (AGN). The continuum emission has been corrected for line contamination and synchrotron contribution to retrieve the thermal dust emission.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • A “New” Spiral Arm for the Milky Way?
    ATNF News Issue No. 53, June 2004 ISSN 1323-6326 FEATURES IN THIS A “new” spiral arm ISSUE for the Milky Way? A “new” N. M. McClure-Griffiths, J. M. Dickey, B. M. Gaensler & A. J. Green spiral arm for the Milky Way? The structure of the outer disk of the SGPS longitude-velocity (l-v) diagram. Page 1 Milky Way has long been a mystery to The l-v diagram shows HI emission in From the Director Galactic astronomers. Though we know the Galactic mid-plane (b = 0°). Emission Page 3 that the neutral hydrogen (HI) disk at negative velocities is interior to the extends far beyond the stellar disk, we solar circle and corresponds to gas at Bob Duncan: know very little about its structure in two distances, whereas emission at 1929 – 2004 this Galactic “outback”. In particular, positive velocities lies exterior to the Page 4 we do not know how far the HI spiral solar circle and generally corresponds to structure of the Galaxy extends. only one distance with larger velocities at The ALFA story larger distances. The new ridge of Page 6 As part of the Southern Galactic Plane emission arcs from l = 253°, v = 102 -1 -1 Narrabri Survey (SGPS; McClure-Griffiths et al. km s through l = 299°, v = 110 km s to atmospheric 2001) we have recently identified a l = 321°, v = 88 km s-1. It is relatively seeing monitor remarkable structure in the far outer cohesive across more than 70 degrees on Page 8 disk of the southern Milky Way. This the sky, kinematically distinct from its structure, shown near the top of surroundings, and is notably the last Remote visualisation service Figure 1, is a ridge of emission lying at feature before the edge of the Galactic the far positive-velocity edge of the disk.
    [Show full text]
  • SPIRIT Target Lists
    JANUARY and FEBRUARY deep sky objects JANUARY FEBRUARY OBJECT RA (2000) DECL (2000) OBJECT RA (2000) DECL (2000) Category 1 (west of meridian) Category 1 (west of meridian) NGC 1532 04h 12m 04s -32° 52' 23" NGC 1792 05h 05m 14s -37° 58' 47" NGC 1566 04h 20m 00s -54° 56' 18" NGC 1532 04h 12m 04s -32° 52' 23" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1672 04h 45m 43s -59° 14' 52" NGC 1313 03h 18m 16s -66° 29' 43" NGC 1313 03h 18m 15s -66° 29' 51" NGC 1365 03h 33m 37s -36° 08' 27" NGC 1566 04h 20m 01s -54° 56' 14" NGC 1097 02h 46m 19s -30° 16' 32" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1232 03h 09m 45s -20° 34' 45" NGC 1433 03h 42m 01s -47° 13' 19" NGC 1068 02h 42m 40s -00° 00' 48" NGC 1792 05h 05m 14s -37° 58' 47" NGC 300 00h 54m 54s -37° 40' 57" NGC 2217 06h 21m 40s -27° 14' 03" Category 1 (east of meridian) Category 1 (east of meridian) NGC 1637 04h 41m 28s -02° 51' 28" NGC 2442 07h 36m 24s -69° 31' 50" NGC 1808 05h 07m 42s -37° 30' 48" NGC 2280 06h 44m 49s -27° 38' 20" NGC 1792 05h 05m 14s -37° 58' 47" NGC 2292 06h 47m 39s -26° 44' 47" NGC 1617 04h 31m 40s -54° 36' 07" NGC 2325 07h 02m 40s -28° 41' 52" NGC 1672 04h 45m 43s -59° 14' 52" NGC 3059 09h 50m 08s -73° 55' 17" NGC 1964 05h 33m 22s -21° 56' 43" NGC 2559 08h 17m 06s -27° 27' 25" NGC 2196 06h 12m 10s -21° 48' 22" NGC 2566 08h 18m 46s -25° 30' 02" NGC 2217 06h 21m 40s -27° 14' 03" NGC 2613 08h 33m 23s -22° 58' 22" NGC 2442 07h 36m 20s -69° 31' 29" Category 2 Category 2 M 42 05h 35m 17s -05° 23' 25" M 42 05h 35m 17s -05° 23' 25" NGC 2070 05h 38m 38s -69° 05' 39" NGC 2070 05h 38m 38s -69°
    [Show full text]
  • Arxiv:2005.06079V1 [Astro-Ph.GA] 12 May 2020 Z879 USA
    DRAFT VERSION MAY 14, 2020 Preprint typeset using LATEX style emulateapj v. 4/12/04 THE VARIABLE AND NON-VARIABLE X-RAY ABSORBERS IN COMPTON-THIN TYPE-II ACTIVE GALACTIC NUCLEI SIBASISH LAHA1,2,3 ,ALEX G. MARKOWITZ4,1 , MIRKO KRUMPE5,ROBERT NIKUTTA6,RICHARD ROTHSCHILD1, &TATHAGATA SAHA 4 Draft version May 14, 2020 ABSTRACT We have conducted an extensive X-ray spectral variability study of a sample of 20 Compton-thin type II galaxies using broad band spectra from XMM-Newton, Chandra,and Suzaku. The aim is to study the variability of the neutral intrinsic X-ray obscuration along the line of sight and investigate the properties and location of the dominant component of the X-ray-obscuring gas. The observations are sensitive to absorption columns of 20.5−24 −2 NH ∼ 10 cm of fully- and partially-coveringneutral and/or lowly-ionizedgas on