A Review of Smart Cities Based on the Internet of Things Concept

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Smart Cities Based on the Internet of Things Concept energies Review A Review of Smart Cities Based on the Internet of Things Concept Saber Talari 1, Miadreza Shafie-khah 1,2,*, Pierluigi Siano 2, Vincenzo Loia 3, Aurelio Tommasetti 3 and João P. S. Catalão 1,4,5 1 C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal; [email protected] (S.T.); [email protected] or [email protected] (J.P.S.C.) 2 Department of Industrial Engineering, University of Salerno, 84084 Fisciano (SA), Italy; [email protected] 3 Department of Management & Innovation Systems, University of Salerno, 84084 Fisciano (SA), Italy; [email protected] (V.L.); [email protected] (A.T.) 4 INESC TEC and Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal 5 INESC-ID, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal * Correspondence: [email protected]; Tel.: +351-275-242055 Academic Editor: Joseph H. M. Tah Received: 8 January 2017; Accepted: 20 March 2017; Published: 23 March 2017 Abstract: With the expansion of smart meters, like the Advanced Metering Infrastructure (AMI), and the Internet of Things (IoT), each smart city is equipped with various kinds of electronic devices. Therefore, equipment and technologies enable us to be smarter and make various aspects of smart cities more accessible and applicable. The goal of the current paper is to provide an inclusive review on the concept of the smart city besides their different applications, benefits, and advantages. In addition, most of the possible IoT technologies are introduced, and their capabilities to merge into and apply to the different parts of smart cities are discussed. The potential application of smart cities with respect to technology development in the future provides another valuable discussion in this paper. Meanwhile, some practical experiences all across the world and the key barriers to its implementation are thoroughly expressed. Keywords: cloud platform; Internet of Things (IoT); smart city; demand response 1. Introduction 1.1. Concepts Because of the rapid rise of the population density inside urban environments, substructures and services have been needed to supply the requirements of the citizens. Accordingly, there has been a remarkable growth of digital devices, such as sensors, actuators, smartphones and smart appliances which drive to vast commercial objectives of the Internet of Things (IoT), because it is possible to interconnect all devices and create communications between them through the Internet [1]. In the past, it was difficult or even impossible to combine these digital devices. Likewise, gathering their information for day-to-day management of activities and long-term development planning in the city is essential. For example, some public transport information, e.g., real-time location and utilization, occupancy of parking spaces, traffic jams, and other data like weather conditions, air and noise pollution status, water contamination, energy consumption, etc. should be gathered continuously. To this end, different technologies have been applied to address the specific features of each application. The required technologies cover a wide range and layer from the physical level to the data and application layers. One of these technologies, proposed in [2], considered a two-way Energies 2017, 10, 421; doi:10.3390/en10040421 www.mdpi.com/journal/energies Energies 2017,, 10,, 421421 2 of 23 considered a two-way relay network with an orthogonal frequency division multiple accesses to achieverelay network higher with efficiency an orthogonal in smart frequencygrid communications. division multiple accesses to achieve higher efficiency in smartThe grid IoT communications. archetype is in the power of smart and self-configuring devices which are well linked togetherThe IoTby archetypeglobal grid is ininfrastructures. the power of smartIoT ca andn be self-configuring typically defined devices as a which real areobject, well largely linked dispersed,together by with global low grid storage infrastructures. capabilities and IoT pr canocessing be typically capacities, defined while as aaiming real object,at enhancing largely reliability,dispersed, withperformance low storage and capabilities security of and the processing smart citi capacities,es as well whileas their aiming infrastructure at enhancing [3]. reliability, On this performancebasis, in the present and