Structural Investigations in Proterozoic to Lower Palaeozoic Rocks in the Read Mountains and Haskard Highlands of the Shackleton Range, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Structural Investigations in Proterozoic to Lower Palaeozoic Rocks in the Read Mountains and Haskard Highlands of the Shackleton Range, Antarctica Polarforschung 63 (2/3): 63-99,1993 (erschienen 1995) Structural Investigations in Proterozoic to Lower Palaeozoic Rocks in the Read Mountains and Haskard Highlands of the Shackleton Range, Antarctica By Hans-Martin Braun* Abstract: Studies on macroscopic rock deformation and microfabrics of the der Decke hin. Abschließende Heraushebung und teilweise Erosion der Decke basement rocks of the Shackleton Range, Antarctica, confirm two major in den zentralen Read Mountains ("Read-Fenster") sind vermutlich an eine groß• tectonometamorphic events. During the mid-Proterozoic, the basement was räumige, aufrechte Faltung gebunden. Während desselben Zeitraums wurden affected by prograde metamorphism reaching at least amphibolite facies Sedimente in den nördlichen Haskard Highlands unter amphibolitfaziellen Be­ conditions, and syn-metamorphic ductile deformation. In several outcrops in the dingungen deformiert und zu einem Stapel mehrerer Struktureinheiten überein• Read Mountains (southern Shackleton Range), relations between deformation, andergeschoben. Mit Hilfe der Lokalisierung größerer Bewegungshorizonte, auf metamorphism, and intrusive activity are reconstructed in detail. Proterozoic denen NW-gerichtete Überschiebungen stattfanden, und der Untersuchung tectonometamorphism terminated with uplift and erosion of the basement, charakteristischer Mikrogefüge, kann die ursprünglich für diese Region vorge­ followed by deposition of the Eocambrian Watts Needle Formation, a thin schlagene lithostratigraphische Gliederung leicht modifiziert werden. sequence of epicratonic sediments. Information about the early history of basement rocks in the Haskard Highlands (northern Shackleton Range) is not Abschließend wird die strukturelle Entwicklung der Shackleton Range, wie sie as detailed, but a major tectonometamorphic event during the mid-Proterozoic hier erarbeitet wurde, mit Erkenntnissen aus Nord-Viktorialand, dem zentralen can be demonstrated as weil. Transantarktischen Gebirge, und Neuschwabenland (westliches Königin-Maud• Land) verglichen. Nach einer Diskussion der früh-paläozoischen Decken­ During the Cambrian and Early Ordovician, basement and cover sediments in tektonik im Rahmen des Ress-Orogens im klassischen Sinne werden alternati­ the Read Mountains were overthrust by the so-called Mount Wegener Nappe ve Interpretationen aufgezeigt, die sich aus plattentektonischen Rekonstruktio­ (Mt. Wegeuer Formation). Structures in the underlying rocks indicate S 01' SE nen gemäß der neuen "SWEAT"-Hypothese ergeben. transport of the nappe. Final uplift, and partial erosion of the nappe unit in the central Read Mountains ("Mount Wegener Window") are probably related to large-scale upright folding. At the same time, sedirnentary rocks in the northern Haskard Highlands suffered amphibolite-facies metamorphism and intense 1. INTRODUCTION rotational deformation, leading to a stack of several structural units. By defining major zones ofNW directed tectonic transport (thrust planes) and characteristic The Shackleton Range is situated at about 80 "S close to the SE microstructures, the lithostratigraphic setting originally inferred for this region is slightly modified. boundary of the Filchner Ice Shelf (Fig. 1). Results of the first geological studies in the area, including some general descrip­ The structural history of the Shackleton Range, as derived from this study, is tions of tectonic structures, have been published by CLARKSON compared with that of northern Victoria Land, the central Transantarctic Moun­ (1982a, b, 1983), HOFMANN & PAECH (1983), PAECH (1985), and tains, and Neuschwabenland (western Dronning Maud Land). After discussing the early Palaeozoic tectonics of the Shackleton Range within the classical MARSH (l983a, b, 1984). The general pattern of