Routing and Sensor Search in the Internet of Things

Total Page:16

File Type:pdf, Size:1020Kb

Routing and Sensor Search in the Internet of Things From the Institute of Computer Engineering of the University of L¨ubeck Direktor: Prof. Dr.-Ing. Erik Maehle Routing and Sensor Search in the Internet of Things Dissertation for Fulfilment of Requirements for the Doctoral Degree of the University of L¨ubeck { from the Department of Computer Sciences/Engineering { Submitted by M.Sc. Cuong Duc Truong from Hanoi, Vietnam L¨ubeck, January 2014 From the Institute of Computer Engineering of the University of L¨ubeck Direktor: Prof. Dr.-Ing. Erik Maehle Routing and Sensor Search in the Internet of Things Dissertation for Fulfilment of Requirements for the Doctoral Degree of the University of L¨ubeck { from the Department of Computer Sciences/Engineering { Submitted by M.Sc. Cuong Duc Truong from Hanoi, Vietnam L¨ubeck, January 2014 First referee: Prof. Dr. sc. Kay Uwe R¨omer Second referee: Prof. Dr. rer. nat. Stefan Fischer Date of oral examination: 13.01.2014 Approved for printing. L¨ubeck, den 13.01.2014 i Abstract by M. Sc. Cuong Duc Truong Institute of Computer Engineering, University of L¨ubeck We are witnessing the formation of an Internet of Things (IoT), where real-world entities (e.g., people, plants, cars) augmented with computing devices (e.g., smartphones, tablets, sensor nodes), sensors (e.g., humidity sensors, microphones, cameras), and actuators (e.g., motors, LED) are connected to the Internet, enabling them to publish their generated data on the Web. By mashing up these \Smart Things" with the services and data available on the Web, novel IoT applications can be created. Two main characteristics of the IoT are its large scale interconnecting billions of Smart Things in the next decade, and the resource limitations of Smart Things (i.e., of their embedded computing devices). For many IoT applications, routing and sensor search are essential services. The sensor search service allows for quickly finding Smart Things in the IoT based on the real-world states perceived by their embedded sensors. To facilitate sensor search and also other IoT applications, a routing service is required to enable efficient communication of information among Smart Things and other Internet nodes. Due to the resource limitations of Smart Things, the design of these two services is challenging. Our thesis is that despite the large scale of the IoT and the resource limitations of Smart Things, efficient solutions for the routing and sensor search services can actually be provided. We support this thesis by proposing, implementing, and evaluating two routing algorithms for large-scale wireless sensor networks (which are a building block of the IoT), and two sensor search algorithms for the IoT. The proposed routing algorithms are Recursive Multi-region Geocasting (RMG) and Stochas- tic Forwarding-based Routing (SFR). The RMG algorithm is targeted to large-scale wireless networks where information needs to be delivered from a source to multiple geographical regions that are remotely located from the source, respectively to all Smart Things that are located therein. RMG's approach is to avoid making routing decisions at every intermediate node. Instead, routing decisions and packet duplication are only performed at a few selected nodes on the routing path of a data packet, thus saving processing and energy resources as well as wireless bandwidth. The SFR algorithm aims to balance the energy consumption ii caused by the routing task across the network, therefore improving the operational lifetime of the network. Our approach for SFR is to model the route of a data packet as a random walk, such that different packets travel on different routing paths between a given source and destination. The random walk is designed such that the ratio between the average