security paper, ofa survey the smart of the cities IoT-ba as wellsed assmart their cities infrastructure information [3 from]. On related this basis, reports in the is presentconducted. paper, a survey of the IoT-based smart cities information from related reports is conducted. The IoT consists of three layers, including the perception layer, the network layer, and the application layer, as shown in Figure1 1.. TheThe perceptionperception layerlayer includesincludes aa groupgroup ofof Internet-enabledInternet-enabled devices that are able to perceive, detect objects, gather information, and exchange information with other devicesdevices through through the the Internet Internet communication communication networks. networks. Radio Radio Frequency Frequency Identification Identi Devicesfication (RFID),Devices cameras,(RFID), sensors,cameras, Global sensors, Positioning Global SystemsPositioning (GPS) Systems are some (GPS) examples are some of perception examples layer of perceptiondevices. Forwarding layer devices. data Forwarding from the perception data from layer the toperception the application layer to layer the underapplication the constraints layer under of thedevices’ constraints capabilities, of devices’ network capabilities, limitation network and the applications’limitation and constraints the applications’ is the task constraints of the network is the tasklayer. of IoT the systems network use layer. a combination IoT systems of use short-range a combination networks of short-range communication networks technologies communication such as technologiesBluetooth and such ZigBee as Bluetooth which are and used ZigBee to carry which the ar informatione used to carry from the perception information devices from toperception a nearby devicesgateway to based a nearby on the gateway capabilities based of the on communicatingthe capabilities parties of the [ 4communicating]. Internet technologies parties such[4]. Internet as WiFi, technologies2G, 3G, 4G, and such Power as WiFi, Line 2G, Communication 3G, 4G, and Powe (PLC)r Line carry Communication the information over(PLC) long carry distances the information based on overthe application. long distances Since based applications on the application. aim to create Since smart applications homes, smart aim cities, to create power smart system homes, monitoring, smart cities,demand-side power energysystem management,monitoring, demand-side coordination en ofergy distributed management, power coordination storage, and of integration distributed of powerrenewable storage, energy and generators, integration the lastof layerrenewable which energy is the application generators, layer, the is last where layer the informationwhich is the is applicationreceived and layer, processed. is where Accordingly, the information we are ableis rece toived design and better processed. power distributionAccordingly, and we management are able to designstrategies better [5]. power distribution and management strategies [5]. Figure 1. IoT layers. 1.2. Motivations The smart smart city city is is becoming becoming smarter smarter than than in the in thepast past as a asresult a result of the of current the current expansion expansion of digital of technologies.digital technologies. Smart Smartcities citiesconsist consist of various of various kinds kinds of ofelectronic electronic equipment equipment applied applied by by some applications, such such as as cameras cameras in in a amonitoring monitoring syst system,em, sensors sensors in ina transportation a transportation system, system, and and so on. so Furthermore,on. Furthermore, utilization utilization of individual of individual mobile mobile equipment equipment can can be be spread. spread. Hence, Hence, with with taking taking the heterogeneous environment into account, various term terms,s, like characteristic of objects, participants, motivations and security policies would be studied [[6].6]. Reference Reference [7] [7] presented presented some some of the key features ofof potential potential smart smart cities cities in 2020.in 2020. Smart Smart citizens, citizens, smart smart energy, energy, smart buildings,smart buildings, smart mobility, smart mobility, smart technology, smart healthcare, smart infrastructure, smart governance and education Energies 2017, 10, 421 3 of 23 Energies 2017, 10, 421 3 of 23 smartand finally technology, smart smartsecurity healthcare, are the aspects smart infrastructure,of smart cities. smart The features governance of a and smart education city are and shown finally in smartFigure security 2. are the aspects of smart cities. The features of a smart city are shown in Figure2. Figure 2. The key aspects of smart cities. In an IoT environment, devices can be aggregated according to their geographical position and In an IoT environment, devices can be aggregated according to their geographical position and also assessed by applying analyzing systems. Sensor services for gathering specific data are utilized also assessed by applying analyzing systems. Sensor services for gathering specific data are utilized with some ongoing projects regarding the monitoring