geological units concept of the Ross orogen, alternative geotectonic interpretations are suggested in the Shackleton Range, as derived from these papers, is shown that are based on the hypothetical,"SWEAT" reconstruction of continents. in Fig. 1. Due to the reconnaissance level of exploration, however, interpretations dealing with the tectonometamorphic Zusammenfassung: Untersuchungen makroskopischer und mikroskopischer evolution of the Shackleton Range have remained rather spe­ Gefüge im Grundgebirge der Shackleton Range belegen zwei Hauptphasen tektonometamorpher Aktivität. Parallel zu mindestens amphibolit-fazieller culative. Metamorphose unterlagen die Gesteine im Mittleren Proterozoikum intensiver duktiler Deformation. Für Aufschlüsse in den Read Mountains (südliche During the "Geological Expedition into the Shackleton Range" Shackleton Range) können detaillierte Angaben über die wechselseitigen Be­ (GEISHA) in 1987/88, the author had the opportunity to visit ziehungen zwischen Deformation, Metamorphose, und der Platznahme von Intrusionen gemacht werden. Die proterozoische Tektonometamorphose endet several areas in the Read Mountains (see Fig. 2) to study the hier mit dem Aufstieg und der Erosion des Grundgebirges, und der Ablagerung medium- to high-grade metamorphic rocks of the Read Group, der eokambrischen Watts Needle Formation, einer geringmächtigen Abfolge and sediments of the Watts Needle Formation. In addition, epikratonischer Sedimente. In der nördlichen Shackleton Range (Haskard High­ metamorphic basement and supracrusta1 rocks in the northern lands) sind die Kenntnisse über frühe Ereignisse im Grundgebirge nicht so de­ tailliert wie im Süden, doch kann eine proterozoische Überprägung der Gestei­ Haskard Highlands (Fig. 1) were investigated. The aim of the ne auch hier belegt werden. present paper is to identify and describe structures and fabrics that are characteristic of certain units and tectonometamorphic Während des Kambriums und des frühen Ordoviziums wurden Grundgebirge events. The relative and absolute timing of these events in re­ und Decksedimente der Read Mountains von der sogenannten Mount-Wegener­ Decke (Mount Wegener Formation) überfahren. Gefüge in den autochthonen lation to the overall geo1ogical history of the Shack1eton Gesteinen deuten auf einen von N (-NW) nach S (-SE) gerichteten Transport Range will also be analyzed. * Hans-Martin Braun, Geologisch-Paläontologisches Institut, Johann Wolfgang Goethe­ Universität, Senckenberganlage 32-34, 0-60325 Frankfurt am Main, Germany. Manuscriptreceived 14 April 1994; accepted 30 September 1994 63 0W 0 30 SLESSOR GLACIER 20 W 80°5 80°5 ()\.()~~_:-..:==::::::~ Herbert 50 km ~~:''.';;:- Fuchs Dom~ ~~!I~~~~'\; --==~~~~~~::~~~~~~~~::t~~~3 '~~/' - ...... .s: ~~:::~::~~:: .. :~~~ --::~::~::::::::::::::::::::::::::~::- 7 <;:.,::>: ::i:it»>· ·<·l<..... ·~~ ---:-:-==3=3::::::(;:::- Otter ~ . :~.~ '.<' ':<'.' ···if····' ''1''1~ -_-.., ~ H·19 hlan d s .StephensonR ea d Mountains . Bastion REC0 VER YGLA cis R 81°5 300W 200W 81°5 SOUTHERN SHACKLETON RANGE NORTHERN SHACKLETON RANGE Stephenson Bastion Formation ,. metaclastics (part of former Turnpike Bluff Group) B1aiklock Glacier Group Mt. Wegener Formation, Wyeth Heights Formation clastic sedirnents, not metamorphic ,. metaclastics (part of former Turnpike Bluff Group) Pioneers Group Watts Needle Formation supracrustal metasediments clastic and carbonatic sediments locally possibly interleaved with basement rocks i-. Read Group Metamorphic basement ......... ·.. · CIJ....... metamorphie basement Fig, 1: The Shackleton Range, Antarctica, showing the main topographical features and geologie al units. Abb. 1: Übersicht über Topographie und Geologie der Shackleton Range, Antarktis. 