length of the routing paths taken by multiple packets and the length of the shortest routing path (path length overhead) is small, thus saving energy. Evaluation results show the efficiency of our routing algorithms. In particular, (i) RMG minimizes the total number of transmissions needed for the successful delivery of a data packet, and incurs little computation overhead on the network; and (ii) SFR fairly balances the routing load across the network while keeping the path length overhead small. Furthermore, both algorithms are scalable, since routing decisions are made using only local information. The proposed search algorithms are sensor similarity search and content-based sensor search. The first algorithm allows for finding sensors whose recent measurements (i.e., perceived states of the real world) are similar to that of an example sensor. The second algorithm allows for finding sensors whose latest measurements fall in a given value range. These two search services are useful because they enable the users to search the real world for objects and places with a given state in real time. Our approach for both algorithms is to encode the properties of the real-world states perceived by sensors using a fuzzy set, and store and index those fuzzy sets in a distributed database system in the Internet, such that they can be used for query resolution. Since the size of a fuzzy set is small, its computation is efficient, and the query resolution using those fuzzy sets is fast, our approach is scalable. Moreover, our approach addresses the inherent imperfections of data generated by sensors as it is based on fuzzy sets. Evaluating our search algorithms using sensor data from real- world deployments, we show the high accuracy of the sensor similarity search algorithm, and the low communication overhead of the content-based sensor search algorithm. We also demonstrate the practical feasibility of our sensor search algorithms by developing an online search engine that allows for finding sensors on the Web based on their published data, using the above sensor search algorithms. Zusammenfassung von M. Sc. Cuong Duc Truong Institut f¨urTechnische Informatik, Universit¨atzu L¨ubeck Es wird erwartet, dass das Internet der Dinge (IoT) im kommenden Jahrzehnt Milliar- den von stark ressourcenbeschr¨anktensmarten Dingen mit dem Internet verbindet. F¨ur viele IoT-Anwendungen sind Routing und Suche grundlegende Dienste. Sensorsuchdien- ste erlauben das schnelle Finden von smarten Dingen im IoT basierend auf den von ihren Sensoren gemessenen Zust¨anden der realen Welt. Um die Suche und auch andere IoT- Anwendungen zu erm¨oglichen, wird ein Routingdienst ben¨otigt der eine effiziente Weiter- leitung von Nachrichten zwischen smarten Dingen und anderen Internetknoten erlaubt. Die Ressourcenknappheit der smarten Dinge macht die Realisierung dieser Dienste zu einer wis- senschaftlichen Herausforderung. Unsere These ist, dass es trotz der Gr¨oßedes IoT und den limitierten Ressourcen der smarten Dinge m¨oglich ist, effiziente L¨osungenf¨ur das Routing und die Sensorsuche bere- itzustellen. Wir unterst¨utzendiese These durch Entwurf, Implementierung und Evaluation zweier Routingalgorithmen f¨urgroßfl¨achige drahtlose Sensornetze (WSN) sowie zweier Sen- sorsuchalgorithmen f¨urdas IoT. Die vorgeschlagenen Routingalgorithmen sind Recursive Multi-region Geocasting (RMG) und Stochastic Forwarding-based Routing (SFR). Der RMG-Algorithmus ist auf großfl¨achige WSN zugeschnitten, in denen Nachrichten von einer Quelle zu mehreren entfernten ge- ografischen Regionen bzw. den darin befindlichen smarten Dingen weitergeleitet werden sollen. RMG vermeidet es dabei, auf jedem Zwischenknoten aufwendige Routingberechnun- gen treffen zu m¨ussen.Stattdessen werden Routingentscheidungen und Paketduplizierungen nur an einigen ausgesuchten Knoten entlang des Routingpfades eines