Norway Ramsar Information Sheet Published on 5 April 2018 Update Version, Previously Published on : 1 January 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nordmann's Greenshank Population Analysis, at Pantai Cemara Jambi
Final Report Nordmann’s Greenshank Population Analysis, at Pantai Cemara Jambi Cipto Dwi Handono1, Ragil Siti Rihadini1, Iwan Febrianto1 and Ahmad Zulfikar Abdullah1 1Yayasan Ekologi Satwa Alam Liar Indonesia (Yayasan EKSAI/EKSAI Foundation) Surabaya, Indonesia Background Many shorebirds species have declined along East Asian-Australasian Flyway which support the highest diversity of shorebirds in the world, including the globally endangered species, Nordmann’s Greenshank. Nordmann’s Greenshank listed as endangered in the IUCN Red list of Threatened Species because of its small and declining population (BirdLife International, 2016). It’s one of the world’s most threatened shorebirds, is confined to the East Asian–Australasian Flyway (Bamford et al. 2008, BirdLife International 2001, 2012). Its global population is estimated at 500–1,000, with an estimated 100 in Malaysia, 100–200 in Thailand, 100 in Myanmar, plus unknown but low numbers in NE India, Bangladesh and Sumatra (Wetlands International 2006). The population is suspected to be rapidly decreasing due to coastal wetland development throughout Asia for industry, infrastructure and aquaculture, and the degradation of its breeding habitat in Russia by grazing Reindeer Rangifer tarandus (BirdLife International 2012). Mostly Nordmann’s Greenshanks have been recorded in very small numbers throughout Southeast Asia, and there are few places where it has been reported regularly. In Myanmar, for example, it was rediscovered after a gap of almost 129 years. The total count recorded by the Asian Waterbird Census (AWC) in 2006 for Myanmar was 28 birds with 14 being the largest number at a single locality (Naing 2007). In 2011–2012, Nordmann’s Greenshank was found three times in Sumatera Utara province, N Sumatra. -
Monroe County Soil & Water Conservation District Fish Program
Monroe County Soil & Water Conservation District Fish Program Catalog Inside Triploid Grass Carp………………….2 Fathead Minnows…....3 Channel Catfish……...4 Koi (no longer offered).…..5 Yellow Perch………...6 Largemouth Bass..…...7 Fish Stocking Program The Monroe County Soil and Water Conservation District’s fish program is a Rainbow Trout……….8 biannual event, offered in spring and summer each year. Harsh winters cause many fish kills in ponds throughout Monroe County, and the Soil and Water Conservation District offers this program to help restock ponds. The species Black Crappie………..9 typically available for stocking include, but are not limited to: Pumpkinseed……….10 Triploid grass carp (10-12”), Catfish (6”), Fathead minnows (1-1.5”), Yellow Perch (2-3" or 4-6”) and Largemouth Bass (2-3” or 4-6”) Barley Straw……......11 You will need to bring 20 gallons of pond water for every 6 Grass Carp, 30 Fish Habitat Spheres..12 Catfish, 30 Goldfish, 500 minnows, 100 Bass, or 150 Perch for a travel time of 30-45 minutes. Please Do NOT use tap water! Use pond water and be sure to bring a cover for the container(s) you’ll be using, so the water doesn’t splash and your fish can’t escape. Five gallon pails, old coolers, trash cans or other similar containers will work. Monroe County Soil and Water Conservation District 145 Paul Road, Building #5 Rochester, NY 14624 (585) 753-7380 Monroe County Soil & Water http://www.monroecountyswcd.org/ Conservation District Providing Today, Protecting Tomorrow This document has been produced to provide a summary of all the species that MCSWCD offers Fish Catalog Page 2 Triploid Grass Carp (Ctenopharyngodon idella) Photo courtesy of New York State Department of Conservation. -
Phoxinus Phoxinus
Morphological and trophic divergence of lake and stream minnows (Phoxinus phoxinus) Kristin Scharnweber1 1Uppsala Universitet April 27, 2020 Abstract Phenotypic divergence in response to divergent natural selection between environments is a common phenomenon in species of freshwater fishes. Intraspecific differentiation is often pronounced between individual inhabiting lakes versus stream habitats. The different hydrodynamic regimes in the contrasting habitats may promote a variation of body shape, but this could be intertwined with morphological adaptions to a specific foraging mode. Herein, I studied the divergence pattern of the European minnow (Phoxinus phoxinus), a common freshwater fish that has paid little attention despite its large distribution. In many Scandinavian mountain lakes, they are considered as being invasive and were found to pose threats to the native fish populations due to dietary overlap. Minnows were recently found to show phenotypic adaptions in lake versus stream habitats, but the question remained if this divergence pattern is related to trophic niche partitioning. I therefore studied the patterns of minnow divergence in morphology (i.e. using geometric morphometrics) and trophic niches (i.e. using stomach content analyses) in the lake Annsj¨onand˚ its tributaries to link the changes in body morphology to the feeding on specific resources. Lake minnows showed a strong reliance on zooplankton and a more streamlined body shape with an upward facing snout, whereas stream minnows fed on macroinvertebrates (larvae and adults) to a higher degree and had a deeper body with a snout that was pointed down. Correlations showed a significant positive relationship of the proportion of zooplankton in the gut and morphological features present in the lake minnows. -