2. TECTONOMETAMORPHIC EVOLUTION OF THE ner Formation represents an allochthonous unit that overrode READ MOUNTAINS both the metamorphic basement and the Watts Needle Forma­ tion sediments, truncating the latter at different levels (BRAUN 2.1 General outline et al. 1988, ROLAND et al. 1988, BUGGISCH et al. 1990, KLEIN­ SCHMIDT & BRAUN 1991, BUGGISCH et al. 1994a, b). The large Data and maps from previous studies provide a rough impres­ block of crystalline rock at the top of Watts Needle and some sion ofthe overall structure ofthe Read Mountains (e.g. CLARK­ smaller lenses at Mount Wegener are thought to have been tec­ SON 1982a). Crystalline rocks of the Read Group form a lenti­ tonically transported within the base of the nappe. The central cular body surrounded by clastic sediments and measuring about Read Mountains today form a classical window structure ("Read 70 km from E to W. The foliation in the basement rocks dips N Window", BUGGISCH et al. 1994a). in the northern part, and S in the southern part. HOFMANN & PAECH (1983) and PAECH (1985), therefore, assumed a large E­ The present study deals with following aspects of the geology W-striking anticline in the Read Mountains. In the central and of the Read Mountains: southern Read Mountains, the contact between the crystalline The structural evolution of the Read Mountains, as derived basement and the sedimentary cover is exposed at only a few from detailed investigations within the crystalline basement locations (Watts Needle area, Nicol Crags, Mount Wegener; and the Watts Needle Formation. Fig. 2). Sediments of the Watts Needle Formation are found The thrust-induced deformation structures in the units below between the Read Group basement and the metaclastic rocks of the Read Nappe. the Mount Wegener Formation. MARSH (1983b), on the basis of The kinematics of nappe transport, as deduced from the cor­ the sequence of lithological units at Watts Needle, was the first responding fabrics of the underlying units. to mention the possibility of thrusting
Recommended publications
  • CURRICULUM VITAE 10 August 2015
    IAN W. D. DALZIEL B.SC., PH.D., D.SC. (Hon), FRSE CURRICULUM VITAE 10 August 2015 PERSONAL ..................................................................................................................................................... 1 EDUCATION ................................................................................................................................................... 1 AWARDS AND DISTINCTIONS ........................................................................................................................ 1 ACADEMIC POSITIONS ................................................................................................................................... 1 ADMINISTRATIVE POSITIONS ........................................................................................................................ 2 MAIN FIELDS OF RESEARCH INTEREST ......................................................................................................... 2 ELECTIONS TO FELLOWSHIP .......................................................................................................................... 2 EDITORIAL RESPONSIBILITIES ....................................................................................................................... 2 LEADERSHIP OF MAJOR INTERNATIONAL RESEARCH PROJECTS .................................................................. 2 CONVENER, INTERNATIONAL WORKSHOPS AND CONFERENCES ................................................................. 2 PROFESSORSHIPS, LECTURESHIPS, AND
    [Show full text]
  • Clastos Con Calcimicrobios Y Arqueociatos Procedentes De
    Estudios Geológicos julio-diciembre 2019, 75(2), e112 ISSN-L: 0367-0449 https://doi.org/10.3989/egeol.43586.567 Calcimicrobial-archaeocyath-bearing clasts from marine slope deposits of the Cambrian Mount Wegener Formation, Coats Land, Shackleton Range, Antarctica Clastos con calcimicrobios y arqueociatos procedentes de depósitos marinos del talud de la Formación cámbrica del Monte Wegener, Coats Land, Cordillera de Shackleton Antártida M. Rodríguez-Martínez1, A. Perejón1, E. Moreno-Eiris1, S. Menéndez2, W. Buggisch3 1Universidad Complutense de Madrid, Departamento de Geodinámica, Estratigrafía y Paleontología, Madrid, Spain. Email: [email protected], [email protected], [email protected]; ORCID ID: http://orcid.org/0000-0002-4363-5562, http://orcid.org/0000-0002-6552-0416, http://orcid.org/0000-0003-2250-4093 