Pakets durchgef¨uhrt. Dies spart Rechenaufwand und Energie sowie Bandbreite. Der SFR Algorithmus zielt da- rauf ab den Energieverbrauch gleichm¨aßig¨uber die Netzwerkknoten zu verteilen um so die Lebenszeit des Netzwerkes zu optimieren. Daf¨ur wird der Routingpfad eines Pakets als eine Zufallsbewegung modelliert, so dass verschiedene Pakete verschiede Pfade zwischen Quelle und Senke verwenden. Die Zufallsbewegung ist so angelegt, dass das Verh¨altnis zwis- chen der durchschnittlichen L¨angedes Routingpfades von mehreren Paketen und der L¨ange iv des k¨urzestenPfades (Pfadl¨angenoverhead) klein ist. Evaluationen zeigen die Effizienz un- serer Routingalgorithmen. Insbeesondere minimiert RMG die Gesamtzahl der ben¨otigten Nachrichten¨ubertragungen f¨urdie erfolgreiche Ubermittlung¨ eines Paketes und ben¨otigtnur geringen Rechenoverhead. SFR verteilt die Routinglast gleichm¨aßig¨uber die Netzwerkknoten w¨ahrendes den Pfadl¨angenoverhead klein h¨alt.Weiterhin sind beide Algorithmen skalierbar, da Routingentscheidungen nur anhand von lokalen Informationen getroffen werden. Die vorgeschlagenen Algorithmen f¨urdie Sensorsuche sind Sensor Similarity Search (SSS) und Content-based Sensor Search (CSS). Der erste Algorithmus findet Sensoren deren Aus- gabezeitreihe ¨ahnlich zu der Ausgabezeitreihe eines vorgegebenen Sensor sind. Der zweite Algorithmus findet Sensoren, deren aktueller Ausgabewert in ein gegebenes Intervall f¨allt. Diese Algorithmen erlauben es einem Nutzer die reale Welt in Echtzeit nach Objekten und Pl¨atzenmit einem gegebenen Zustand zu durchsuchen. Bei beiden Algorithmen werden die Ausgaben der Sensoren durch Fuzzy-Sets kodiert. Diese Fuzzy-Sets werden in einer verteilten Datenbank im Internet indiziert und verwendet um Suchanfragen effizient zu beantworten. Fuzzy-Sets k¨onneneffizient berechnet werden, haben einen geringen Speicherbedarf, bilden die Eigenschaften von Sensordaten gut ab und sind damit gut f¨urdie Sensorsuche geeignet. Die
Recommended publications
  • Transactional Concurrency Control for Intermittent, Energy-Harvesting Computing Systems
    PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA Emily Ruppel and Brandon Lucia 52, 55, 82] and preserving progress [6, 7, 53]. Recent work sequences of multiple tasks to execute atomically with re- addressed input/output (I/O), ensuring that computations spect to events. Coati’s support for events and transactions were timely in their consumption of data collected from sen- is the main contribution of this work. Coati provides the sors [15, 31, 86]. However, no prior work on intermittent critical ability to ensure correct synchronization across re- computing provides clear semantics for programs that use gions of code that are too large to complete in a single power event-driven concurrency, handling asynchronous I/O events cycle. Figure 1 shows a Coati program with three tasks con- in interrupts that share state with transactional computa- tained in a transaction manipulating related variables x, y, tions that execute in a main control loop. The idiomatic use of and z, while an asynchronous event updates x and y. Coati interrupts to collect, process, and store sensor results is very ensures atomicity of all tasks in the figure, even if any task common in embedded systems. The absence of this event- individually is forced to restart by a power failure. driven I/O support in intermittent systems is an impediment This work explores the design space of transaction, task, to developing batteryless, energy-harvesting applications. and event implementations by examining two models that Combining interrupts and transactional computations in make different trade-offs between complexity and latency. an intermittent system creates a number of unique problems Coati employs a split-phase model that handles time-critical that we address in this work using new system support.
