A Changing Landscape: the Internet of Things (Iot)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Smart Dust: Communicating with a Cubic- Millimeter Computer
COVER FEATURE Smart Dust: Communicating with a Cubic- Millimeter Computer The Smart Dust project is probing microfabrication technology’s limitations to determine whether an autonomous sensing, computing, and communication system can be packed into a cubic-millimeter mote to form the basis of integrated, massively distributed sensor networks. Brett ecreasing computing device size, increased • monitoring environmental conditions that affect Warneke connectivity, and enhanced interaction with crops and livestock; the physical world have characterized com- • building virtual keyboards; Matt Last puting’s history. Recently, the popularity of • managing inventory control; Brian Dsmall computing devices, such as handheld • monitoring product quality; Liebowitz computers and cell phones, burgeoning Internet • constructing smart-office spaces; and growth, and the diminishing size and cost of sensors— • providing interfaces for the disabled. Kristofer S.J. especially transistors—have accelerated these trends. Pister The emergence of small computing elements, with SMART DUST REQUIREMENTS University of sporadic connectivity and increased interaction with Smart Dust requires both evolutionary and revolu- California, the environment, provides enriched opportunities to tionary advances in miniaturization, integration, and Berkeley reshape interactions between people and computers energy management. Designers can use microelectro- and spur ubiquitous computing research.1 mechanical systems (MEMS) to build small sensors, The Smart Dust project2 is exploring whether an optical communication components, and power sup- autonomous sensing, computing, and communication plies, whereas microelectronics provides increasing system can be packed into a cubic-millimeter mote (a functionality in smaller areas, with lower energy con- small particle or speck) to form the basis of integrated, sumption. Figure 1 shows the conceptual diagram of massively distributed sensor networks. -
IOT Platforms: a Brief Study Chaitra Acharya M.Tech Student, National Institute of Engineering, Mysuru, India
International Journal of Advanced Research in ISSN : 2347 - 8446 (Online) Computer Science & Technology (IJARCST 2016) Vol. 4, Issue 2 (Apr. - Jun. 2016) ISSN : 2347 - 9817 (Print) IOT Platforms: A Brief Study Chaitra Acharya M.Tech Student, National Institute of Engineering, Mysuru, India Abstract Internet is one of the most important and powerful creations in all of human history. The internet is basically an informal term for the world-wide communication network of computers more specifically called the network of networks. Internet not only links computers but also people through them. It was primarily designed to share information between networks. In today’s world people use internet for a variety of reasons: from browsing for information to chatting and even online services like shopping, banking, video conferencing and so forth. As the years progress, the services provided by the Internet grows endless. The “Internet of Things” refers to the concept that the Internet is no longer just a global network for people to communicate with one another using computers, but it is also a platform for devices to communicate electronically with the world around them. IoT represents the next evolution of the Internet, taking a huge leap in its ability to gather, analyse, and distribute data that we can turn into information, knowledge, and, ultimately, wisdom. There are a variety of IoT platforms like Thingspeak, Grovestreams, Thingworx, Xively and so on which provide IoT services to the users for a price. Keywords Internet of Things, IoT Architecture, Web of Things, Thingspeak, Grovestreams, Thingworx. I. Introduction we will discuss options for realizing each component. -
Kent Academic Repository Full Text Document (Pdf)
Kent Academic Repository Full text document (pdf) Citation for published version Arief, Budi and Blythe, Phil and Fairchild, Richard and Selvarajah, Kirusnapillai and Tully, Alan (2008) Integrating Smartdust into Intelligent Transportation System. In: 10th International Conference on Application of Advanced Technologies in Transportation (AATT 2008), 27-31 May 2008, Athens, Greece. DOI Link to record in KAR https://kar.kent.ac.uk/58716/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html INTEGRATING SMARTDUST INTO INTELLIGENT TRANSPORTATION SYSTEMS Budi Arief1, Phil Blythe2, Richard Fairchild3, Kirusnapillai Selvarajah4, Alan Tully5 ABSTRACT. The last few years have seen the emergence of many new technologies that can potentially have major impacts on Intelligent Transportation Systems (ITS). One of these technologies is a micro-electromechanical device called smartdust. A smartdust device (or a mote) is typically composed of a processing unit, some memory, and a radio chip, which allows it to communicate wirelessly with other motes within range. -