Recommended publications
  • IOT Platforms: a Brief Study Chaitra Acharya M.Tech Student, National Institute of Engineering, Mysuru, India
    International Journal of Advanced Research in ISSN : 2347 - 8446 (Online) Computer Science & Technology (IJARCST 2016) Vol. 4, Issue 2 (Apr. - Jun. 2016) ISSN : 2347 - 9817 (Print) IOT Platforms: A Brief Study Chaitra Acharya M.Tech Student, National Institute of Engineering, Mysuru, India Abstract Internet is one of the most important and powerful creations in all of human history. The internet is basically an informal term for the world-wide communication network of computers more specifically called the network of networks. Internet not only links computers but also people through them. It was primarily designed to share information between networks. In today’s world people use internet for a variety of reasons: from browsing for information to chatting and even online services like shopping, banking, video conferencing and so forth. As the years progress, the services provided by the Internet grows endless. The “Internet of Things” refers to the concept that the Internet is no longer just a global network for people to communicate with one another using computers, but it is also a platform for devices to communicate electronically with the world around them. IoT represents the next evolution of the Internet, taking a huge leap in its ability to gather, analyse, and distribute data that we can turn into information, knowledge, and, ultimately, wisdom. There are a variety of IoT platforms like Thingspeak, Grovestreams, Thingworx, Xively and so on which provide IoT services to the users for a price. Keywords Internet of Things, IoT Architecture, Web of Things, Thingspeak, Grovestreams, Thingworx. I. Introduction we will discuss options for realizing each component.
    [Show full text]
  • System Performance of Wireless Sensor Network Using Lora…
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.016922 Article System Performance of Wireless Sensor Network Using LoRa–Zigbee Hybrid Communication Van-Truong Truong1, Anand Nayyar2,* and Showkat Ahmad Lone3 1Faculty of Electrical and Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam 2Graduate School, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Information Technology, Duy Tan University, Da Nang, Vietnam 3Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Campus, KSA *Corresponding Author: Anand Nayyar. Email: [email protected] Received: 15 January 2021; Accepted: 17 February 2021 Abstract: Wireless sensor network (WSN) is considered as the fastest growing technology pattern in recent years because of its applicability in var- ied domains. Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway. Ensuring communications in heterogeneous WSNs, is a critical issue that needs to be studied. In this research paper, we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communi- cation. Specifically, two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway. The overall system integrates many different sensors in terms of types, communication protocols, and accuracy, which can be used in many applications in realistic environments such as on land, under water, or in the air. In addition to this, a synchronous man- agement software on ThingSpeak Web server and Blynk app is designed.
    [Show full text]
  • Thingspeak-Open Source Platform for Connected Products and Services