2Museo Geominero, Instituto Geológico y Minero de España (IGME), Ríos Rosas, 23, 28003 Madrid, Spain. Email: [email protected]; ORCID ID: Silvia Menéndez: http://orcid.org/0000-0001-6074-9601 3GeoZentrum Nordbayern. Friedrich-Alexander-University of Erlangen-Nürnberg (FAU). Schlossgarten 5, 91054 Erlangen, Germany. ABSTRACT The carbonate clasts from the Mount Wegener Formation provide sedimentological, diagenetic and palaeonto- logical evidences of the destruction and resedimentation of a hidden/unknown Cambrian carbonate shallow-water record at the Coats Land region of Antarctica. This incomplete mosaic could play a key role in comparisons and biostratigraphic correlations between the Cambrian record of the Transantarctic Mountains, Ellsworth-Whitmore block and Antarctic Peninsula at the Antarctica continent. Moreover, it represents a key record in future palaeobio- geographic reconstructions of South Gondwana based on archaeocyathan assemblages. Keywords: Calcimicrobes; Archaeocyaths; Shackleton Range; Antarctica; Gondwana.
    [Show full text]
  • Emergence of the Shackleton Range from Beneath the Antarctic
    Edinburgh Research Explorer Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion Citation for published version: Sugden, D, Fogwill, CJ, Hein, AS, Stuart, FM, Kerr, AR & Kubik, PW 2014, 'Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion', Geomorphology, pp. 1-22. https://doi.org/10.1016/j.geomorph.2013.12.004 Digital Object Identifier (DOI): 10.1016/j.geomorph.2013.12.004 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Geomorphology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 NOTICE: this is the author's final version of a work that was accepted for publication in Geomorphology. Changes resulting from the publishing process, such as editing, corrections and structural formatting may not be reflected in this document. A definitive version of this document is due to be published in Geomorphology by Elsevier (2014). Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion a b a c a d D.E.
    [Show full text]
  • Publikationsliste Polarforschung: Landgeologie, Landgeophysik (Stand: September 2009) ______Die Liste Umfasst
    1 Publikationsliste Polarforschung: Landgeologie, Landgeophysik (Stand: September 2009) _________________________________________________________________________________ Die Liste umfasst - Publikationen, die auf den BGR-Polarexpeditionen basieren, entweder durch Teilnahme an den Expeditionen oder durch Bearbeitung von Probenmaterial, das während der Expeditionen gewonnen wurde, durch Dritte - allgemeine Publikationen von BGR-Mitarbeitern zu geowissenschaftlichen polaren Themen - eine Aufstellung der Expeditionsbände (am Ende der Liste). _________________________________________________________________________________ Aa: 1. ADAMS, C.J. (1986): Age and ancestry of the metamorphic rocks of the Daniels Range, USARP Mountains, Antarctica. - In: STUMP, E. (ed.): Geological investigations in Northern Victoria Land, Antarctica, Am. Geophys. Union, Antarctic Res. Ser., 46, 25-38, Washington. 2. ADAMS, C.J. (1996): Geochronological evolution of the eastern margin of northern Victoria Land: Rb-Sr and K-Ar dating of the Berg Group and Berg/Archangel granites. - In: ROLAND, N.W. (ed.): Polar Issue No. 6, GANOVEX: From Oates Coast to Marie Byrd Land.- Geol. Jb., B 89, 179-194, Hannover. 3. ADAMS, C. (2003): Pattern of uplift of Paleozoic terranes in northern Victoria Land, Antarctica: evidence from K-Ar age profiles. - In: FÜTTERER, D.K. (ed.): Antarctic Contributions to Global Earth Sciences. -, Terra Nostra, 4, 283-284. 4. ADAMS, C.J. & ROLAND, N.W. (1999): Pre- and syn-Ross orogenic granitoids in the Wilson Terrane at the Oates Coast, East Antarctica. – In: SKINNER, D.N.B. (ed.): 8th Int. Symp. Ant. Earth Sci., Programme & Abstracts, 18, Wellington (Royal Soc. New Zealand). 5. ADAMS, C.J. & ROLAND, N.W. (2002): Pre- and syn-Ross orogenic granitoids at Drake Head and Kartografov Island, Oates Coast, northern Victoria Land, East Antarctica. - In: GAMBLE, J.A., SKINNER, D.N.B., HENRYS, S.