A DASH7-Based Power Metering System
A DASH7-based Power Metering System Oktay Cetinkaya Ozgur B. Akan Next-generation and Wireless Communications Laboratory Department of Electrical and Electronics Engineering Koc University, Istanbul, Turkey Email: fokcetinkaya13, [email protected] Abstract—Considering the inability of the existing energy non-embedded structure. When considering the cost of HEMS, resources to satisfy the current needs, the right and efficient use power meters can be defined as cheap and cost effective of the energy has become compulsory. To make energy sustain- products, undoubtedly. ability permanent, management and planning activities should be carried out by arranging the working hours and decreasing There are several wireless communication protocols in liter- the energy wasting. For all these, power metering, managing ature to actualize the remote control of plugged gadgets. The and controlling systems or plugs has been proposed in recent communication between ‘master and slave’ or equivalently efforts. Starting from this point, a new DASH7-based Smart Plug ‘user and device’ is realized over any of these wireless (D7SP) is designed and implemented to achieve a better structure communication protocols based modules. 2.4 GHz frequency compared to ZigBee equipped models and reduce the drawbacks of current applications. DASH7 technology reaches nearly 6 times is frequently preferred for this goal and ZigBee can be referred farther distances in comparison with 2.4 GHz based protocols and as the most popular member of this band. With a brief provides multi-year battery life as a result of using limited energy definition, ZigBee is a low cost and high reliable technology during transmission. Performing in the 433 MHz band prevents based on IEEE 802.15.4 [1]. -
Internet of Underground Things in Precision Agriculture: Architecture and Technology Aspects Mehmet C
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Journal Articles Computer Science and Engineering, Department of 2018 Internet of underground things in precision agriculture: Architecture and technology aspects Mehmet C. Vuran University of Nebraska-Lincoln, [email protected] Abdul Salam Purdue University, [email protected] Rigoberto Wong University of Nebraska-Lincoln, [email protected] Suat Irmak University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/csearticles Part of the Bioresource and Agricultural Engineering Commons, Computer and Systems Architecture Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Robotics Commons Vuran, Mehmet C.; Salam, Abdul; Wong, Rigoberto; and Irmak, Suat, "Internet of underground things in precision agriculture: Architecture and technology aspects" (2018). CSE Journal Articles. 189. https://digitalcommons.unl.edu/csearticles/189 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu Internet of underground things in precision agriculture: Architecture and technology aspects Mehmet C. Vuran,1 Abdul Salam,2 Rigoberto Wong,1 and Suat Irmak 3 1 Cyber-physical Networking Laboratory, Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA 2 Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA 3 Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE 68583, USA Corresponding author — A. Salam, [email protected] Email addresses: [email protected] (M.C. -
Voice Controlled Home Automation Akshay Mewada, Ayush Mishra, Manoj Gupta, Rahul Dash, Prof
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue on 3rd International Conference on Electronics & Computing Technologies-2016 Conference Held at K.C. College of Engineering & Management Studies & Research, Maharashtra, India Voice Controlled Home Automation Akshay Mewada, Ayush Mishra, Manoj Gupta, Rahul Dash, Prof. Nilofer Mulla BE EXTC, Department of Electronics and Telecommunication Engineering, K.C. College of Engineering & Management Studies & Research, Kopri, Thane (E), Maharashtra, India Abstract— Voice Controlled Home Automation is a very useful project for the adults and physically disabled persons, who are not able to do various activities efficiently when they are at home and need one’s assistant to perform those tasks. With the Voice Recognition the complication of wiring in case of wired automation is prevented. With the use of Bluetooth Home Automation considerable amount of power saving is possible and it is flexible and compatible with future technologies so it can be easily customized for individual requirements. Voice recognition system provides secure access to home. In the recent years, the Home Automation systems have seen rapid changes due to introduction of various wireless technologies. Home Automation industry is growing rapidly, this is fuelled by the need to provide supporting systems that are made to ease our life. Automation systems is supposed to be implemented in existing home environments, without any changes in the infrastructure. The automation is based on recognition of voice commands and uses Bluetooth modules along with microcontroller. This paper presents the overall design of ‘Voice Controlled Home Automation’, which we are currently developing. -