    Chungnam National University Computer Science and Engineering Database System Laboratory ThingSpeak-Open Source Platform for Connected Products and Services 2012년 8월 29일 임형준([email protected]) 충남대학교 컴퓨터공학과 데이터베이스시스템연구실 TOC ioBridge, Inc. ThingSpeak ■ Goal ■ Features ■ Apps ■ Plugins ■ Devices Conclusion References Chungnam National University 2 Computer Science and Engineering Database System Laboratory ioBridge, Inc. ioBridge, Inc. offers technology and services that enable almost anything to be Web-enabled and monitored and controlled over the Internet ■ http://www.iobridge.com ioBridge's technology includes a Web services platform that customers can use to extend the technology of many applications ioBridge provides OEM and commercial integration services and licensing of core, patent-pending technologies Chungnam National University 3 Computer Science and Engineering Database System Laboratory ioBridge, Inc. Labs[1/4] - CheerLights Imagine millions of lights connected together ■ http://www.cheerlights.com/ CheerLights is a project that enables people all around the world to link lights and applications together based on social networking trends To control CheerLights, send a tweet to @cheerlights or include “cheerlights” somewhere in your message with the name of a color ■ Example Tweet: @CheerLights Paint the town red Chungnam National University 4 Computer Science and Engineering Database System Laboratory ioBridge, Inc. Labs[2/4] ‒ Tide Alerts Tide Alerts is a project developed by ioBridge to monitor and report tide
    [Show full text]
  • Iot: the Next Evolution of Internet Refereed Journal Indexed Journal Impact Factor MJIF: 4.25 G
    World Wide Journal of Multidisciplinary Research and Development WWJMRD 2018; 4(7): 11-15 www.wwjmrd.com International Journal Peer Reviewed Journal IoT: The Next Evolution of Internet Refereed Journal Indexed Journal Impact Factor MJIF: 4.25 G. Umarani, K.Sharmila E-ISSN: 2454-6615 Abstract G. Umarani Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital Guest Lecturer, Dept of machines, objects, animals or people that are provided with unique identifiers and the ability to computer Science K.N.Govt Arts College for Women (A), transfer data over a network without requiring human to human or human to computer interaction. Thanjavur, TamilNadu,India The basic idea of IoT is to allow objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and K.Sharmila computer-based systems and resulting in improved efficiency, accuracy and economic benefit. This Guest Lecturer, Dept of article reports the various technologies of IoT, Applications and discuss the challenges shall be faced computer Science K.N.Govt by the research community. Arts College for Women (A), Thanjavur, TamilNadu, India Keywords: Internet of Things- IoT- Defy-RFID- Actuator-NFC I Introduction The Internet of Things is a network of physical objects or “things” embedded with electronics, software, sensors and network connectivity which enables to interact with each object to collect and exchange data. Internet of Things (IoT) is not a result of single novel technology; instead several complementary and technical developments provide capabilities that taken together help to bridge the gap between the virtual and physical world.
    [Show full text]
  • Secure Authentication Protocol for Internet of Things Achraf Fayad
    Secure authentication protocol for Internet of Things Achraf Fayad To cite this version: Achraf Fayad. Secure authentication protocol for Internet of Things. Networking and Internet Archi- tecture [cs.NI]. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAT051. tel-03135607 HAL Id: tel-03135607 https://tel.archives-ouvertes.fr/tel-03135607 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Protocole d’authentification securis´ e´ pour les objets connectes´ These` de doctorat de l’Institut Polytechnique de Paris prepar´ ee´ a` Tel´ ecom´ Paris Ecole´ doctorale n◦626 Ecole´ doctorale de l’Institut Polytechnique de Paris (EDIPP) Specialit´ e´ de doctorat : Reseaux,´ informations et communications NNT : 2020IPPAT051 These` present´ ee´ et soutenue a` Palaiseau, le 14 decembre´ 2020, par ACHRAF FAYAD Composition du Jury : Ken CHEN Professeur, Universite´ Paris 13 Nord President´ Pascal LORENZ Professeur, Universite´ de Haute-Alsace (UHA) Rapporteur Ahmed MEHAOUA Professeur, Universite´ Paris Descartes Rapporteur Lyes KHOUKHI Professeur, Ecole´ Nationale Superieure´ d’Ingenieurs´ de Examinateur Caen-ENSICAEN Ahmad FADLALLAH Associate Professor, University of Sciences and Arts in Lebanon Examinateur (USAL) Rida KHATOUN Maˆıtre de conferences,´ Tel´ ecom´ Paris Directeur de these` Ahmed SERHROUCHNI Professeur, Tel´ ecom´ Paris Co-directeur de these` Badis HAMMI Associate Professor, Ecole´ pour l’informatique et les techniques Invite´ avancees´ (EPITA) 626 Acknowledgments First, I would like to thank my thesis supervisor Dr.
