Hypernatremia in Children - Uptodate 15/08/18 1954

Total Page:16

File Type:pdf, Size:1020Kb

Hypernatremia in Children - Uptodate 15/08/18 19�54 Hypernatremia in children - UpToDate 15/08/18 1954 Official reprint from UpToDate® www.uptodate.com ©2018 UpToDate, Inc. and/or its affiliates. All Rights Reserved. Hypernatremia in children Authors: Michael J Somers, MD, Avram Z Traum, MD Section Editor: Tej K Mattoo, MD, DCH, FRCP Deputy Editor: Melanie S Kim, MD All topics are updated as new evidence becomes available and our peer review process is complete. Literature review current through: Jul 2018. | This topic last updated: Mar 10, 2017. INTRODUCTION — Hypernatremia is typically defined as a serum or plasma sodium greater than 150 mEq/L. Although pediatric hypernatremia is an uncommon electrolyte abnormality, there can be significant neurologic injury in patients with severe hypernatremia, especially those with acute and rapid changes in serum sodium. The etiology, clinical findings, diagnosis, and evaluation of pediatric hypernatremia are reviewed here. EPIDEMIOLOGY — The true incidence of pediatric hypernatremia is unknown, as published data are based on hospitalized children. As an example, a Scottish study reported an overall incidence of hypernatremia (defined as a plasma sodium >150 mEq/L) of 0.04 percent for all pediatric hospitalizations in pediatric patients over two weeks of age over a study period from 1996 to 2006 [1]. However, the risk of hypernatremia was 10 times greater in neonates less than two weeks of age, with an incidence of 0.4 percent. Neonatal hypernatremia was almost exclusively seen in breastfed infants with excessive weight (water loss). Of note, the incidence of neonatal hypernatremia in breastfed infants was higher than reported in previous studies (0.03 to 0.07 percent) (see "Initiation of breastfeeding", section on 'Excessive weight loss'). In older patients between two weeks and 17 years of age, the most common cause of hypernatremia on admission was excess water loss due to gastroenteritis or systemic infection. However, in this cohort, it was more common for hypernatremia to develop during hospitalization, particularly in patients with systemic infection or those who underwent cardiac surgery. In addition, approximately one-third of the patients had an underlying neurologic condition. In an earlier study from a tertiary children's hospital in Texas from 1992 to 1994, hypernatremia (defined as a serum sodium greater than 150 mEq/L) was detected in 1.4 percent of sodium values in a laboratory database, but only 0.2 percent of patients were discharged with a diagnosis of hyperosmolality due to hypernatremia [2]. Of the 68 children with a final discharge diagnosis of hyperosmolality/hypernatremia, two- thirds of the children developed hypernatremia during hospitalization, and the most common cause of hypernatremia was inadequate fluid intake. PATHOPHYSIOLOGY — Hypernatremia is caused by an imbalance in the body's handling of water, resulting in a relative excess of effective plasma osmolality (tonicity) to total body water. The plasma tonicity is defined as the concentration of solutes that do not easily cross the cell membrane, which is primarily due to sodium https://www.uptodate.com/contents/hypernatremia-in-children/print?source=history_widget Página 1 de 18 Hypernatremia in children - UpToDate 15/08/18 1954 salts in the extracellular space. As a result, serum or plasma sodium is used as a surrogate for assessing tonicity. (See "General principles of disorders of water balance (hyponatremia and hypernatremia) and sodium balance (hypovolemia and edema)", section on 'Plasma tonicity'.) The formulas used to estimate plasma tonicity are similar to those for the plasma osmolality, with the one exception that the contribution of urea (an ineffective osmole) is not included. The multiplier factor of "2" accounts for the osmotic contributions of the anions that accompany sodium, the primary extracellular cation: ● Plasma tonicity = 2 x [Na] + [glucose]/18 (if glucose is measured in mg/dL) ● Plasma tonicity = 2 x [Na] + [glucose] (if glucose is measured in mmol/L) Plasma tonicity is tightly regulated by the release of antidiuretic hormone (ADH) from the posterior pituitary promoting water retention, and by thirst-prompting water ingestion (figure 1). These homeostatic mechanisms that mediate plasma tonicity and water balance are similar in adults and children, resulting in a normal range of plasma sodium between 135 and 145 mEq/L that does not vary by age. (See "General principles of disorders of water balance (hyponatremia and hypernatremia) and sodium balance (hypovolemia and edema)", section on 'Regulation of plasma tonicity'.) Hypernatremia is most often caused by the failure to replace water losses, which, in children, are most commonly due to