Population Analysis and Community Workshop for Far Eastern Curlew Conservation Action in Pantai Cemara, Desa Sungai Cemara – Jambi
POPULATION ANALYSIS AND COMMUNITY WORKSHOP FOR FAR EASTERN CURLEW CONSERVATION ACTION IN PANTAI CEMARA, DESA SUNGAI CEMARA – JAMBI Final Report Small Grant Fund of the EAAFP Far Eastern Curlew Task Force Iwan Febrianto, Cipto Dwi Handono & Ragil S. Rihadini Jambi, Indonesia 2019 The aim of this project are to Identify the condition of Far Eastern Curlew Population and the remaining potential sites for Far Eastern Curlew stopover in Sumatera, Indonesia and protect the remaining stopover sites for Far Eastern Curlew by educating the government, local people and community around the sites as the effort of reducing the threat of habitat degradation, habitat loss and human disturbance at stopover area. INTRODUCTION The Far Eastern Curlew (Numenius madagascariencis) is the largest shorebird in the world and is endemic to East Asian – Australian Flyway. It is one of the Endangered migratory shorebird with estimated global population at 38.000 individual, although a more recent update now estimates the population at 32.000 (Wetland International, 2015 in BirdLife International, 2017). An analysis of monitoring data collected from around Australia and New Zealand (Studds et al. in prep. In BirdLife International, 2017) suggests that the species has declined much more rapidly than was previously thought; with an annual rate of decline of 0.058 equating to a loss of 81.7% over three generations. Habitat loss occuring as a result of development is the most significant threat currently affecting migratory shorebird along the EAAF (Melville et al. 2016 in EAAFP 2017). Loss of habitat at critical stopover sites in the Yellow Sea is suspected to be the key threat to this species and given that it is restricted to East Asian - Australasian Flyway, the declines in the non-breeding are to be representative of the global population. -
Draft Version Target Shorebird Species List
Draft Version Target Shorebird Species List The target species list (species to be surveyed) should not change over the course of the study, therefore determining the target species list is an important project design task. Because waterbirds, including shorebirds, can occur in very high numbers in a census area, it is often not possible to count all species without compromising the quality of the survey data. For the basic shorebird census program (protocol 1), we recommend counting all shorebirds (sub-Order Charadrii), all raptors (hawks, falcons, owls, etc.), Common Ravens, and American Crows. This list of species is available on our field data forms, which can be downloaded from this site, and as a drop-down list on our online data entry form. If a very rare species occurs on a shorebird area survey, the species will need to be submitted with good documentation as a narrative note with the survey data. Project goals that could preclude counting all species include surveys designed to search for color-marked birds or post- breeding season counts of age-classed bird to obtain age ratios for a species. When conducting a census, you should identify as many of the shorebirds as possible to species; sometimes, however, this is not possible. For example, dowitchers often cannot be separated under censuses conditions, and at a distance or under poor lighting, it may not be possible to distinguish some species such as small Calidris sandpipers. We have provided codes for species combinations that commonly are reported on censuses. Combined codes are still species-specific and you should use the code that provides as much information as possible about the potential species combination you designate. -
Trends in Breeding Phenology Across Ten Decades Show Varying Adjustments to Environmental Changes in Four Wader Species