    [Show full text]
  • The Pan-African Nappe Tectonics in the Shackleton Range W
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 058, doi:10.3133/of2007-1047.srp058 The Pan-African nappe tectonics in the Shackleton Range W. Buggisch1 and G. Kleinschmidt2 1Department of Geology, University Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany, ([email protected]) 2Institut für Geowissenschaften - JWG-Universität - FE Geologie - Altenhöferallee 1 - 60438 Frankfurt ([email protected]) Abstract In memory of Campbell Craddock: When J. Campbell Craddock (1972) published his famous 1:5 000 000 map of the Geology of Antarctica, he established major units such as the East Antarctic Craton, the early Palaeozoic Ross, the Mesozoic Ellsworth, and the Cenozoic Andean orogens. It is already evident from this map, that the strike of the Ellsworth Mountains and the Shackleton Range is perpendicular to palaeo-Pacific and modern Pacific margins. While the Ellsworth-Whitmore block is classified as a rotated terrane, the Ross-aged orogen of the Shackleton Range requires another interpretation. The discovery of extended tectonic nappes with south directed transport in the southern Shackleton Range and west transport in the north established a plate tectonic scenery with a subduction dominated Ross Orogen in the Transantarctic Mountains and a transpressive tectonic regime in the Shackleton Range during the final closing of the Mozambique Ocean. Citation: Buggisch, W. and G. Kleinschmidt (2007), The Pan-African nappe tectonics in the Shackleton Range: in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A. K. Cooper and C. R. Raymond et al., USGS Open-File Report 2007-1047, Short Research Paper 058, 4 p.; doi:10.3133/of2007-1047.srp058 Introduction important progress in understanding the structure and This is a review paper concerning the nappe tectonics plate tectonic position is the merit of Marsh (1983) who of the Shackleton Range, its history and its plate tectonic reported nappe(s) from the Read Mountains and consequences.
    [Show full text]
  • Glacial Geology and Petrography of Erratics in the Shackleton Range, Antarctica
    Polarforschung 63 (213): 183-201, 1993 (erschienen 1995) Glacial Geology and Petrography of Erratics in the Shackleton Range, Antarctica By Hans-Christian Höfle! and Werner Buggischt Abstract: Studies wcre made 01' the glacial geology and provenance 01' erratics 1. MORPHOLOGY AND GLACIATIONS OF THE in thc Shackleton Range during the German geologieal expedition GEISHA in SHACKLETON RANGE 1987/88, especially in the southern and northwestern parts 01' the range. Evidence that the entire Shackleton Range was once overrun by ice from a southerly to southeasterly direction was provided by subglacial erosional forrns STEPHENSON (1966) and SKIDMORE & CLARKSON (1973) have (e.g. striations, cresccntic gouges, roches moutonnees) and erratics which published very good descriptions of the physiography and probably orriginatcd in the region 01' the Whichaway Nunataks ancl the glacial morphology of the Shackleton Range; thus only abrief Pensacola Mountains in the southern part 01' the range. This probably happened during the last major expansion 01' the Anarctic polar ice sheer, which, on the introduction to the morphology of the range will be given here. basis 01' evidence from other parts 01' thc continem, oceurred towards the end 01' the Miocene. The Shackleton Range trends E-W at the east edge ofthe Filch­ ner ice shelf. It is 170 km long anelup to 70 km wide. The high­ Till and an area 01' sennered erratics were mapped in the northwestern part 01' the range. These were deposited during aperiod 01' expansion 01' the Slessor est peaks (1800-1950 m) are the Read Mountains at the SE edge Glacier in the Weichselian (Wisconsian) glacial stage earlier.