gastrointestinal fluid loss. In these patients, the sodium plus potassium concentration in the fluid that is lost is less than the plasma sodium concentration. As a result, water is lost in excess of sodium plus potassium, which will tend to increase the plasma sodium concentration. In individuals with intact thirst mechanisms, the intake of free water promptly corrects any increase in plasma sodium. However, when water losses cannot be replaced because of a lack of free access to water, excessive loss in acute illnesses, or impaired thirst mechanism, sodium concentration increases and may result in hypernatremia. Infants and children who are significantly neurodevelopmentally impaired are at particular risk for hypernatremia, as they may be unable to communicate their thirst and are dependent on others for fluid repletion. Pediatric hypernatremia also may result from urinary or skin loss of free water without adequate water replacement. Less commonly, pediatric hypernatremia may be caused by intake of sodium in excess of water (eg, administration of a hypertonic salt solution). In this setting, patients also are unable to access free water to correct the plasma tonicity. ETIOLOGY — The causes of pediatric hypernatremia can be separated into the two previously discussed mechanisms that result in pediatric hypernatremia (see 'Pathophysiology' above): ● Water loss that is not replaced ● Excessive salt intake relative to water ingestion Excess water losses — Loss of body fluids with a sodium plus potassium concentration that is less than serum or plasma sodium (hypotonic fluids) will result in an increase in sodium concentration if the water losses are not replaced. Sources of hypotonic body fluid losses include gastrointestinal fluids, dilute urine, and skin loss due to sweat or burns. In addition, inadequate water intake that fails to replace ongoing normal fluid losses will result in excess water loss and increases in serum or plasma sodium. Gastrointestinal loss — In children, the most common cause of hypernatremia is hypotonic gastrointestinal losses without replacement, which result in effective water loss. In particular, gastroenteritis https://www.uptodate.com/contents/hypernatremia-in-children/print?source=history_widget Página 2 de 18 Hypernatremia in children - UpToDate 15/08/18 1954 due to rotavirus can present with profuse watery diarrhea and hypernatremia [3]. In addition, losses due to vomiting or nasogastric drainage can lead to excess free water loss and hypernatremia. Urinary water loss — Excessive urinary free water loss may be caused by disorders with impaired urinary concentration (eg, diabetes insipidus [DI]) or osmotic diuresis. Without adequate water replacement, sodium concentration will rise and may result in hypernatremia (table 1). Urinary concentration defects — Impaired urinary concentration is typically due to antidiuretic hormone (ADH) deficiency or resistance, which leads to excretion of a dilute urine (urine osmolality less than plasma osmolality) and excessive urinary free water loss. ● Central DI – Central DI is caused by inadequate production or release of ADH. Central DI has multiple etiologies, including congenital central nervous system (CNS) malformations and genetic syndromes with associated CNS anomalies, and acquired causes due to CNS tumors, infiltrative processes of the hypothalamic-pituitary stalk, and sequelae from neurosurgery and trauma. (See "Clinical manifestations and causes of central diabetes insipidus", section on 'Causes'.) ● Nephrogenic DI – Nephrogenic DI is caused by an inadequate renal tubular response to circulating ADH. The multiple causes of pediatric nephrogenic DI can be further divided into the following categories (see "Clinical manifestations and causes of nephrogenic diabetes insipidus", section on 'Causes'): • Congenital nephrogenic DI – Congenital nephrogenic DI is most often the result of mutations in the vasopressin type 2 receptor (AVPR2), found at the locus Xp28. In this X-linked disorder, male infants typically present in the first weeks of life with fussiness, low-grade fever, and polyuria with hypernatremia. In addition, hereditary nephrogenic DI may be caused by a mutation in the aquaporin-2 gene (AQP2) at 12q13, which encodes the ADH-sensitive water channels. Congenital nephrogenic DI is also observed in other inherited disorders, including Bardet-Biedl and Bartter syndromes, nephronophthisis, cystinosis, and familial hypomagnesemia with hypercalciuria and nephrocalcinosis. • Acquired nephrogenic DI – Drug toxicity is the most common cause of acquired DI. Lithium toxicity is the most frequent cause of drug-induced nephrogenic DI, and its use has increased in children and adolescents with mood disorders. Lithium also can cause interstitial nephritis and fibrosis, further exacerbating urinary concentrating capacity.