    [Show full text]
  • Designing with Sensors: Creating Adaptive Experiences Avi Itzkovitch UI/UX Designer @Xgmedia What Is Adaptive Design? Responsive Design Adaptive Design
    @xgmedia #ParisWeb Designing with Sensors: Creating Adaptive Experiences Avi Itzkovitch UI/UX Designer @xgmedia What is Adaptive Design? Responsive Design Adaptive Design 2002 Minority Report 2007 Homing Device 2007 First iPhone 2007 2013 Examples? GARMIN Zumo 660 Day and Night Interface Google Now Public transit When you’re near a bus stop or a subway station, Google Now tells you what buses or trains are next. Next appointment Get a notification for when you should leave to your next appointment. Based on synced calendars and current location. Ubiquitous Computing Mark Weiser “The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” Nest, The Learning Thermostat TEMPERATURE SENSOR AMBIENT LIGHT SENSOR TEMPERATURE AND HUMIDITY SENSOR WI-FI ANTENNA RADIO - Connects with home Wi-Fi network NEAR-FIELD MOTION SENSOR FAR-FIELD MOTION SENSOR WHAT IS AN ADAPTIVE SENSOR? Accelerometer Accelerometer List of sensors http://en.wikipedia.org/wiki/List_of_sensors • Geophone • Electrochemical gas • Air flow meter • Accelerometer • Charge-coupled device • Hydrophone sensor • Anemometer • Auxanometer • Colorimeter • Lace Sensor a guitar • Electronic nose • Flow sensor • Capacitive displacement • Contact image sensor pickup • Electrolyte–insulator– • Gas meter sensor • Electro-optical sensor • Microphone semiconductor sensor • Mass flow sensor • Capacitive sensing • Flame detector • Seismometer • Fluorescent chloride • Water meter • Free fall sensor • Infra-red
    [Show full text]
  • Beyond Interoperability – Pushing the Performance of Sensor Network IP Stacks
    Industry: Beyond Interoperability – Pushing the Performance of Sensor Network IP Stacks JeongGil Ko Joakim Eriksson Nicolas Tsiftes Department of Computer Science Swedish Institute of Computer Swedish Institute of Computer Johns Hopkins University Science (SICS) Science (SICS) Baltimore, MD 21218, USA Box 1263, SE-16429 Kista, Box 1263, SE-16429 Kista, [email protected] Sweden Sweden [email protected] [email protected] Stephen Dawson-Haggerty Jean-Philippe Vasseur Mathilde Durvy Computer Science Division Cisco Systems Cisco Systems University of California, Berkeley 11, Rue Camille Desmoulins, Issy 11, Rue Camille Desmoulins, Issy Berkeley, CA 94720, USA Les Moulineaux, 92782, France Les Moulineaux, 92782, France [email protected] [email protected] [email protected] Abstract General Terms Interoperability is essential for the commercial adoption Experimentation, Performance, Standardization of wireless sensor networks. However, existing sensor net- Keywords work architectures have been developed in isolation and thus IPv6, 6LoWPAN, RPL, IETF, Interoperability, Sensor interoperability has not been a concern. Recently, IP has Network, TinyOS, Contiki been proposed as a solution to the interoperability problem of low-power and lossy networks (LLNs), considering its open 1 Introduction and standards-based architecture at the network, transport, For wireless sensor networks to be widely adopted by and application layers. We present two complete and in- the industry, hardware and software implementations from teroperable implementations of the IPv6 protocol stack for different vendors need to interoperate and perform well to- LLNs, one for Contiki and one for TinyOS, and show that gether. While IEEE 802.15.4 has emerged as a common the cost of interoperability is low: their performance and physical layer that is used both in commercial sensor net- overhead is on par with state-of-the-art protocol stacks cus- works and in academic research, interoperability at the phys- tom built for the two platforms.
    [Show full text]
  • Coap Based Acute Parking Lot Monitoring System Using Sensor Networks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON ADVANCES IN WIRELESS SENSOR NETWORKS, JUNE 2014, VOLUME: 05, ISSUE: 02 COAP BASED ACUTE PARKING LOT MONITORING SYSTEM USING SENSOR NETWORKS R. Aarthi1 and A. Pravin Renold2 TIFAC-CORE in Pervasive Computing Technologies, Velammal Engineering College, India E-mail: [email protected], [email protected] Abstract it to aid in overall management and planning. Sensor networks Vehicle parking is the act of temporarily maneuvering a vehicle in to are a natural candidate for car-park management systems [6], a certain location. To deal with parking monitoring system issue such because they allow status to be monitored very accurately - for as traffic, this paper proposes a vision of improvements in monitoring each parking space, if desired. the vehicles in parking lots based on sensor networks. Most of the existing paper deals with that of the automated parking which is of cluster based and each has its own overheads like high power, less energy efficiency, incompatible size of lots, space. The novel idea in this work is usage of CoAP (Constrained Application Protocol) which is recently created by IETF (draft-ietf-core-coap-18, June 28, 2013), CoRE group to develop RESTful application layer protocol for communications within embedded wireless networks. This paper deals with the enhanced CoAP protocol using multi hop flat topology, which makes the acuters feel soothe towards parking vehicles. We aim to minimize the time consumed for finding free parking lot as well as increase the energy efficiency.