timescales spanning days to well over a decade. We detected variability in the column density of the full-covering absorber in 7/20 sources, on timescales of months-years, indicating a component of compact-scale X-ray-obscuring gas lying along the line of sight of each of these objects. Our results imply that torus models incorporating clouds or overdense regions should account for line of sight column densities as low as ∼ a few ×1021 cm−2. However, 13/20 sources yielded no detection of significant variability in the full-covering obscurer, with upper limits 21−23 −2 to ∆NH spanning 10 cm . The dominant absorbing media in these systems could be distant, such as kpc-scale dusty structures associated with the host galaxy, or a homogeneous medium along the line of sight.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Bar-Induced Perturbation Strengths of the Galaxies in the Ohio State University Bright Galaxy Survey – I
    THE UNIVERSITY OF ALABAMA University Libraries Bar-induced Perturbation Strengths of the Galaxies in the Ohio State University Bright Galaxy Survey – I E. Laurikainen – University of Oulu, Finland H. Salo – University of Oulu, Finland R. Buta – University of Alabama S. Vasylyev – University of Alabama Deposited 08/01/2019 Citation of published version: Laurikainen, E., Salo, H., Buta, R., Vasylyev, S. (2004): Bar-induced Perturbation Strengths of the Galaxies in the Ohio State University Bright Galaxy Survey – I. Monthly Notices of the Royal Astronomical Society, 355(4). DOI: https://doi.org/10.1111/j.1365-2966.2004.08410.x © 2004 Oxford University Press Mon. Not. R. Astron. Soc. 355, 1251–1271 (2004) doi:10.1111/j.1365-2966.2004.08410.x Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey – I Eija Laurikainen,1 Heikki Salo,1 Ronald Buta2 and Sergiy Vasylyev2 1Division of Astronomy, Department of Physical Sciences, PO Box 3000, University of Oulu, Oulu, FIN-90014, Finland Downloaded from https://academic.oup.com/mnras/article-abstract/355/4/1251/992987 by University of Alabama user on 01 August 2019 2Department of Physics and Astronomy, Box 870324, University of Alabama, Tuscaloosa, AL 35487, USA Accepted 2004 September 10. Received 2004 September 10; in original form 2004 June 4 ABSTRACT Bar-induced perturbation strengths are calculated for a well-defined magnitude-limited sample of 180 spiral galaxies, based on the Ohio State University Bright Galaxy Survey. We use a gravitational torque method, the ratio of the maximal tangential force to the mean axisymmetric radial force, as a quantitative measure of the bar strength.
    [Show full text]
  • Atlante Grafico Delle Galassie
    ASTRONOMIA Il mondo delle galassie, da Kant a skylive.it. LA RIVISTA DELL’UNIONE ASTROFILI ITALIANI Questo è un numero speciale. Viene qui presentato, in edizione ampliata, quan- [email protected] to fu pubblicato per opera degli Autori nove anni fa, ma in modo frammentario n. 1 gennaio - febbraio 2007 e comunque oggigiorno di assai difficile reperimento. Praticamente tutte le galassie fino alla 13ª magnitudine trovano posto in questo atlante di più di Proprietà ed editore Unione Astrofili Italiani 1400 oggetti. La lettura dell’Atlante delle Galassie deve essere fatto nella sua Direttore responsabile prospettiva storica. Nella lunga introduzione del Prof. Vincenzo Croce il testo Franco Foresta Martin Comitato di redazione e le fotografie rimandano a 200 anni di studio e di osservazione del mondo Consiglio Direttivo UAI delle galassie. In queste pagine si ripercorre il lungo e paziente cammino ini- Coordinatore Editoriale ziato con i modelli di Herschel fino ad arrivare a quelli di Shapley della Via Giorgio Bianciardi Lattea, con l’apertura al mondo multiforme delle altre galassie, iconografate Impaginazione e stampa dai disegni di Lassell fino ad arrivare alle fotografie ottenute dai colossi della Impaginazione Grafica SMAA srl - Stampa Tipolitografia Editoria DBS s.n.c., 32030 metà del ‘900, Mount Wilson e Palomar. Vecchie fotografie in bianco e nero Rasai di Seren del Grappa (BL) che permettono al lettore di ripercorrere l’alba della conoscenza di questo Servizio arretrati primo abbozzo di un Universo sempre più sconfinato e composito. Al mondo Una copia Euro 5.00 professionale si associò quanto prima il mondo amatoriale. Chi non è troppo Almanacco Euro 8.00 giovane ricorderà le immagini ottenute dal cielo sopra Bologna da Sassi, Vac- Versare l’importo come spiegato qui sotto specificando la causale.
    [Show full text]