Intergenerational Effects of Early Life Starvation on Life-History, Consumption

Total Page:16

File Type:pdf, Size:1020Kb

Intergenerational Effects of Early Life Starvation on Life-History, Consumption bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434967; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Intergenerational Effects of Early Life Starvation on Life-History, Consumption, 2 and Transcriptome of a Holometabolous Insect 3 4 Sarah Catherine Paul1,a, Pragya Singh1,a, Alice B. Dennis2, Caroline Müller1* 5 6 1Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, 7 Germany 8 2 Evolutionary Biology & Systematic Zoology, University of Potsdam Karl-Liebknecht- 9 Strasse 24-25, 14476 Potsdam 10 a shared first authorship 11 *corresponding author: [email protected] 12 13 Mail addresses: SCP: [email protected], PS: 14 [email protected], ABD: [email protected], CM: 15 [email protected] 16 17 Running title: Intergenerational effects on sawfly 18 19 Keywords 20 Intergenerational effects, sawfly, starvation, transcriptome, parental effects, 21 compensatory growth. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434967; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 ABSTRACT: Intergenerational effects, also known as parental effects in which the 24 offspring phenotype is influenced by the parental phenotype, can occur in response 25 to parental early life food-limitation and adult reproductive environment. However, 26 little is known about how these parental life stage-specific environments interact with 27 each other and with the offspring environment to influence offspring phenotype, 28 particularly in organisms that realize distinct niches across ontogeny. We examined 29 the effects of parental early life starvation and adult reproductive environment on 30 offspring traits under matching or mismatching offspring early life starvation 31 conditions using the holometabolous, haplo-diploid insect Athalia rosae (turnip 32 sawfly). We show that the parental early life starvation treatment had context- 33 dependent intergenerational effects on the life-history and consumption traits of 34 offspring larvae, partly in interaction with offspring conditions and sex, while there 35 was no significant effect of parental adult reproductive environment. In addition, while 36 offspring larval starvation led to numerous gene- and pathway-level expression 37 differences, parental starvation impacted fewer genes and only the ribosomal 38 pathway. Our findings reveal that parental starvation evokes complex 39 intergenerational effects on offspring life-history traits, consumption patterns as well 40 as gene expression, although the effects are less pronounced than those of offspring 41 starvation. 42 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434967; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 43 Introduction 44 Intergenerational effects, more commonly known as parental effects, are defined as 45 causal influences of parental phenotype on offspring phenotype that are likely 46 mediated by non-DNA sequence-based inheritance (Wolf and Wade 2009; Perez and 47 Lehner 2019). Together with transgenerational effects, which occur across several 48 generations, they play a key role in the ecology and evolution of organisms (Badyaev 49 and Uller 2009) and impact the responses of individuals to changing environmental 50 conditions (Sánchez‐Tójar et al. 2020). One important environmental factor that can 51 rapidly change during an organism’s lifetime and across generations is food 52 availability. Periods of starvation are commonly encountered by insects in the wild 53 (Jiang et al. 2019) and, when experienced early in life, often have long-lasting effects 54 on an individual’s phenotype, affecting life-history, consumption, and behavior 55 (Miyatake 2001; Wang et al. 2016; McCue et al. 2017). Intergenerational effects of 56 starvation events on offspring developmental trajectories have been found to differ 57 depending on the exact starvation regime, sex, and traits that are considered 58 (Saastamoinen et al. 2013; McCue et al. 2017; Paul et al. 2019). To fully elucidate 59 the adaptive nature of intergenerational effects, studies should encompass different 60 phases in development of the parental life cycle and how such life stage-specific 61 experience affects offspring phenotype (English and Barreaux 2020). 62 The early life environment can shape the phenotype of an individual and its 63 offspring via distinct routes (Monaghan 2008; Burton and Metcalfe 2014; Taborsky 64 2017). Individuals experiencing a benign environment in early life may pass on their 65 superior condition to their offspring (van de Pol et al. 2006), often called silver spoon 66 or carry-over effects (Monaghan 2008), resulting in offspring that are better able to 67 deal with stressful conditions (Franzke and Reinhold 2013). Similarly, negative 68 effects of a poor start in life might also be passed on, resulting in offspring less able 69 to cope with stressful conditions (Naguib et al. 2006). Alternatively, such stressed 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434967; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 70 individuals may produce offspring that are buffered against stressors, for example, 71 