Design and Implementation of Internet of Things for Home Environment
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Design and Implementation of Internet of Things for Home Environment A thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Electronics and Computer Systems Engineering at Massey University, Manawatu, New Zealand. Sean Kelly 2013 Abstract An integrated framework for smart home monitoring towards internet of things based on ZigBee and 6LoWPAN wireless sensor networks is presented. The system was developed to retrofit existing sub systems of wireless technologies in order to reduce cost, and complexity. The practical internetworking architecture and the connection procedures for reliable measurement of smart sensors parameters and transmission of sensing data via internet are presented. A ZigBee based sensing system was designed and developed to see the feasibility of the system in home automation for contextual environmental monitoring. The ubiquitous sensing system is based on combination of pervasive distributed sensing units and an information system for data aggregation and analysis. Results related to the home automation parameters and execution of the system running continuously for long durations is encouraging. The prototype system (ZigBee based) was tested to generate real-time graphical information rather than using a simulator or a test bed scenario. A trail has also been performed with 6LoWPAN technology to provide functionality as the ZigBee based system. The overall internetworking architecture describes the integration of a low power consumption wireless sensor network with the internet. -
Smart Dust Technology
250, Mini-Project Report Amy Haas Smart Dust Technology Smart dust is an emerging technology with a huge potential for becoming an internationally successful commercial venture. Now is the best time to invest in smart dust – right at the point at which the scientific community is close to perfecting the technology and its applications but its potential has not yet been realized by the capitalist market. Fundamental Concept Smart dust is a theoretical concept of a tiny wireless sensor network, made up of microelectromechanical sensors (called MEMS), robots, or devices, usually referred to as motes, that have self-contained sensing, computation, communication and power1. According to the smart dust project design created by a team of UC Berkeley researchers2, within each of these motes is an integrated package of “MEMS sensors, a semiconductor laser diode and MEMS beam-steering mirror for active optical transmission, a MEMS corner-cube retroreflector for passive optical transmission, an optical receiver, signalprocessing and control circuitry, and a power source based on thick-film batteries and solar cells.” The intent is that these motes will eventually become the size of a grain of sand or a dust particle, hence the name “smart dust”, but the technology still has a long way to go to achieve its target size. In current sensor technology, the sensors are about the size of a bottle cap or small coin. As with most electronic devices or technologies, the biggest challenges in achieving actual smart dust are the power consumption issues and making the batteries small enough. Although there is a lot of work being done on solar cells to keep the motes self-sustaining, the components are just not small enough yet to actually be considered smart dust. -
Jul 2 7 2000
THE SNAP! TOOLKIT FOR DEVELOPING SENSOR NETWORKS AND APPLICATION TO XC SKIING BY MATTHEW B. DEBSKI Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degrees of Bachelor of Science in Electrical Engineering and Computer Science and Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2000 2 20C: MASSACHUSETTS INSTITUTE © Massachusetts Institute of Technology 2000. All rights reserved. OF TECHNOLOGY JUL 2 7 2000 LIBRARIES Author Department of Electrical Engineering and Computer Science May 18, 2000 Certified by MichaelJ. Hawley Assistant Prolssor of Media Arts and Sciences Alex Dreyfoos Jr. (1954) Career Development Professor of Media Arts and Sciences Thesis Supervisor Accepted by Arthur C. Smith Chairman, Department Committee on Graduate Theses ' pT THE SNAP! TOOLKIT FOR DEVELOPING SENSOR NETWORKS AND APPLICATION TO XC SKIING BY MATTHEW B. DEBSKI Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degrees of Bachelor of Science in Electrical Engineering and Computer Science and Master of Engineering in Electrical Engineering and Computer Science May 18, 2000 ABSTRACT Athletes, health professionals, animal specialists, meteorologists, and other investigators increasingly employ small, human-scale sensor networks in their disciplines. The sensor networks used by each field and study have unique requirements. Regardless, these networks all collect and store data, and often display or transmit them. The Snap! toolkit takes advantage of the similarities among sensor networks to make prototyping them fast and easy. Simultaneously, it acknowledges their inherent differences, remaining flexible in order to accommodate the needs of different systems. -