    [Show full text]
  • Internet of Things (Iot) Technologies for Smart Cities
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319938161 Internet of Things (IoT) Technologies for Smart Cities Article · September 2017 DOI: 10.1049/iet-net.2017.0163 CITATIONS READS 19 9,671 5 authors, including: Badis Hammi Rida Khatoun Télécom ParisTech Télécom ParisTech 16 PUBLICATIONS 83 CITATIONS 62 PUBLICATIONS 331 CITATIONS SEE PROFILE SEE PROFILE Achraf Fayad Lyes Khoukhi Télécom ParisTech Université de Technologie de Troyes 4 PUBLICATIONS 19 CITATIONS 113 PUBLICATIONS 577 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: blockchain View project Cloud-SDN Architecture for Smart Grid Energy Management. View project All content following this page was uploaded by Badis Hammi on 25 April 2018. The user has requested enhancement of the downloaded file. IET Research Journals ISSN 1751-8644 Internet of Things (IoT) Technologies for doi: 0000000000 Smart Cities www.ietdl.org Badis HAMMI1 Rida KHATOUN1 Sherali ZEADALLY2 Achraf FAYAD1 Lyes KHOUKHI3 1 Telecom ParisTech, 46 Rue Barrault, 75013 Paris, France 2 University of Kentucky, Lexington, KY 40506-0224, USA 3 Troyes University of Technology, 12 rue Marie Curie, 10004 Troyes, France * E-mail: [email protected] Abstract: The large deployment of Internet of Things (IoT) is actually enabling Smart City projects and initiatives all over the world. Objects used in daily life are being equipped with electronic devices and protocol suites in order to make them interconnected and connected to the Internet. According to a recent Gartner study, 50 billion connected objects will be deployed in smart cities by 2020.
    [Show full text]
  • A Survey of Iot Cloud Platforms
    Available online at www.sciencedirect.com ScienceDirect Future Computing and Informatics Journal 1 (2016) 35e46 http://www.journals.elsevier.com/future-computing-and-informatics-journal/ A survey of IoT cloud platforms Partha Pratim Ray Department of Computer Applications, Sikkim University, 6th Mile, PO Tadong, Gangtok, Sikkim 737102, India Received 12 June 2016; accepted 23 February 2017 Available online 6 March 2017 Abstract Internet of Things (IoT) envisages overall merging of several “things” while utilizing internet as the backbone of the communication system to establish a smart interaction between people and surrounding objects. Cloud, being the crucial component of IoT, provides valuable appli- cation specific services in many application domains. A number of IoT cloud providers are currently emerging into the market to leverage suitable and specific IoT based services. In spite of huge possible involvement of these IoT clouds, no standard cum comparative analytical study has been found across the literature databases. This article surveys popular IoT cloud platforms in light of solving several service domains such as application development, device management, system management, heterogeneity management, data management, tools for analysis, deployment, monitoring, visualization, and research. A comparison is presented for overall dissemination of IoT clouds according to their applicability. Further, few challenges are also described that the researchers should take on in near future. Ultimately, the goal of this article is to provide detailed knowledge about the existing IoT cloud service providers and their pros and cons in concrete form. © 2016 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Energy-Efficient Internet of Things Monitoring with Low-Capacity Devices
    Energy-efficient Internet of Things Monitoring with Low-Capacity Devices Rodrigo J. Carbajales, Marco Zennaro, Ermanno Pietrosemoli Felix Freitag T/ICT4D, Wireless Communications Laboratory Department of Computer Architecture International Centre for Theoretical Physics (ICTP) Universitat Politecnica` de Catalunya Trieste, Italy Barcelona, Spain frcarbaja, mzennaro, [email protected] [email protected] Abstract—The Internet of Things (IoT) allows users to gather been proposed in [10]. In their work data from community data from the physical environment. While sensors in public facilities was gathered and processed locally, resulting in spaces are already widely used, users are reluctant to deploy important traffic savings. A community context for cloud sensors for shared data at their homes. The deployment of IoT nodes at the users premises presents privacy issues regarding computing has been shown in [3]. In this work, the trust who can access to their data once it is sent to the Cloud which that exists within a community of users helped gather local the users cannot control. In this paper we present an energy- computing resources form participants on which distributed efficient and low cost solution for environmental monitoring at services were run. In [2], it was pointed out in that resources the users home. Our system is builds completely on open source from many distributed nodes located on user premises cloud components and is easy to reproduce. We leverage a community network to store and control the access to the monitored data. host local services while being energy-efficient. We tested our solution during several months on different low- In this paper, we propose and analyze a solution for capacity single board computers (SBC) and it showed to be energy-efficient and low cost solution environmental moni- stable.