Recommended publications
  • Hyponatremia and Hypernatremia MICHAEL M
    This is a corrected version of the article that appeared in print. Diagnosis and Management of Sodium Disorders: Hyponatremia and Hypernatremia MICHAEL M. BRAUN, DO, Madigan Army Medical Center, Tacoma, Washington CRAIG H. BARSTOW, MD, Womack Army Medical Center, Fort Bragg, North Carolina NATASHA J. PYZOCHA, DO, Madigan Army Medical Center, Tacoma, Washington Hyponatremia and hypernatremia are common findings in the inpatient and outpatient settings. Sodium disorders are associated with an increased risk of morbidity and mortality. Plasma osmolality plays a critical role in the patho- physiology and treatment of sodium disorders. Hyponatremia and hypernatremia are classified based on volume status (hypovolemia, euvolemia, and hypervolemia). Sodium disorders are diagnosed by findings from the history, physical examination, laboratory studies, and evaluation of volume status. Treatment is based on symptoms and underlying causes. In general, hyponatremia is treated with fluid restriction (in the setting of euvolemia), isotonic saline (in hypovolemia), and diuresis (in hypervolemia). A combination of these therapies may be needed based on the presentation. Hypertonic saline is used to treat severe symptomatic hyponatremia. Medications such as vaptans may have a role in the treatment of euvolemic and hypervolemic hyponatremia. The treatment of hypernatremia involves correcting the underlying cause and correcting the free water deficit. Am( Fam Physician. 2015;91(5):299-307. Copy- right © 2015 American Academy of Family Physicians.) More online yponatremia is a common elec- a worse prognosis in patients with liver cir- at http://www. trolyte disorder defined as a rhosis, pulmonary hypertension, myocardial aafp.org/afp. serum sodium level of less than infarction, chronic kidney disease, hip frac- CME This clinical content 135 mEq per L.1-3 A Dutch sys- tures, and pulmonary embolism.1,8-10 conforms to AAFP criteria Htematic review of 53 studies showed that the for continuing medical Etiology and Pathophysiology education (CME).