through parental provisioning (Valtonen et al. 2012; Pilakouta et al. 2015; Hibshman 72 et al. 2016). Finally, identical environmental conditions experienced in a certain stage 73 (i.e. a match between parental and offspring environment) may be predicted to be 74 optimal for the offspring (match-mismatch scenario). Evidence for such predictive 75 adaptive effects has been found in several species (Raveh et al. 2016; Le Roy et al. 76 2017), but is weak in others (Uller et al. 2013). Each of these avenues of 77 intergenerational effects are not mutually exclusive. For example, offspring in 78 mismatched environments may do relatively better if their parents were of high 79 quality, due to silver spoon effects (Engqvist and Reinhold 2016). Fully reciprocal 80 designs are needed to determine the relative importance of the experience in a 81 certain life stage or generation on such developmental plasticity (Groothuis and 82 Taborsky 2015). 83 In addition, parental investment in offspring can vary depending on the condition of 84 the parent’s mate (Ratikainen and Kokko 2010). Both males and females have been 85 shown to enhance investment in response to perceived increases in mate quality or 86 attractiveness (Cunningham and Russell 2000; Cornwallis and O'Connor 2009). 87 Changes in parental investment based on mate cues may potentially counteract or 88 augment the effects of the parental early life environment on offspring phenotype. For 89 example, poor early life conditions can lead to poor quality of mates and therefore 90 affect mating success and reproductive investment (Hebets et al. 2008; Vega-Trejo et 91 al. 2016). As niches often shift across an individual’s lifetime, both parental early and 92 later life environments and their interaction must be considered. 93 With discrete phases during development, insects, particularly holometabolous 94 insects, present ideal organisms in which to investigate how intra- and 95 intergenerational environmental cues, such as food limitation and mate quality, might 96 influence individual phenotypes (English and Barreaux 2020). Periods of low 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.434967; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 97 resource availability during larval development are known to influence developmental 98 trajectories with knock-on effects on adult size, reproductive success and adult 99 starvation resistance (Boggs and Niitepõld 2016; Wang et al. 2016). Individuals may 100 respond to periods of starvation with increased food uptake (Regalado et al. 2017) as 101 well as compensatory growth (i.e. a faster growth rate) or catch-up growth (i.e. 102 attaining a minimum size by prolonging the larval development) (Hector and 103 Nakagawa 2012). Moreover, starvation leads to substantial shifts in gene expression 104 within individuals (Moskalev et al. 2015; Jiang et al. 2019; Etebari et al. 2020; 105 Farahani et al. 2020). However, little is known about how long these effects may 106 persist (McCue et al. 2017) and to what extent parental starvation may affect gene 107 expression of offspring experiencing similar or dissimilar conditions. 108 In the present study, we investigated the effects of parental early life starvation 109 and parental reproductive environment on offspring (i.e. intergenerational effects), 110 under matching or mismatching larval starvation conditions, using the turnip sawfly, 111 Athalia rosae (Hymenoptera: Tenthredinidae). Adult females oviposit on various 112 species of Brassicaceae, including crop species, on which A. rosae can become a 113 pest (Riggert 1939; Sawa et al. 1989). The leaf-consuming larvae can
Recommended publications
  • Rapid Pest Risk Analysis (PRA) For: Euzophera Bigella
    Rapid Pest Risk Analysis (PRA) for: Euzophera bigella June 2018 Summary and conclusions of the rapid PRA Euzophera bigella is a moth found in much of Europe and parts of Asia, whose larvae (caterpillars) feed inside a variety of fruit and under the bark of a number of species of tree. Though there have been several adults caught in light traps in the UK, such records are very scarce and there is no evidence this species is established in any part of this country. Following the rapid screening of E. bigella via the UK Plant Health Risk Register, this PRA was requested to further assess the potential risk to the UK. This rapid PRA shows: Risk of entry The pathway of fruit (and nuts) is considered moderately likely, with medium confidence. Larvae have previously been found in imported fruit in the UK. If larvae were able to complete development inside the fruit, emerging adults would be capable of flying off and locating new hosts. The pathway of larvae under the bark of older trees for planting is considered moderately likely, with medium confidence. Larvae under the bark of younger, smaller trees is assessed as unlikely with medium confidence, as infestations produce swellings and cracks in the bark which are more likely to be seen in smaller trees. The pathway of wood with bark is considered unlikely with low confidence. Confidence is low because a different species of Euzophera has recently travelled from the USA to Italy on this pathway. 1 The pathway of natural spread is considered very unlikely with low confidence.