    [Show full text]
  • A Changing Landscape: the Internet of Things (Iot)
    A Changing Landscape: the Internet of Things (IoT) Prof Sanjay Jha Deputy Director, Australian Center for Cyber Security, UNSW Director of Cyber Security and Privacy Laboratory, School of Computer Science and Engineering University Of New South Wales [email protected] http://www.cse.unsw.edu.au/~sanjay SecureCanberra@MilCIS 2014, Australia 13th Nov 2014 Internet of Things • Connected devices • Smoke alarms, light bulbs, power switches, motion sensors, door locks etc. 2 Outline • Introduction to IoT • History of IoT (and M2M) and Wireless Sensor Networks • Security Challenges in IoT • Sample Research Projects at UNSW History (IoT) • Early 90s or prior: SCADA systems, Telemetry applications • Late 90s- Products/services from mobile operators (Siemens) to connect devices via cellular network – Primarily automotive telematics • Mid- 2000s – Many tailored products for logistics, fleet management, car safety, healthcare, and smart metering of electricity consumption • Since 2010 – A large number of consortiums mushrooming up to bid for a large market share – ABI Projects US$198M by 2018 – Berg Insight US$187M by 2014…… History of Wireless Sensor Net • 1999: Kahn, Katz,Pister: Vision for Smart Dust • 2002 Sensys CFP: Wireless Sensor Network research as being composed of ”distributed systems of numerous smart sensors and actuators connecting computational capabilities to the physical world have the potential to revolutionise a wide array of application areas by providing an unprecedented density and fidelity of instrumentation”. Typical Application Roadmap to IoT • Supply Chain Applications – Routing, inventory, loss prevention. • Vertical Market Helpers – Healthcare, Transport, Energy, Agriculture, Security, Home Network. • Ubiquitous Position – Location of people and objects and possible tailored services • Teleoperations/Telepresence - Ability to interact/control with remote objects.
    [Show full text]
  • 39 Large-Scale Indexing, Discovery and Ranking for the Internet of Things (Iot)
    Page 1 of 67 Computing Surveys Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) YASMIN FATHY, Institution for Communication Systems (ICS), University of Surrey, United Kingdom PAYAM BARNAGHI, Institution for Communication Systems (ICS), University of Surrey, United Kingdom RAHIM TAFAZOLLI, Institution for Communication Systems (ICS), University of Surrey, United Kingdom Network-enabled sensing and actuation devices are key enablers to connect real-world objects to the cyber world. The Internet of Things (IoT) consists of the network-enabled devices and communication technologies that allow connectivity and integration of physical objects (Things) into the digital world (Internet). Enormous amounts of dynamic IoT data are collected from Internet-connected devices. IoT data is usually multi-variant streams that are heterogeneous, sporadic, multi-modal and spatio-temporal. IoT data can be disseminated with dierent granularities and have diverse structures, types and qualities. Dealing with the data deluge from heterogeneous IoT resources and services imposes new challenges on indexing, discovery and ranking mechanisms that will allow building applications that require on-line access and retrieval of ad-hoc IoT data. However, the existing IoT data indexing and discovery approaches are complex or centralised which hinders their scalability. The primary objective of this paper is to provide a holistic overview of the state-of-the-art on indexing, discovery and ranking of IoT data. The paper aims to pave the way for