Bird Study ISSN: 0006-3657 (Print) 1944-6705 (Online) Journal homepage: http://www.tandfonline.com/loi/tbis20 Trends in breeding phenology across ten decades show varying adjustments to environmental changes in four wader species Hans Meltofte, Ole Amstrup, Troels Leuenhagen Petersen, Frank Rigét & Anders P. Tøttrup To cite this article: Hans Meltofte, Ole Amstrup, Troels Leuenhagen Petersen, Frank Rigét & Anders P. Tøttrup (2018) Trends in breeding phenology across ten decades show varying adjustments to environmental changes in four wader species, Bird Study, 65:1, 44-51, DOI: 10.1080/00063657.2018.1444014 To link to this article: https://doi.org/10.1080/00063657.2018.1444014 Published online: 20 Mar 2018. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tbis20 BIRD STUDY, 2018 VOL. 65, NO. 1, 44–51 https://doi.org/10.1080/00063657.2018.1444014 Trends in breeding phenology across ten decades show varying adjustments to environmental changes in four wader species Hans Meltoftea, Ole Amstrupb, Troels Leuenhagen Petersenc, Frank Rigéta and Anders P. Tøttrupc aDepartment of Bioscience, Aarhus University, Roskilde, Denmark; bAmphi Consult, Aalborg, Denmark; cCenter for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen, Denmark ABSTRACT ARTICLE HISTORY Capsule: During 1928–2016, initiation of egg-laying advanced in two wader species, remained Received 8 May 2017 unchanged in one, and was delayed in one species. The changes across years and variation Accepted 19 February 2018 among species can be explained by climatic variables and differences in migratory strategies. -
A Report of Brambling Fringilla Montifringilla from Mandala Road, Arunachal Pradesh Qupeleio De Souza
136 Indian BirDS VOL. 10 NO. 5 (PUBL. 2 NOVEMBER 2015) and the Middle East (Ali & Ripley 1986). However, observations of the Rosy Starling in the sub-Himalayan or Himalayan areas are very rare (please see distribution map in Grimmett et al. 2011: 404). Published bird checklists, relevant to the Doon Valley in particular (Pandey et al. 1994; Mohan 1996; Singh 2000), and for similar landscapes in the region (Sharma et al. 2003) have no record of the Rosy Starling. The bird is also not listed in the official checklist of birds published by the Uttarakhand Forest Department (Mohan & Sinha 2003). Hence, according to the best of my knowledge, this species has never been observed in Uttarakhand and this sighting is a new record for the state. Since only a single individual was seen of this otherwise highly gregarious bird, it is likely that the Rosy Starling I observed was a vagrant. Acknowledgements I am grateful to Mohammed Bashir for assistance in field, and Soumya Prasad for support. Photo: Raman Kumar References Ali, S., & Ripley, S. D., 1986. Handbook of the birds of India and Pakistan together with those of Bangladesh, Nepal, Bhutan and Sri Lanka. Cuckoo-shrikes to babaxes. 2nd (Hardback) ed. Delhi: (Sponsored by Bombay Natural History Society.) Oxford University Press. Vol. 5 of 10 vols. Pp. i–xvi, 1–278+2+8 ll. 126. Rosy Starling feeding on Mallotus sp. tree, Doon Valley. Champion, H. G., & Seth, S. K., 1968. A revised survey of the forest types of India. Government of India, Delhi. Grimmett, R., Inskipp, C., & Inskipp, T., 2011. -
Green Sandpiper Uttering Call of Wood Sandpiper.—With Reference to J
NOTES Gannets robbing gulls.—On 5th August 1957, I spent the day at sea in Dingle Bay, Co. Kerry, in the trawler "Ros Brin". As soon as trawling operations began, we were accompanied by a few Storm Petrels (Hydrobates pelagicus), Fulmars (Fulmarus glacialis), Great Black-backed Gulls (Larus marinus), Lesser Black-backed Gulls (L. fuscus), and large numbers of Herring Gulls (L. argentatus). During the gutting periods, and especially when any small waste fish were thrown over-board, six to eight Gannets (Sula bassana), would join in the feast. Any fish that sank too deep for the gulls were immediately taken by the Gannets by the normal manner of diving, but on numerous occasions when a gull sitting on the surface had a fish it could not swallow quickly—i.e. small plaice, dabs and other flat fish—one or other of the Gannets would plunge in a shallow-angled frontal dive at the gull, entering the water about two yards away and snatching the fish from the gull's bill on breaking the surface. The fish was swallowed on the surface. This was repeated many times, and the Gannets also frequently fluttered along the water and snatched fish from the bills of other gulls which they passed. On several occasions, too, a Gannet was seen to lunge into the air after a retreating gull that was attempting to rise from the water with a fish; the Gannet "treading water" with wings half-open and neck fully extended upwards in its endeavour to snap the fish from the slowly rising and heavily gorged' gull. -
Tringarefs V1.3.Pdf