    [Show full text]
  • Tecnologías De Fuentes Abiertas Para Ciudades Inteligentes
    Open Smart Cities Tecnologías de fuentes abiertas para ciudades inteligentes www.cenatic.es Abril 2013 Open Smart Cities Tecnologías de fuentes abiertas para ciudades inteligentes Título: Open Smart Cities: Tecnologías de fuentes abiertas para ciudades inteligentes Autora: Ana Trejo Pulido Abril 2012 Edita: CENATIC. Avda. Clara Campoamor s/n. 06200 Almendralejo (Badajoz). Primera Edición. ISBN-13: 978-84-15927-13-6 Los contenidos de esta obra está bajo una licencia Reconocimiento 3.0 España de Creative Commons. Para ver una copia de la licencia visite http://creativecommons.org/licenses/by/3.0/es/ www.cenatic.es Pág. 2 de 59 Open Smart Cities Tecnologías de fuentes abiertas para ciudades inteligentes Índice 1 Introducción...............................................................................................................6 2 La Internet de las Cosas: hacia la ciudad conectada.................................................7 3 Tecnologías de código abierto para la Internet de las Cosas.....................................9 3.1 Waspmote.................................................................................................................10 3.2 Arduino......................................................................................................................10 3.3 Dash7........................................................................................................................11 3.4 Rasberry Pi................................................................................................................11
    [Show full text]
  • A Fog Storage Software Architecture for the Internet of Things Bastien Confais, Adrien Lebre, Benoît Parrein
    A Fog storage software architecture for the Internet of Things Bastien Confais, Adrien Lebre, Benoît Parrein To cite this version: Bastien Confais, Adrien Lebre, Benoît Parrein. A Fog storage software architecture for the Internet of Things. Advances in Edge Computing: Massive Parallel Processing and Applications, IOS Press, pp.61-105, 2020, Advances in Parallel Computing, 978-1-64368-062-0. 10.3233/APC200004. hal- 02496105 HAL Id: hal-02496105 https://hal.archives-ouvertes.fr/hal-02496105 Submitted on 2 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. November 2019 A Fog storage software architecture for the Internet of Things Bastien CONFAIS a Adrien LEBRE b and Benoˆıt PARREIN c;1 a CNRS, LS2N, Polytech Nantes, rue Christian Pauc, Nantes, France b Institut Mines Telecom Atlantique, LS2N/Inria, 4 Rue Alfred Kastler, Nantes, France c Universite´ de Nantes, LS2N, Polytech Nantes, Nantes, France Abstract. The last prevision of the european Think Tank IDATE Digiworld esti- mates to 35 billion of connected devices in 2030 over the world just for the con- sumer market. This deep wave will be accompanied by a deluge of data, applica- tions and services.
    [Show full text]
  • NSF Nets Small RUI: Wireless Sensor Network Project
    NSF NeTs Small RUI: Wireless Sensor Network Project Federal Agency and Organization Element to Which Report is Submitted: 4900 Federal Grant or Other Identifying Number Assigned by Agency: 1816197 Project Title: NeTS: Small: RUI: Bulldog Mote- Low Power Sensor Node and design Methodologies for Wireless Sensor Networks PD/PI Name: Nan Wang, Principal Investigator Woonki Na, Co-Principal Investigator Recipient Organization: California State University-Fresno Foundation Project/Grant Period: 10/01/2018 - 09/30/2021 Reporting Period: 10/01/2018 - 09/30/2019 Student Assistant: Russel Schellenberg Calvin Jarrod Smith Department of Electrical and Computer Engineering Lyles College of Engineering Contents 1 Purpose 3 2 Current Projects 3 2.1 Bulldog Mote . .3 2.2 Wireless Gateway Implementation . .3 2.2.1 Tmote Sky Mote . .3 2.2.2 Gateway Website . .7 2.3 MANET Routing Protocols and Software . .8 2.3.1 Contiki OS . .8 3 HM-10 BLE Communication Module 10 3.1 Overview . 10 3.2 HM-10 Module Configuration . 16 3.3 Connecting Two HM-10 Devices . 17 3.3.1 Setting up Slave Device . 18 3.3.2 Setting up Master Device . 18 3.3.3 Discovery Connection . 19 3.4 Connecting to HM-10 from Android Phone . 23 4 Wireless Gateway Implementation 30 4.1 Gateway Operating System and Environment . 30 4.2 Required hardware: . 30 4.3 Installation . 30 4.4 Contiki Program . 31 4.5 Gateway Program . 32 4.6 Web Server . 32 5 One-Hop, Ad-Hoc Sensor Network with Cooja 36 5.1 Overview . 36 5.2 Peripheral Node Gateway Detection .