    [Show full text]
  • Organ Transplant Manual
    Congratulations! ystem lth S Hea sity iver Un 013 y, 2 Ma t© igh pyr Co Dear Patient: Congratulations! You have been given the gift of life! Receiving a transplant is a marvelous gift and the Transplant Team members will meet with you Transplant Team is here to assist you in taking care during your hospitalization to help you learn this of that gift. information. Here are some suggestions that may help you learn: Transplant Team members include the surgeons, medicine physicians, nurses, discharge coordinator, • Listen to the Transplant Team and ask them questions patient educator, dietitian, transplant pharmacists about things you don’t understand. and social workers. • Study every day. This manual is designed to help you care for yourself • Ask a family member or friend to study with you. following your transplant. As you read the following We want you to be able to return to your home and information, feel free to ask questions of your family in the best possible health to enjoy an active Transplant Team. and productive life. Understanding the information in this manual You must take your prescribed medications, follow is important. your diet, exercise, and monitor yourself for signs and symptoms of infection and rejection. By working as a team, you will achieve the best possible outcome from your transplant. Tim Nevil Kidney Recipient, 2001 Tania S. Gonzales José David Aguirre Liver Transplant Recipient, 2002 Liver Transplant Recipient, 2001 Table of Contents Organ Transplant Manual Contacting the Transplant Team When to Call ...........................................3
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Preventing Neurological Complications from Dysnatremias in Children
    Pediatr Nephrol (2005) 20:1687–1700 DOI 10.1007/s00467-005-1933-6 REVIEW Michael L. Moritz · J. Carlos Ayus Preventing neurological complications from dysnatremias in children Received: 30 November 2004 / Revised: 28 February 2005 / Accepted: 2 March 2005 / Published online: 4 August 2005 IPNA 2005 Abstract Dysnatremias are among the most common ongoing free-water losses or when mild hypernatremia electrolyte abnormalities encountered in hospitalized pa- (Na>145 mE/l) develops. A group at high-risk for neu- tients. In most cases, a dysnatremia results from improper rological damage from hypernatremia in the outpatient fluid management. Dysnatremias can occasionally result setting is that of the breastfed infant. Breastfed infants in death or permanent neurological damage, a tragic must be monitored closely for insufficient lactation and complication that is usually preventable. In this manu- receive lactation support. Judicious use of infant formula script, we discuss the epidemiology, pathogenesis and supplementation may be called for until problems with prevention and treatment of dysnatremias in children. We lactation can be corrected. report on over 50 patients who have suffered death or neurological injury from hospital-acquired hyponatremia. Keywords Hypernatremia · Hyponatremia · Cerebral The main factor contributing to hyponatremic encepha- edema · Myelinolysis · Fluid therapy lopathy in children is the routine use of hypotonic fluids in patients who have an impaired ability to excrete free- water, due to such causes as the postoperative state, Introduction volume depletion and pulmonary and central nervous system diseases. The appropriate use of 0.9% sodium Dysnatremias are a common electrolyte abnormality in chloride in parenteral fluids would likely prevent most children in both the inpatient and outpatient settings.
    [Show full text]
  • Clinical Aspect of Salt and Water Balance
    Misadventures in salt & water, as well as in acid-base balance Entertaining you is Friedrich C. Luft, Berlin Pflugers Arch 2015 Don’t just “do something” – stand there • 68 year-old woman presents disoriented at 18:00; had undergone tooth extraction that morning and, aside from a life-long mild bleeding tendency, had been quite normal • BP 130/85, pulse regular, respirations 18/min no localizing findings, no edema • Na 118, K 3.6, glucose 8, urea 4 (all mmol/L) • What now? An oil-immersion field showing a normal neutrophil flanked by two giant platelets (Bernard-Soulier syndrome). She had been given desmopressin. In addition, it had been hot so she was advised to “drink lots of water” Serum-Na depends on TBW, Na and K Water in H2 H2O O Na K Serum Na ≈ Naexch + Kexch Total-body H2O Edelman formula Volume Water out Na K Serum Na ≈ Naexch + Kexch total-body H2O Volume Clearance H2O (e) = V 1 - UNa+UK SNa Lots of spheres = little H2O ClH2O(e) neg When UNa+UK >SNa the ClH2O(e) neg and serum Na must fall Few spheres = much H O 2 When UNa+UK < SNa, the Cl (e) pos Cl (e) pos H2O H2O and serum Na must rise Actually, serum Na increased a little faster than we wanted so we infused some free water Had we given 3% saline, serum Na would have increased even faster Iatrogenic SIADH Clin Kidney J 2013;6:96-97 Paradoxal hyponatremia with isotonic electrolyte infusions • 65 year-old woman has meniscus surgery. At that time her Na was 141 mmol/L.