Introduction I have endeavoured to keep typos, errors, omissions etc in this list to a minimum, however when you find more I would be grateful if you could mail the details during 2016 & 2017 to: [email protected]. Please note that this and other Reference Lists I have compiled are not exhaustive and best employed in conjunction with other reference sources. Grateful thanks to Graham Clarke (http://grahamsphoto.blogspot.com/) and Tom Shevlin (www.wildlifesnaps.com) for the cover images. All images © the photographers. Joe Hobbs Index The general order of species follows the International Ornithologists' Union World Bird List (Gill, F. & Donsker, D. (eds). 2016. IOC World Bird List. Available from: http://www.worldbirdnames.org/ [version 6.1 accessed February 2016]). Version Version 1.3 (March 2016). Cover Main image: Spotted Redshank. Albufera, Mallorca. 13th April 2011. Picture by Graham Clarke. Vignette: Solitary Sandpiper. Central Bog, Cape Clear Island, Co. Cork, Ireland. 29th August 2008. Picture by Tom Shevlin. Species Page No. Greater Yellowlegs [Tringa melanoleuca] 14 Green Sandpiper [Tringa ochropus] 16 Greenshank [Tringa nebularia] 11 Grey-tailed Tattler [Tringa brevipes] 20 Lesser Yellowlegs [Tringa flavipes] 15 Marsh Sandpiper [Tringa stagnatilis] 10 Nordmann's Greenshank [Tringa guttifer] 13 Redshank [Tringa totanus] 7 Solitary Sandpiper [Tringa solitaria] 17 Spotted Redshank [Tringa erythropus] 5 Wandering Tattler [Tringa incana] 21 Willet [Tringa semipalmata] 22 Wood Sandpiper [Tringa glareola] 18 1 Relevant Publications Bahr, N. 2011. The Bird Species / Die Vogelarten: systematics of the bird species and subspecies of the world. Volume 1: Charadriiformes. Media Nutur, Minden. Balmer, D. et al 2013. Bird Atlas 2001-11: The breeding and wintering birds of Britain and Ireland. -
Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces ................................................................................................................................................................................................................................................. -
Rapid Risk Assessment on Incursion of HPAI H5N8 Into Housed Or Not Housed Poultry Flocks and Captive Birds
Rapid risk assessment on incursion of HPAI H5N8 into housed or not housed poultry flocks and captive birds 29 January 2021 Situation as at 26 January 2021 © Crown copyright 2021 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.3. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to: [email protected] www.gov.uk/defra 2 Contents Summary ............................................................................................................................................. 4 Introduction ........................................................................................................................................ 6 Hazard Identification ......................................................................................................................... 10 Previous outbreaks of HPAI H5N8: ................................................................................................... 12 Current Situation ............................................................................................................................... 12 Risk Question .................................................................................................................................... 16 Risk Levels .................................................................................................................................... -
Rejection Behavior by Common Cuckoo Hosts Towards Artificial Brood Parasite Eggs
REJECTION BEHAVIOR BY COMMON CUCKOO HOSTS TOWARDS ARTIFICIAL BROOD PARASITE EGGS ARNE MOKSNES, EIVIN ROSKAFT, AND ANDERS T. BRAA Departmentof Zoology,University of Trondheim,N-7055 Dragvoll,Norway ABSTRACT.--Westudied the rejectionbehavior shown by differentNorwegian cuckoo hosts towardsartificial CommonCuckoo (Cuculus canorus) eggs. The hostswith the largestbills were graspejectors, those with medium-sizedbills were mostlypuncture ejectors, while those with the smallestbills generally desertedtheir nestswhen parasitizedexperimentally with an artificial egg. There were a few exceptionsto this general rule. Becausethe Common Cuckooand Brown-headedCowbird (Molothrus ater) lay eggsthat aresimilar in shape,volume, and eggshellthickness, and they parasitizenests of similarly sizedhost species,we support the punctureresistance hypothesis proposed to explain the adaptivevalue (or evolution)of strengthin cowbirdeggs. The primary assumptionand predictionof this hypothesisare that somehosts have bills too small to graspparasitic eggs and thereforemust puncture-eject them,and that smallerhosts do notadopt ejection behavior because of the heavycost involved in puncture-ejectingthe thick-shelledparasitic egg. We comparedour resultswith thosefor North AmericanBrown-headed Cowbird hosts and we found a significantlyhigher propor- tion of rejectersamong CommonCuckoo hosts with graspindices (i.e. bill length x bill breadth)of <200 mm2. Cuckoo hosts ejected parasitic eggs rather than acceptthem as cowbird hostsdid. Amongthe CommonCuckoo hosts, the costof acceptinga parasiticegg probably alwaysexceeds that of rejectionbecause cuckoo nestlings typically eject all hosteggs or nestlingsshortly after they hatch.Received 25 February1990, accepted 23 October1990. THEEGGS of many brood parasiteshave thick- nestseither by grasping the eggs or by punc- er shells than the eggs of other bird speciesof turing the eggs before removal. Rohwer and similar size (Lack 1968,Spaw and Rohwer 1987).