    [Show full text]
  • Projects Officer
    USARP LIBRARY OF THE U.S. ANTARCTIC PROJECTS OFFICER VOLUME IV NUMBER 3 DECEMBER 1962 Three Commanders, U.S. Naval Support Force, Antarctica, most in Christchurch at farewell for Admiral Tyree. Left to right - Rear Admiral David IL Tyree, USN, 1959- 62; Rear Admiral George 3. Dufek, USN, (Rat.), 1955-59; and Rear Admiral James R. Reedy, USN, current commander. (Official U.S. Navy Photograph by PHC Frank Kazukaitis, USN.) 1 Volume IV, No. 3 December 1962 CONTENTS Month In Review 1 Survival Training For Antarctica 1 Change of Command Ceremony 2 Honorable Luther H. Hodges Visits Antarctica 4 Operation DEEP FREEZE 63 Shipboard Oceanographic Program 6 The Weather Bureau Studios Energy Absorption of Antarctic Ice 7 Special Projects for the Department of Defence - Operation DEEP FREEZE 63 8 DEEP FREEZE 63 USARP Summer Personnel 9 Mr. Harold I. June 10 Support of the United States Antarctic Research Program by the Arctic Institute of North America 11 International Cooperation 19 Official Foreign Representative Exchange Program 20 Geographic Names of Antarctica 21 Additions to the Library Collection 25 BEAR To Become a Museum 33 Educators Declare Research Program Successful, Growing 33 Antarctic Chronology 34 11. The Bulletin of the United States Antarctic Projects Officer appears eight or nine times a year. Its obj.otive is to inform interested organizations, groups, and individuals about United States plans, programs, and activities. Readers are invited to make any suggestions that will enhance the attainment of this objective. Material for this issue of the Bulletin was abstracted from official United States Navy press releases, the National Science Foundation press kit and press releases, the New York Times, Operational Plan CTF-43 No 1-62, the Australian Department of External Affairs press releases, the Board on Geographic Names release, and the United States Naval Oceanographic Office Specifications.
    [Show full text]
  • Bisher Veröffentlichte Ergebnisse ______
    25 Jahre Antarktisforschung Lehrstuhl für Geodynamik und Geomaterialforschung 2007 Bisher veröffentlichte Ergebnisse ________________________________________________________________________________________________ Shackleton Range Schmädicke E, Will T (2006): First evidence of eclogite-facies metamorphism in the Shackleton Range, Antarctica: Tracer of a suture between East and West Gondwana? Geology 34, 133-136. Schmädicke, E., Will, T., Schubert, W., Frimmel, H.E., 2006, First evidence of eclogite-facies metamorphism in the Shackleton Range, Antarctica: Tracer of a suture between East- and West-Gondwana? 29th SCAR Meeting, Hobart, 9 – 19 July 2006, Abstr. Zeh, A., Millar, I.L. & Horstwood, M.S.A. (2004): Polymetamorphism in the NE Shackleton Range, Antarctica: constraints from petrology and U- Pb, Sm-Nd, Rb-Sr TIMS and in-situ U-Pb LA-PIMMS dating. Journal of Petrology, 45, 949-973. Zeh, A. (2001): Inference of a detailed P-T path from P-T pseudosections using metapelitic rocks of variable composition from a single outcrop, Shackleton Range, Antarctica. Journal of Metamorphic Geology, 19, 329-350. Brommer, A., Millar, I.L., Zeh, A. (1999): Geochronology, Structural Geology and Petrology of the Northwestern La Grange Nunataks, Shackleton Range, Antarctica. Terra Antartica, 6, 269-278. Tessensohn, F., Kleinschmidt, G., Talarico, F., Buggisch, W., Brommer, A., Henjes-Kunst, F., Kroner, U., Millar, I.L., Zeh, A. (1999): Ross-Age Amalgamation of East and West Gondwana: Evidence from the Shackleton Range, Antarctica. Terra Antartica, 6, 317-325. Zeh, A., Millar, I.L., Kroner, U., Görz, I. (1999): The structural and metamorphic evolution of the Northern Haskard Highlands, Shackleton Range, Antarctica. Terra Antartica, 6, 249-268. Olesch, M., Braun, H.M., Kamenev, E.N., Kameneva.