System Performance of Wireless Sensor Network Using Lora…
Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.016922 Article System Performance of Wireless Sensor Network Using LoRa–Zigbee Hybrid Communication Van-Truong Truong1, Anand Nayyar2,* and Showkat Ahmad Lone3 1Faculty of Electrical and Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam 2Graduate School, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Information Technology, Duy Tan University, Da Nang, Vietnam 3Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Campus, KSA *Corresponding Author: Anand Nayyar. Email: [email protected] Received: 15 January 2021; Accepted: 17 February 2021 Abstract: Wireless sensor network (WSN) is considered as the fastest growing technology pattern in recent years because of its applicability in var- ied domains. Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway. Ensuring communications in heterogeneous WSNs, is a critical issue that needs to be studied. In this research paper, we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communi- cation. Specifically, two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway. The overall system integrates many different sensors in terms of types, communication protocols, and accuracy, which can be used in many applications in realistic environments such as on land, under water, or in the air. In addition to this, a synchronous man- agement software on ThingSpeak Web server and Blynk app is designed. -
Thingspeak-Open Source Platform for Connected Products and Services
Chungnam National University Computer Science and Engineering Database System Laboratory ThingSpeak-Open Source Platform for Connected Products and Services 2012년 8월 29일 임형준([email protected]) 충남대학교 컴퓨터공학과 데이터베이스시스템연구실 TOC ioBridge, Inc. ThingSpeak ■ Goal ■ Features ■ Apps ■ Plugins ■ Devices Conclusion References Chungnam National University 2 Computer Science and Engineering Database System Laboratory ioBridge, Inc. ioBridge, Inc. offers technology and services that enable almost anything to be Web-enabled and monitored and controlled over the Internet ■ http://www.iobridge.com ioBridge's technology includes a Web services platform that customers can use to extend the technology of many applications ioBridge provides OEM and commercial integration services and licensing of core, patent-pending technologies Chungnam National University 3 Computer Science and Engineering Database System Laboratory ioBridge, Inc. Labs[1/4] - CheerLights Imagine millions of lights connected together ■ http://www.cheerlights.com/ CheerLights is a project that enables people all around the world to link lights and applications together based on social networking trends To control CheerLights, send a tweet to @cheerlights or include “cheerlights” somewhere in your message with the name of a color ■ Example Tweet: @CheerLights Paint the town red Chungnam National University 4 Computer Science and Engineering Database System Laboratory ioBridge, Inc. Labs[2/4] ‒ Tide Alerts Tide Alerts is a project developed by ioBridge to monitor and report tide -
Iot: the Next Evolution of Internet Refereed Journal Indexed Journal Impact Factor MJIF: 4.25 G
World Wide Journal of Multidisciplinary Research and Development WWJMRD 2018; 4(7): 11-15 www.wwjmrd.com International Journal Peer Reviewed Journal IoT: The Next Evolution of Internet Refereed Journal Indexed Journal Impact Factor MJIF: 4.25 G. Umarani, K.Sharmila E-ISSN: 2454-6615 Abstract G. Umarani Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital Guest Lecturer, Dept of machines, objects, animals or people that are provided with unique identifiers and the ability to computer Science K.N.Govt Arts College for Women (A), transfer data over a network without requiring human to human or human to computer interaction. Thanjavur, TamilNadu,India The basic idea of IoT is to allow objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and K.Sharmila computer-based systems and resulting in improved efficiency, accuracy and economic benefit. This Guest Lecturer, Dept of article reports the various technologies of IoT, Applications and discuss the challenges shall be faced computer Science K.N.Govt by the research community. Arts College for Women (A), Thanjavur, TamilNadu, India Keywords: Internet of Things- IoT- Defy-RFID- Actuator-NFC I Introduction The Internet of Things is a network of physical objects or “things” embedded with electronics, software, sensors and network connectivity which enables to interact with each object to collect and exchange data. Internet of Things (IoT) is not a result of single novel technology; instead several complementary and technical developments provide capabilities that taken together help to bridge the gap between the virtual and physical world.