    [Show full text]
  • D3.1 Report on Iot European Platforms
    D3.1 Report on IoT European Platforms Deliverable No. D3.1 WorkPackage WP3 WorkPackage ACTIVAGE Secure Interoperability No. Title Layer Version 1.0 Status final Date of issue March 2017 Filename ACTIVAGE_D3.1_Report on IoT European Platforms_V1.0.docx 0. Document 0.1 Authors Author Company e-mail Konstantinos Votis CERTH [email protected] Segouli Sofia CERTH [email protected] Dimitrios Tzovaras CERTH [email protected] Mohammad-Reza FH-IGD [email protected] (Saied) Tazari Giuseppe Fico UPM [email protected] Alejandro M. Medrano Gil UPM [email protected] Eugenio Gaeta UPM [email protected] Carlos Enrique Palau UPV [email protected] Salvador Sebastian Pantoja TVES [email protected] Byron Ortiz Sanchez TVES [email protected] Antonio J. Jara HOPU [email protected] Levent Gurgen CEA [email protected] Isabelle Chartier CEA [email protected] Stephane Bergeon CEA [email protected] Thomas Loubier CEA [email protected] Christophe Villemazet CEA [email protected] Martin Serrano NUI GALWAY [email protected] 0.2 Document History Date Version Editor Change Status February 0.0 K. Votis Initial ToC proposal draft 2017 March 0.1 C. Palau Contribution for FIWARE draft 2017 March 0.2 L. Gurgen Contribution for sensiNact draft 2017 March 0.3 G. Fico Contribution for universAAL draft 2017 March 0.4 B. Ortiz Contribution for Sofia2 draft 2017 March 0.5 M. Serrano Contribution for OpenIoT draft 2017 March 0.6 C. Palau Update for FIWARE draft 2017 March 0.7 A.
    [Show full text]
  • Iotsec-Jha-July-2020-Data61-Cscrcv1 Copy-2
    Security Challenges in Internet of Things ( loT ) Prof. Sanjay Jha Director, Cyber Security and Privacy Laboratory UNSW Lead, Cybersecurity CRC UNSW Sydney [email protected] https:// sites.google.com /view/ profsanjayjha /home Acknowledgement My security research is a result of collaboration with a number of my current and former PhD students, postdocs and and colleagues • Current and former PhD Students/Postdocs: Chitra Javali, Girish Revadigar, Rizka Purwanto, Uzma Maroof, Jun Young Kim, Arash, Shaghahi, Mossarat Jahan, Zainab Abaid, Prasant Mishra, Dr Nadeem Ahmed, Dr Regio Michelin, Dr Wanli Xue, Dr Weitao Xu, Dr Abdelwahed Khamiss, Dr Taha Ali, Dr Mohsen Rezvani, Dr Hailun Tan, Other colleagues from CSIRO/Data61, UG Andrew Bennett (Philip Hue)* • Colleagues: Prof Salil Kanhere, Dr Wen Hu, A/Prof Aleks Ignatovic, Dr Alan Blair, Prof Aruna Seneviratne, Prof Vijay Sivaraman, Prof Rob Malaney (UNSW) A/Prof Kasper Rasmussen (Oxford), Gene Tsudik (UCI), Prof Elisa Bertino (Purdue), Dali Kafaar, Dr Hassan Asgar (Macq), Diet Ostry, Dr Siqi Ma, Dr Surya Nepal, Dr Sushmita Ruj, Dr Arindam Pal (Data61)* *AND many more that I have missed here * Views expressed in this talk are my personal views not representing UNSW or other funding bodies. 2 Wireless Sensor Net (WSN) to IoT • 1999: Kahn, Katz,Pister: Vision for Smart Dust • 2002 Sensys CFP: Wireless Sensor Network research as being composed of ”distributed systems of numerous smart sensors and actuators connecting computational capabilities to the physical world have the potential to revolutionise a wide array of application areas by providing an unprecedented density and fidelity of instrumentation”. Environmental Monitoring 3 "The Design and Evaluation of a Hybrid Sensor Network for Cane-toad Monitoring".
    [Show full text]