    [Show full text]
  • Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management
    Agron. Sustain. Dev. 30 (2010) 311–348 Available online at: c INRA, EDP Sciences, 2009 www.agronomy-journal.org DOI: 10.1051/agro/2009025 for Sustainable Development Review article Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review Ishita Ahuja,JensRohloff, Atle Magnar Bones* Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway (Accepted 5 July 2009) Abstract – Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management.
    [Show full text]
  • Plant Trichomes and a Single Gene GLABRA1 Contribute to Insect
    bioRxiv preprint doi: https://doi.org/10.1101/320903; this version posted May 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Plant trichomes and a single gene GLABRA1 contribute to insect 2 community composition on field-grown Arabidopsis thaliana 3 4 Yasuhiro Sato1,2, Rie Shimizu-Inatsugi3, Misako Yamazaki3, Kentaro K. Shimizu3,4*, and 5 Atsushi J. Nagano5* 6 7 1PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan 8 2Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 9 Otsu, Shiga 520-2194, Japan 10 3Department of Evolutionary Biology and Environmental Studies, University of Zurich, 11 Winterthurerstrasse 190, 8057 Zurich, Switzerland 12 4Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 13 244-0813 Totsuka-ward, Yokohama, Japan 14 5Department of Plant Life Sciences, Faculty of Agriculture, Ryukoku University, Yokotani 15 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan 16 *Co-corresponding authors: K.K. Shimizu (Phone: +41-44-635-6740) and A.J. Nagano 17 (Phone: +81-77-599-5656) 18 E-mail address: YS, [email protected]; RSI, [email protected]; MY, 19 [email protected]; KKS, [email protected]; AJN, 20 [email protected] 21 22 Short title: Field study of insects on Arabidopsis 23 24 p. 1 bioRxiv preprint doi: https://doi.org/10.1101/320903; this version posted May 13, 2018.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 02 PARIS, 2012-02-01 CONTENTS _______________________________________________________________________ Pests & Diseases 2012/023 - First report of Drosophila suzukii in Austria 2012/024 - Situation of Drosophila suzukii in Switzerland in 2011 2012/025 - Traps baited with a mixture of wine and vinegar are more attractive to Drosophila suzukii 2012/026 - Incursion of Ceratitis capitata in Austria 2012/027 - Incursion of Ceratitis capitata in Ile-de-France (FR) 2012/028 - First report of Tuta absoluta in Slovenia 2012/029 - First report of Tuta absoluta in Panama 2012/030 - Situation of Tuta absoluta in France in 2011 2012/031 - First report of Aproceros leucopoda in Slovenia 2012/032 - First report of Phyllocnistis vitegenella in Switzerland 2012/033 - First reports of Aphis illinoisensis in Cyprus, Italy, Libya, Malta, Montenegro and Spain 2012/034 - First reports of Grapevine flavescence dorée phytoplasma and its vector Scaphoideus titanus in Croatia 2012/035 - Maize redness: addition to the EPPO Alert List 2012/036 - First report of Potato spindle tuber viroid in Croatia 2012/037 - Pests newly found or intercepted in the Netherlands 2012/038 - New data on quarantine pests and pests of the EPPO Alert List 2012/039 - First report of Pomacea insularum (island apple snail) in Spain 2012/040 - Recent publications on forestry CONTENTS ____________________________________________________________________________
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Workflows for Rapid Functional Annotation of Diverse
    insects Article Workflows for Rapid Functional Annotation of Diverse Arthropod Genomes Surya Saha 1,2 , Amanda M. Cooksey 2,3, Anna K. Childers 4 , Monica F. Poelchau 5 and Fiona M. McCarthy 2,* 1 Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA; [email protected] 2 School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA; [email protected] 3 CyVerse, BioScience Research Laboratories, University of Arizona, 1230 N. Cherry Ave., Tucson, AZ 85721, USA 4 Bee Research Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] 5 National Agricultural Library, Agricultural Research Service, USDA, 10301 Baltimore Ave., Beltsville, MD 20705, USA; [email protected] * Correspondence: fi[email protected] Simple Summary: Genomic technologies are accumulating information about genes faster than ever before, and sequencing initiatives, such as the Earth BioGenome Project, i5k, and Ag100Pest Initiative, are expected to increase this rate of acquisition. However, if genomic sequencing is to be used for the improvement of human health, agriculture, and our understanding of biological systems, it is necessary to identify genes and understand how they contribute to biological outcomes. While there are several well-established workflows for assembling genomic sequences and identifying genes, understanding gene function is essential to create actionable knowledge. Moreover, this functional annotation process must be easily accessible and provide information at a genomic scale to keep up Citation: Saha, S.; Cooksey, A.M.; with new sequence data. We report a well-defined workflow for rapid functional annotation of whole Childers, A.K.; Poelchau, M.F.; proteomes to produce Gene Ontology and pathways information.