    [Show full text]
  • Concept of Diabetes in Unani System of Medicine: an Overview
    Original Article Endocrinology Medical Journal of Islamic World Academy of Sciences Concept of Diabetes in Unani System of Medicine: An Overview M. Nazamuddin1, Abdul Wadud1, Abdul H. Ansari2, Tanwir Alam3, Aisha Perveen1, Nafis Iqbal4 1Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine (NIUM), Bangalore-91, Karnataka, India. 2Department. of Preventive and Social Medicine, National Institute of Unani Medicine (NIUM), Bangalore-91, Karnataka, India. 3Department of Preventive and Social Medicine, Allama Iqbal Unani Medical College (AIUMC), Muzaffarnagar, U.P., India. 4Dept of Kulliyat (Basic Science), Jamia Tibbiya Deoband, Saharanpur, U.P., India. ABSTRACT Diabetes is one of the top killer diseases of mankind. Although it affects all the sect of society, its impact is mainly on affluent society. The today’s description of diabetes has almost stabilized, which mainly revolves around the role of pancreas, insulin, and its peripheral resistance along with other causes, to a lesser extent; however, this description needs reconsideration. The accelerating burden of the disease reveals that even the recent remarkable advancement in medical sciences does not have a justifiable answer to tackle and cease its ever-increasing load; therefore, there is a need of time to rethink about the preventive strategies, line of treatment, management, and all aspects of diabetes. However, various complementary and alternative medicine (CAM) therapy claiming attractive concepts and line of management are in vogue. Unani system of medicine (USM) is the oldest among CAM, which has an entirely different and promising concept to understand all aspects of diabetes and offer a range of drugs to counter this disease. Unani physicians and philosophers have an entirely different insight of this disease.
    [Show full text]
  • Hyperchloremia – Why and How
    Document downloaded from http://www.elsevier.es, day 23/05/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. n e f r o l o g i a 2 0 1 6;3 6(4):347–353 Revista de la Sociedad Española de Nefrología www.revistanefrologia.com Brief review Hyperchloremia – Why and how Glenn T. Nagami Nephrology Section, Department of Medicine, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, United States a r t i c l e i n f o a b s t r a c t Article history: Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of Received 5 April 2016 clinical conditions. The kidney plays an important role in the regulation of chloride concen- Accepted 11 April 2016 tration through a variety of transporters that are present along the nephron. Nevertheless, Available online 3 June 2016 hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low Keywords: with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis Hyperchloremia or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia Electrolyte disorder will, to a large extent, determine how to treat this electrolyte disturbance. Serum bicarbonate Published by Elsevier Espana,˜ S.L.U. on behalf of Sociedad Espanola˜ de Nefrologıa.´ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
    [Show full text]
  • An Infant with Chronic Hypernatremia
    European Journal of Endocrinology (2006) 155 S141–S144 ISSN 0804-4643 An infant with chronic hypernatremia M L Marcovecchio Department of Paediatrics, University of Chieti, Via dei Vestini 5, 66100 Chieti, Italy (Correspondence should be addressed to M L Marcovecchio; Email: [email protected]) Abstract A 4-month-old boy was presented with failure to thrive, refusal to feed, delayed motor development, truncal hypotonia, and head lag. His plasma osmolality and sodium were significantly high, while his urine osmolality was inappropriately low and did not increase after desmopressin administration. Despite his hyperosmolality, he presented with a lack of thirst and became clearly polyuric and polydipsic only at the age of 2 years. Initial treatment with indomethacin was ineffective, while the combination of hydrochlorothiazide and amiloride was effective and well tolerated. European Journal of Endocrinology 155 S141–S144 Introduction (61 ml/kg) respectively. Other investigations including thyroid and adrenal function were normal. He was Chronic hypernatremia in young patients is generally refusing oral fluids despite being hypernatremic. the result of alterations in the mechanisms controlling A cranial magnetic resonance imaging scan excluded fluid balance (1). Excessive water loss, as in diabetes structural abnormalities in the hypophysis, hypo- insipidus, or an inadequate fluid intake, as in adipsic thalamus and surrounding area. There was no response hypernatremia, may be the underlying cause. The to 0.3 mg 1-desamino-8-D-arginine-vasopressin (DDAVP) differential diagnosis between these conditions is given intravenously (osmolality pre- 374 mosmol/kg; important in order to choose the appropriate treatment. post- 371 mosmol/kg). This suggested a tubular defect However, pitfalls in the diagnosis are often related to an causing nephrogenic diabetes insipidus (NDI).
    [Show full text]
  • Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside Or Colistin Therapy: a Systematic Review
    antibiotics Review Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review Martin Scoglio 1,* , Gabriel Bronz 1, Pietro O. Rinoldi 1,2, Pietro B. Faré 3,Céline Betti 1,2, Mario G. Bianchetti 1, Giacomo D. Simonetti 1,2, Viola Gennaro 1, Samuele Renzi 4, Sebastiano A. G. Lava 5 and Gregorio P. Milani 2,6,7 1 Faculty of Biomedicine, Università della Svizzera Italiana, 6900 Lugano, Switzerland; [email protected] (G.B.); [email protected] (P.O.R.); [email protected] (C.B.); [email protected] (M.G.B.); [email protected] (G.D.S.); [email protected] (V.G.) 2 Department of Pediatrics, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; [email protected] 3 Department of Internal Medicine, Ospedale La Carità, Ente Ospedaliero Cantonale, 6600 Locarno, Switzerland; [email protected] 4 Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; [email protected] 5 Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, 1011 Lausanne, Switzerland; [email protected] 6 Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy 7 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy * Correspondence: [email protected] Citation: Scoglio, M.; Bronz, G.; Abstract: Aminoglycoside or colistin therapy may alter the renal tubular function without decreasing Rinoldi, P.O.; Faré, P.B.; Betti, C.; the glomerular filtration rate. This association has never been extensively investigated.
    [Show full text]
  • A Case of Hypocalciuric Hypercalcemia Accompanying Cystic Fibrosis
    J Clin Res Pediatr Endocrinol 2015;7(Suppl 2):77-92 A Case of Hypocalciuric Hypercalcemia Accompanying Cystic Fibrosis Yaşar Şen, Sevil Arı Yuca, Fuat Buğrul Blood and urine tests were done in order to find the etiology of hypercalcemia (PTH: 65.5 pg/mL, 25-hydroxy vitamin Selçuk University Faculty of Medicine, Department of Pediatric D: 43.5 ng/mL, urine Ca/Cr ratio 0.19, urine Ca clearance Endorcinology, Konya, Turkey 0.004). In the CaSR gene mutation study, A986S and R990G polymorphisms were heterozygous. 1 month after hydration Introduction: Familial hypocalciuric hypercalcemia (FHH) and clinical state being back to normal, Ca levels were is an autosomal dominant disorder which occurs by an in normal range. In stressful situations, he experienced inactivating gene mutation in the calcium (Ca)-sensing hypernatremia and hypercalcemia together. receptor gene (CaSR). Prevalence is estimated at 1: 78000. Discussion: Polymorphisms may change protein function Ca regulates parathormone (PTH) secretion via CaSR on and capacity of one to repair its damaged DNA. Genetic parathyroid cells. Low levels of Ca increases PTH secretion. polymorphisms help us to define personal sensitivities to CaSR mutation that causes loss of function, leads to total some diseases. The most common CaSR polymorphisms or partial insensitivity of parathyroid cells to Ca’s inhibitory are A986S, R990G, Q1011E and A826T. Our patient effect. For this reason, in order to suppress Ca’s PTH had A986S and R990G mutations. Heterozygous CaSR secretory effect, the setpoint is raised. A higher blood Ca gene mutations generally cause mild disorders in clinic. level is needed to suppress the PTH secretion.