    [Show full text]
  • Reprints from the 1997 Online Issues of Antarctic Journal September Through December
    Reprints from the 1997 online issues of Antarctic Journal September through December SEPTEMBER 1997 (VOLUME 32, NUMBER 1) 213 Diatoms in a South Pole ice core: Serious implications for the age of the Sirius Group, D.E. Kellogg and T.B. Kellogg 219 Recycled marine microfossils in glacial tells of the Sirius Group at Mount Fleming: Transport mechanisms and pathways, A.P. Stroeven, M.L. Prentice, and J. Kleman OCTOBER 1997 (VOLUME 32, NUMBER 2) 225 Glaciological delineation of the dynamic coastline of Antarctica, R.S. Williams, Jr., J.G. Ferrigno, C. Swithinbank, B.K. Lucchitta, B.A. Seekins, and C.E. Rosanova 228 Antarctica and sea-level change, R.B. Alley NOVEMBER 1997 (VOLUME 32, NUMBER 3) 230 The National Museum of Natural History, W.E. Moser and J.C. Nicol DECEMBER 1997 (VOLUME 32, NUMBER 4) 234 Initial results of geologic investigations in the Shackleton Range and southern Coats Land nunataks, Antarctica, F.E. Hutson, M.A. Helper, I.W.D. Dalziel, and S.W. Grimes 237 Laboratory observations of ice-floe processes made during long-term drift and collision experiments, S. Frankenstein and H. Shen Reprints from the 1997 online issues of Antarctic Journal, September through December GLACIAL GEOLOGY Diatoms in a South Pole ice core: Serious implications for the age of the Sirius Group DAVIDA E. KELLOGG and THOMAS B. KELLOGG, Institute for Quaternary Studies and Department of Geological Sciences, University of Maine, Orono, Maine 04469 ne of the most controversial topics of the past decade for O paleoclimatologists has been the hypothesized existence of a Pliocene warm interval in Antarctica around 3.0–2.5 mil- lion years ago (Webb and Harwood 1991).
    [Show full text]
  • Mafic Dykes in the Shackleton Range, Antarctica
    Polarforschung 63 (2/3): 101-121,1993 (erschienen 1995) Mafic Dykes in the Shackleton Range, Antarctica By Gerhard Spaeth', Rüdiger Hotten", Matthias Peters-, and Kirsten Techmer' Summary: In addition to some mafic dykes which arc already known and which 1. INTRODUCTION, PREVIOUS STUDIES, AND GEOLO­ wcre resampled, a number of mafic dykes were discovered in the Shackleton GICAL SETTING Range during the 1987/88 GEISHA expedition and sampled for the first time. Field data for 29 dykes, as weIl as analytical results of petrographic, gcochemical, and isotope-geochcmistry studies on the basalts of 26 of these Mafic dykes are not particularly rare in the mountains at the dykes, are presented and discussed, paleo-Pacific margin of eastem Antarctica and in eastem Ant­ arctica itself. In the Shackleton Range, however, they are much The mafic dykes can be subdivided into fivc groups on the basis of their petrography and degree of alteration. According to the geochemical analyses, less frequent. These dykes are of interest because they provide the dyke rocks are continental tholeiites. Geochemical characterization on the valuable information on the geotectonic history of this region, basis of trace-elements, especially rare earths, permits subdivision according to especially on crustal extension phases, and because their field magma type. This subdivision shows reasonable agreement with the subdivision relationships allow at least a relative determination of the age according to petrographic criteria. of the rock complexes they penetrate. On the basis of radiometric dating and field relationships, the following ages ean be assigned to the five groups of dykes: In the present paper, the expression .rnafic dykes" is only used Group I, Early Jurassic; for hypabyssal, discordant dyke-like basalt intrusions.