    [Show full text]
  • Download the Carob Moth in Almonds Fact Sheet
    Australian All About Almonds Almonds www.australianalmonds.com.au Carob moth in almonds David Madge, Cathy Taylor and David Williams, Department of Economic Development, Jobs, Transport and Resources, Victoria A large part of the carob moth’s life cycle Introduction occurs inside almond mummies - nuts that Identification of carob moth Carob moth Apomyelois (=Ectomyelois) remain on trees after harvest, and it seems Table 1 contains a summary of the different ceratoniae is a pest of numerous tree likely that its increased populations and life stages of carob moth. See the fact crops around the world, including damage to almonds seen in recent years sheet ‘Carob moth: Monitoring guidelines’ almonds. In recent years carob moth began with increases in the numbers of for more complete descriptions. has caused increasing concern for the mummies in orchards. Mummies often Australian almond industry. The larval develop as a result of hull rot, a fungal Biology & behaviour stage (caterpillar) of carob moth feeds on disease that develops on almonds once almond kernels, making them unsuitable the hulls have split and is favoured by Carob moth is in the moth family Pyralidae, for sale as whole kernels for human warm, wet conditions. Such conditions members of which are commonly referred consumption, and possibly increasing the occurred across our major almond growing to as ‘snout moths’ because of the snout- risk of fungal infection. The presence of districts soon after hull split in 2007 and like appearance of their mouthparts. Pyralid insect-damaged kernels can also reduce 2011. At the same time, the number of moths include Indian meal moth Plodia the quality grading of whole batches of bearing trees in the industry was growing interpunctella, a widespread major pest kernels, resulting in significant economic rapidly, doubling between 2004 and 2007 of stored foods, and navel orange worm loss.
    [Show full text]
  • (Diptera, Stratiomyidae) from Rio De Janeiro, Brazil
    ARTICLE A new species of the genus Chiromyza Wiedemann (Diptera, Stratiomyidae) from Rio de Janeiro, Brazil José Roberto Pujol-Luz¹ ¹ Universidade de Brasília (UNB), Instituto de Ciências Biológicas (ICB), Departamento de Zoologia. Brasília, DF, Brasil. ORCID: http://orcid.org/0000-0002-8621-4856. E-mail: [email protected] Abstract. Seven species of the genus Chiromyza Wiedemann are recorded in Brazil: C. brevicornis (Lindner, 1949), C. enderleini (Lindner, 1949), C. leptiformis (Macquart, 1838), C. ochracea Wiedemann, 1820, C. stylicornis (Enderlein, 1921), C. viridis Bezzi, 1922 and C. vittata Wiedemann, 1820. Herein I describe a new species, Chiromyza raccai sp. nov., based on 88 specimens (41 males, 47 females) from the Atlantic Rain Forest mountains of State of Rio de Janeiro, Brazil, in the city of Miguel Pereira. The new species is distinguished from the related species C. ochracea and C. vittata by the structure of male terminalia. Chiromyza raccai sp. nov. has the distal region of the phallus rounded with two conspicuous apical setae, C. ochracea has the distal surface of the phallus wide and flatness, and C. vittata has the distal surface of the phallus rounded with outer margin rugose. Key-Words. Atlantic Rain Forest mountains; Brown Soldier-fly; Coffee root fly; Chiromyzinae; Neotropics; Taxonomy. INTRODUCTION for the genus viz. Chiromyza vittata Wiedemann, 1820, C. ochracea Wiedemann, 1820, C. leptiformis The Chiromyzinae is a monophyletic group of (Macquart, 1838), C. prisca Walker, 1852 (= C. ma- soldier flies within Stratiomyidae (Woodley, 2001). truelis Enderlein, 1921), C. vicina Bigot, 1879 and, It is composed by 13 genera and 56 species that C.