    [Show full text]
  • The Effect of a Frozen Saline Swab on Thirst Intensity and Dry Mouth Among Critically Ill Post-Operative Patients at Tanta University
    International Academic Journal of Health, Medicine and Nursing | Volume 1, Issue 2, pp. 189-201 THE EFFECT OF A FROZEN SALINE SWAB ON THIRST INTENSITY AND DRY MOUTH AMONG CRITICALLY ILL POST-OPERATIVE PATIENTS AT TANTA UNIVERSITY Asmaa Ibrahem Abo Seada Critical Care and Emergency Nursing, Faculty of Nursing, Mansoura University, Egypt Gehan Abd El-Hakeem Younis Critical Care and Emergency Nursing, Faculty of Nursing, Tanta University, Egypt Safaa Eid Critical Care and Emergency Nursing, Faculty of Nursing, Tanta University, Egypt ©2020 International Academic Journal of Health, Medicine and Nursing (IAJHMN) | ISSN 2523-5508 Received: 19th January 2020 Published: 27st January 2020 Full Length Research Available Online at: http://www.iajournals.org/articles/iajhmn_v1_i2_189_201.pdf Citation: Seada, A. I. A., Younis, G. A. E. & Eid, S. (2020). The effect of a frozen saline swab on thirst intensity and dry mouth among critically ill post-operative patients at Tanta university. International Academic Journal of Health, Medicine and Nursing, 1(2), 189-201 189 | P a g e International Academic Journal of Health, Medicine and Nursing | Volume 1, Issue 2, pp. 189-201 ABSTRACT collected using the demographic and health-relevant characteristics, Thirst Background: Intensive care unit (ICU) Intensity Scale and oral assessment guide. patients are exposed to many sources of Results: it was observed that the mean age distress. Thirst is a prevalent, intense, in control and study groups were distressing, and underappreciated symptom 41.96±7.84 and 41.36±11.33 respectively in intensive care (ICU) patients. Thirst and and 68% of patients in control group were dry mouth are frequent compelling desire male while 60% in intervention group.
    [Show full text]
  • Association of Persistent Intense Thirst with Delirium Among Critically Ill
    1114 Journal of Pain and Symptom Management Vol. 57 No. 6 June 2019 Brief Report Association of Persistent Intense Thirst With Delirium Among Critically Ill Patients: A Cross-sectional Study Koji Sato, MD, Masaki Okajima, MD, PhD, and Takumi Taniguchi, MD, PhD Intensive Care Unit (K.S., M.O., T.T.), Kanazawa University Hospital, Kanazawa; and Department of Anesthesiology and Intensive Care Medicine (T.T.), Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan Abstract Context. Thirst is a prevalent distressing symptom often reported by patients in the intensive care unit (ICU). Little is known about the association of thirst with delirium. Objective. We aimed to investigate the relationship between thirst and delirium. Methods. This retrospective cross-sectional study enrolled 401 patients who were evaluated for thirst intensity in the ICU between March 2017 and October 2017. We assessed thirst intensity on a scale of 0e10 (with 10 being the worst) and defined intense thirst as a score $8. If intense thirst persisted for more than 24 hours, we defined it as persistent intense thirst. Delirium was screened using the Intensive Care Delirium Screening Checklist. Propensity score matching and inverse probability of treatment weighting analyses were performed. Results. Of 401 patients, 66 (16.5%) had intense thirst sensation for more than 24 hours. After matching, patients with persistent intense thirst showed an increased risk for delirium compared with those without persistent intense thirst (odds ratio, 4.95; 95% confidence interval, 2.58e9.48; P < 0.001). Propensity score weighted logistic regression analysis also indicated that persistent intense thirst was significantly associated with delirium (odds ratio, 5.74; 95% confidence interval, 2.53e12.99; P < 0.001).
    [Show full text]