    [Show full text]
  • 193915 193915.Pdf
    1 Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues SIMON L. HARLEY1*, IAN C. W. FITZSIMONS2 & YUE ZHAO3 1School of Geosciences, University of Edinburgh, Edinburgh, Scotland, EH9 3JW, UK 2Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 3Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China *Corresponding author (e-mail: [email protected]) Abstract: The Antarctic rock record spans some 3.5 billion years of history, and has made important contributions to our understanding of how Earth’s continents assemble and disperse through time. Correlations between Antarctica and other southern continents were critical to the concept of Gondwana, the Palaeozoic supercontinent used to support early arguments for continental drift, while evidence for Proterozoic connections between Antarctica and North America led to the ‘SWEAT’ configuration (linking SW USA to East Antarctica) for an early Neoproterozoic supercontinent known as Rodinia. Antarctica also contains relics of an older Palaeo- to Mesoproterozoic supercontinent known as Nuna, along with several Archaean fragments that belonged to one or more ‘supercratons’ in Neoarchaean times. It thus seems likely that Antarctica contains remnants of most if not all Earth’s supercontinents, and Antarctic research continues to provide insights into their palaeogeography and geological evolution. One area of research is the latest Neoproterozoic–Mesozoic active margin of Gondwana, preserved in Antarctica as the Ross Orogen and a number of outboard terranes that now form West Antarctica. Major episodes of magmatism, deformation and metamorphism along this palaeo-Pacific margin at 590–500 Ma and 300–230 Ma can be linked to reduced convergence along the internal collisional orogens that formed Gondwana and Pangaea, respectively; indicating that accretionary systems are sensitive to changes in the global plate tectonic budget.
    [Show full text]
  • „Polarstern“ 1987/1988 the Expedition ANTARKTIS-VI of RV
    Die Expedition ANTARKTIS-VI mit FS „Polarstern“ 1987/1988 The Expedition ANTARKTIS-VI of RV “Polarstern” in 1987/1988 Herausgegeben von Dieter Karl Fütterer mit Beiträgen der Fahrtteilnehmer Ber. Polarforsch. 58 (1988) ISSN 0176-5027 - 3 - Inhalt Einführung .............................................................................................. 7 Introduction ............................................................................................. 9 1. Fahrtabschnitt ANT-VI/1 (Bremerhaven - Santander- Rio de Janeiro- Rio Grande do Sul 11 1.1 Zusammenfassung und Fahrtverlauf ............................................. 11 1.2 Ozonverteilung in der Stratosphäre ................................................. 12 2. Fahrtabschnitt ANT-VII/2 (Rio Grande do Sul - Ushuaia) (Fahrtleiter: D. Sahrhage) 15 2.1 Zusammenfassung und Fahrtverlauf ............................................. 15 2.2 Summary and itinerary ......................................................................... 25 2.3 Wetterablauf und Wetterberatung .................................................... 28 2.4 Geologische Untersuchungen an Land .................................... 30 2.4.1 Das Grundgebirge und Deckgebirge im Umkreis der Station Esperanza und Trinity Hut ............................................................ 30 2.4.2 Geologie einzelner Nunataker der Trinity Peninsula .......... 31 2.4.3 Geochronologische Korrelation der fossilführenden oberju­ rassischen Nordenskjoeld-Formation mit Zirkonen begleitender Tuffe (Longing Gap) ........................................................................
    [Show full text]