    [Show full text]
  • Age-Related Sperm Production, Transfer, and Storage in The
    Age-related sperm production, transfer, and storage in the sweet potato weevil, cylas formicarius (fabricius) (coleoptera: Curculionidae) Authors: Satoshi Hiroyoshi, Tsuguo Kohama, and Gadi V. P. Reddy The final publication is available at Springer via http://dx.doi.org/10.1007/s10905-016-9590-0. Hiroyoshi, Satoshi, Tsuguo Kohama, and Gadi V P Reddy. "Age-related sperm production, transfer, and storage in the sweet potato weevil, cylas formicarius (fabricius) (coleoptera: Curculionidae)." Journal of Insect Behavior (November 2016). DOI:https://dx.doi.org/10.1007/ s10905-016-9590-0. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Age-Related Sperm Production, Transfer, and Storage in the Sweet Potato Weevil, Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) Satoshi Hiroyoshi1,2 & Tsuguo Kohama 1,3 & Gadi V. P. Reddy4 1 Okinawa Prefectural Fruit-fly Eradication Program Office, 123 Maji, Naha, Okinawa 902-0072, Japan 2 7-12-203 Kotobukiso, Nishikawacho, Itoman, Okinawa 901-0304, Japan 3 Okinawa Prefectural Agricultural Research Center, 820 Makabe, Itoman, Okinawa 901-0336, Japan 4 Western Triangle Ag Research Center, Montana State University, 9546 Old Shelby Rd., P. O. Box 656, Conrad, MT 59425, USA Abstract The relationship between sperm production, insemination rate, and sperm transfer were studied in the sweet potato weevil, Cylas formicarius. Older adult males retained more sperm in the testes-seminal vesicle complex (TSC) and thus more was ejaculated into females at first mating. Number of matings per day for males was relatively constant across different ages, and frequent mating resulted in a reduced amount of sperm transferred to females, especially in young males.
    [Show full text]
  • Developing the ٨ Sterility Technique For
    Eleventh Arab Conference on the Peaceful Uses of Atomic Energy. Khartoum. Sudan. 16-20 December 2012 sterility technique for the ٨ Developing the management of the earob moth Ectomyelois ceratoniae zeller (Lepidoptera: Pyralidae) in a pomegranate o rc h a rd s Jouda Mediouni Ben Jemaa1 and Mohamed Habib Dhouibi Laboratory of Biotechnology Applied to Agriculture, National Institute of : ١ Agricultural Research of Tunisia, 49 Rue Hedi Karray, 2049, Tunis, Tunisia 2: National Institute of Agronomy of Tunisia, Rue Charles Nicoles, Cite Mahrajene, 2082, Tunis, Tunisia ﺗ ﻀﻴ ﺮ ﺗﻘﺘﻬﺔ اﻟﻌﻘﻢ اﻟﻤﺮاﺛﻲ ﻓﻲ ﻣﻜﺎﻓﺤﺔ ﻋﺜﺔ اﻟﺘﻤﺮ ﻓﻲ ﺣﻘﻮل اﻟﺮﻣﺎن ﺟﻮدة اﻟﻤﺪﻳ ﻮﻧ ﻲ ﻳ ﻦ ﺟ ﻤﺎ ﻋ ﺔ ١ و ﻣ ﺼ ﺪ اﻟ ﺤﺒﻴ ﺐ اﻟﺬ وﻳﺒ ﻲ ١ ; ﻣ ﺨ ﺒ ﺮ اﻟﺒﻴﻮﺗﻜﻨﻮوﺟﻴﺎ ا ﻟ ﺘ ﻄ ﺒ ﻴ ﻘ ﻴ ﺔ ﻓ ﻲ ا ﻟ ﻤ ﻴ ﺪ ا ن ا ﻟ ﺰ ر ا ﻋ ﻲ، ا ﻟ ﻤ ﻌ ﻬ ﺪ ا ﻟ ﻮ ﻃ ﻨ ﻲ ﻟ ﻠ ﺒ ﺤ ﻮ ث ا ﻟ ﺰ ر ا ﻋ ﻴ ﺔ ﺑ ﺘ ﻮ ﻧ ﺲ، ﺷ ﺎ ر ع ا ﻟ ﻬ ﺎ د ي ا ﻟ ﻜ ﺮ ا ي ٢٠٤٩ ﺗﻮﻧﺲ ٢ ; ا ﻟ ﻤ ﻌ ﻬ ﺪ ا ﻟ ﻮ ﻃ ﻨ ﻲ ﻟ ﻠ ﻌ ﻠ ﻮ م ا ﻟ ﻔ ﻻ ﺣ ﻴ ﺔ، ﺷ ﺎ ر ع ﺷ ﺎ ر د ﻧ ﻴ ﻜ ﻮ ل، ﺣ ﻲ ا ﻟ ﻤ ﻬ ﺮ ﺟ ﺎ ن ٢٠٨٢ ﺗﻮﻧﺲ ﻣ ﻠ ﺨ ﺺ ﺗ ﻢ إ ﻧ ﺸ ﺎ ﺀ ﺑ ﺮ ﻧ ﺎ ﻣ ﺞ ﻧ ﻤ ﻮ ذ ﺟ ﻲ ﻟ ﻤ ﻜ ﺎ ﻓ ﺤ ﺔ ﻋ ﺜ ﺔ ا ﻟ ﺘ ﻤ ﺮ ﺑ ﺎ ﻋ ﺘ ﻤ ﺎ د ﺗ ﻘ ﻨ ﻴ ﺔ ﻧ ﺜ ﺮ ا ﻟ ﺤ ﺸ ﺮ ا ت ا ﻟ ﻌ ﻘ ﻴ ﻤ ﺔ ﻓ ﻲ ﺣ ﻘ ﻮ ل اﻟﺮﻣﺎن ﺑﺘﻮﻧ ﺲ، وﻗﻊ ﺗ ﺠﺮﺑﺔ ﺗﻘﻨﻴﺔ اﻟﻌﻘﻢ اﻟﻤﻮر ث ﺿﺪ ﻫﺬه اﻟﺤﺸﺮة ﻟﻤﺪة أرﺑﻌﺔ ﻣﻮاﺳﻢ ﻣﺘﺘﺎﻟﻴﺔ .
    [Show full text]
  • A Linkage Map of the Turnip Sawfly Athalia Rosae (Hymenoptera: Symphyta) Based on Random Amplified Polymorphic Dnas
    Genes Genet. Syst. (2000) 75, p. 159–166 A linkage map of the turnip sawfly Athalia rosae (Hymenoptera: Symphyta) based on random amplified polymorphic DNAs Yoshikatsu Nishimori1, Jae Min Lee1,†, Megumi Sumitani1, Masatsugu Hatakeyama2, and Kugao Oishi1,2,* 1Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan 2Department of Biology, Faculty of Science, Kobe University, Nada, Kobe 675-8501, Japan (Received 3 April 2000, accepted 21 June 2000) A linkage map was constructed for the sawfly, Athalia rosae (Hymenoptera), based on the segregation of random amplified polymorphic DNA (RAPD) markers and a visible mutation, yellow fat body (yfb). Forty haploid male progeny (20 yfb and 20 +) from a single diploid female parent (yfb/+) were examined. Sixty-one of the 180 arbitrary primers tested by polymerase chain reaction (PCR) produced one or more RAPD bands. A total of 79 RAPD markers were detected. Of these, seven showed significant deviation from the expected 1:1 ratio, and were therefore excluded from further analysis. The remaining 72 RAPD markers and the marker mutation, yfb, were subjected to linkage analysis. Sixty RAPD markers and the yfb marker were organized into 16 linkage groups, spanning a distance of 517.2 cM. Twelve RAPD markers showed no linkage relationship to any group. Thirteen gel-purified RAPD bands were cloned and sequenced to generate the sequence-tagged sites (STSs). A single locus was represented by two markers, with one of them having a short inter- nal deletion. and Page, 1995) and four parasitic wasps, Bracon hebetor INTRODUCTION (Antolin et al., 1996), Nasonia vitripennis (Saul, 1993), Recent advances in the methodologies used to perform Aphelinus asychis (Kazmer et al., 1995), and Trichog- linkage analyses employing molecular markers have accel- ramma brassicae (Laurent et al., 1998), of which erated genetic linkage mapping in a number of organisms, all but one map (that for N.
    [Show full text]