    [Show full text]
  • C01 Plus 2010 301 185 0 Fr
    P5-16...R40-17 Modèle : C01 PLUS fr Notice de montage et d’utilisation Moteur de volet roulant avec émetteur-récepteur radio intégré Informations importantes pour: • l'installateur / • l'électricien / • l'utilisateur À transmettre à la personne concernée! L'original de cette notice doit être conservée par l'utilisateur. 2010 301 185 0a 19/03/2021 Becker-Antriebe GmbH Friedrich-Ebert-Straße 2-4 35764 Sinn/Allemagne www.becker-antriebe.com Sommaire Généralités.......................................................................................................................................................................... 4 Garantie .............................................................................................................................................................................. 5 Consignes de sécurité.......................................................................................................................................................... 5 Remarques pour l’utilisateur ............................................................................................................................................ 5 Remarques pour le montage et la mise en service ............................................................................................................. 5 Utilisation conforme ............................................................................................................................................................. 7 Montage et démontage du câble de connexion enfichable
    [Show full text]
  • Internet of Things: a Scientometric Review
    S S symmetry Article Internet of Things: A Scientometric Review Juan Ruiz-Rosero 1,* ID , Gustavo Ramirez-Gonzalez 1 ID , Jennifer M. Williams 2 ID , Huaping Liu 2, Rahul Khanna 3 ID and Greeshma Pisharody 3 ID 1 Departamento de Telemática, Universidad del Cauca, Popayán, Cauca 190002, Colombia; [email protected] 2 School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA; [email protected] (J.M.W.); [email protected] (H.L.) 3 Intel Corporation, 2111 NE 25th Ave., Hillsboro, OR 97124, USA; [email protected] (R.K.); [email protected] (G.P.) * Correspondence: [email protected]; Tel.: +57-(2)-820-9900 Received: 31 August 2017; Accepted: 23 November 2017; Published: 6 December 2017 Abstract: Internet of Things (IoT) is connecting billions of devices to the Internet. These IoT devices chain sensing, computation, and communication techniques, which facilitates remote data collection and analysis. wireless sensor networks (WSN) connect sensing devices together on a local network, thereby eliminating wires, which generate a large number of samples, creating a big data challenge. This IoT paradigm has gained traction in recent years, yielding extensive research from an increasing variety of perspectives, including scientific reviews. These reviews cover surveys related to IoT vision, enabling technologies, applications, key features, co-word and cluster analysis, and future directions. Nevertheless, we lack an IoT scientometrics review that uses scientific databases to perform a quantitative analysis. This paper develops a scientometric review about IoT over a data set of 19,035 documents published over a period of 15 years (2002–2016) in two main scientific databases (Clarivate Web of Science and Scopus).
    [Show full text]
  • Interstate-Mcbee Engine Sensors As Engines Continue to Become More Complex, Sensors Have Become an Increasingly Crucial Component for Proper Performance
    Serving the Diesel and Natural Gas Industry for over 70 years www.interstate-mcbee.com “Quality without Compromise” Interstate-McBee Engine Sensors As engines continue to become more complex, sensors have become an increasingly crucial component for proper performance. When operating properly, the sensors feed important data to the ECM (Engine Control Module), which regulates and constantly adjusts many of the basic engine functions. When not operating properly, they can send data that may cause the engine to operate at less than optimal efficiency. The four basic types of sensors are: 1. Position Sensor - Monitors crankshaft or camshaft for proper timing. 2. Pressure Sensor - Monitors the fuel system, turbo boost and ambient air. 3. Temperature Sensor - Monitors coolant, oil, or air temperature. Interstate-McBee has put each of these items through rigorous quality assurance and field 4. Combination Sensor - Monitors testing to ensure our customers the highest pressure and/or temperature. quality product. And, as always, every sensor purchased from Interstate-McBee comes with Contact an Interstate-McBee our comprehensive 2 year unlimited representative for more details. mileage/hours warranty. +++See reverse side for complete list of sensors offered+++ World Headquarters Florida California Texas 5300 Lakeside Ave. 9995 NW 58th St. 13137 Arctic Circle 1755 Transcentral Ct. Suite 200 Cleveland, OH. 44114 Doral, FL. 33178 Santa Fe Springs, CA. 90670 Houston, TX. 77032 PH: 216-881-0015 PH: 305-863-6650 PH: 562-356-5414 PH: 281-645-7168 Fax:
    [Show full text]
  • Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors
    Sensors 2015, 15, 25208-25259; doi:10.3390/s151025208 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors Marie Pospíšilová 1, Gabriela Kuncová 2 and Josef Trögl 3,* 1 Czech Technical University, Faculty of Biomedical Engeneering, Nám. Sítná 3105, 27201 Kladno, Czech Republic; E-Mail: [email protected] 2 Institute of Chemical Process Fundamentals, ASCR, Rozvojová 135, 16500 Prague, Czech Republic; E-Mail: [email protected] 3 Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Králova Výšina 3132/7, 40096 Ústí nad Labem, Czech Republic * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-475-284-153. Academic Editor: Stefano Mariani Received: 26 July 2015 / Accepted: 14 September 2015 / Published: 30 September 2015 Abstract: This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.
    [Show full text]
  • A Changing Landscape: the Internet of Things (Iot)
    A Changing Landscape: the Internet of Things (IoT) Prof Sanjay Jha Deputy Director, Australian Center for Cyber Security, UNSW Director of Cyber Security and Privacy Laboratory, School of Computer Science and Engineering University Of New South Wales [email protected] http://www.cse.unsw.edu.au/~sanjay SecureCanberra@MilCIS 2014, Australia 13th Nov 2014 Internet of Things • Connected devices • Smoke alarms, light bulbs, power switches, motion sensors, door locks etc. 2 Outline • Introduction to IoT • History of IoT (and M2M) and Wireless Sensor Networks • Security Challenges in IoT • Sample Research Projects at UNSW History (IoT) • Early 90s or prior: SCADA systems, Telemetry applications • Late 90s- Products/services from mobile operators (Siemens) to connect devices via cellular network – Primarily automotive telematics • Mid- 2000s – Many tailored products for logistics, fleet management, car safety, healthcare, and smart metering of electricity consumption • Since 2010 – A large number of consortiums mushrooming up to bid for a large market share – ABI Projects US$198M by 2018 – Berg Insight US$187M by 2014…… History of Wireless Sensor Net • 1999: Kahn, Katz,Pister: Vision for Smart Dust • 2002 Sensys CFP: Wireless Sensor Network research as being composed of ”distributed systems of numerous smart sensors and actuators connecting computational capabilities to the physical world have the potential to revolutionise a wide array of application areas by providing an unprecedented density and fidelity of instrumentation”. Typical Application Roadmap to IoT • Supply Chain Applications – Routing, inventory, loss prevention. • Vertical Market Helpers – Healthcare, Transport, Energy, Agriculture, Security, Home Network. • Ubiquitous Position – Location of people and objects and possible tailored services • Teleoperations/Telepresence - Ability to interact/control with remote objects.
    [Show full text]