Weber' S Electrodynamics Fundamental Theories of Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retarded Potentials and Power Emission by Accelerated Charges
Alma Mater Studiorum Universita` di Bologna · Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica Classical Electrodynamics: Retarded Potentials and Power Emission by Accelerated Charges Relatore: Presentata da: Prof. Roberto Zucchini Mirko Longo Anno Accademico 2015/2016 1 Sommario. L'obiettivo di questo lavoro ´equello di analizzare la potenza emes- sa da una carica elettrica accelerata. Saranno studiati due casi speciali: ac- celerazione lineare e accelerazione circolare. Queste sono le configurazioni pi´u frequenti e semplici da realizzare. Il primo passo consiste nel trovare un'e- spressione per il campo elettrico e il campo magnetico generati dalla carica. Questo sar´areso possibile dallo studio della distribuzione di carica di una sor- gente puntiforme e dei potenziali che la descrivono. Nel passo successivo verr´a calcolato il vettore di Poynting per una tale carica. Useremo questo risultato per trovare la potenza elettromagnetica irradiata totale integrando su tutte le direzioni di emissione. Nell'ultimo capitolo, infine, faremo uso di tutto ci´oche ´e stato precedentemente trovato per studiare la potenza emessa da cariche negli acceleratori. 4 Abstract. This paper’s goal is to analyze the power emitted by an accelerated electric charge. Two special cases will be scrutinized: the linear acceleration and the circular acceleration. These are the most frequent and easy to realize configurations. The first step consists of finding an expression for electric and magnetic field generated by our charge. This will be achieved by studying the charge distribution of a point-like source and the potentials that arise from it. The following step involves the computation of the Poynting vector. -
Arxiv:Physics/0303103V3
Comment on ‘About the magnetic field of a finite wire’∗ V Hnizdo National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA Abstract. A flaw is pointed out in the justification given by Charitat and Graner [2003 Eur. J. Phys. 24, 267] for the use of the Biot–Savart law in the calculation of the magnetic field due to a straight current-carrying wire of finite length. Charitat and Graner (CG) [1] apply the Amp`ere and Biot-Savart laws to the problem of the magnetic field due to a straight current-carrying wire of finite length, and note that these laws lead to different results. According to the Amp`ere law, the magnitude B of the magnetic field at a perpendicular distance r from the midpoint along the length 2l of a wire carrying a current I is B = µ0I/(2πr), while the Biot–Savart law gives this quantity as 2 2 B = µ0Il/(2πr√r + l ) (the right-hand side of equation (3) of [1] for B cannot be correct as sin α on the left-hand side there must equal l/√r2 + l2). To explain the fact that the Amp`ere and Biot–Savart laws lead here to different results, CG say that the former is applicable only in a time-independent magnetostatic situation, whereas the latter is ‘a general solution of Maxwell–Amp`ere equations’. A straight wire of finite length can carry a current only when there is a current source at one end of the wire and a curent sink at the other end—and this is possible only when there are time-dependent net charges at both ends of the wire. -
Experimental Confirmation of Weber Electrodynamics Against Maxwell Electrodynamics
Experimental confirmation of Weber electrodynamics against Maxwell electrodynamics Steffen Kuhn¨ steff[email protected] April 25, 2019 This article examines by means of an easily reproducible experiment whether Maxwell electrodynamics or the almost forgotten Weber electro- dynamics of Carl Friedrich Gauss and Wilhelm Weber is correct. For this purpose, it is shown that when charging a capacitor with two very flat and horizontally aligned plates a force on a permanent magnet should arise be- tween the plates which differs in both theories diametrically in its direction. Subsequently, the measurement setup is described and, based on the mea- surement results, it is determined that Maxwell electrodynamics contradicts the experiment. The result of the experiment suggests that all aspects of modern physics should be subjected to a careful and critical review. Contents 1 Introduction2 2 Basics 3 2.1 The force between two uniformly moving point charges...........3 2.1.1 Weber force...............................3 2.1.2 Maxwell force..............................3 2.2 Forces between current elements.......................5 2.3 Magnetic forces in a wire gap.........................5 2.4 Solution of Maxwell's equations for a wire stub............... 10 3 Experiment 13 3.1 Experimental setup............................... 13 3.2 Measurement results and evaluation..................... 15 1 4 Summary and conclusion 17 1 Introduction Maxwell's equations have been very successful in describing electromagnetic waves for more than one hundred years. Their rise to the sole theory of electromagnetism be- gins with an article by James Clerk Maxwell in 1865 [Maxwell, 1865]. In this article he shows that from the complete set of Maxwell's equations, including the displacement current, a wave equation can be derived in which electromagnetic disturbances of the field propagate at the speed of light. -
The Fine Structure of Weber's Hydrogen Atom: Bohr–Sommerfeld Approach
Z. Angew. Math. Phys. (2019) 70:105 c 2019 Springer Nature Switzerland AG 0044-2275/19/040001-12 published online June 21, 2019 Zeitschrift f¨ur angewandte https://doi.org/10.1007/s00033-019-1149-4 Mathematik und Physik ZAMP The fine structure of Weber’s hydrogen atom: Bohr–Sommerfeld approach Urs Frauenfelder and Joa Weber Abstract. In this paper, we determine in second order in the fine structure constant the energy levels of Weber’s Hamiltonian that admit a quantized torus. Our formula coincides with the formula obtained by Wesley using the Schr¨odinger equation for Weber’s Hamiltonian. We follow the historical approach of Sommerfeld. This shows that Sommerfeld could have discussed the fine structure of the hydrogen atom using Weber’s electrodynamics if he had been aware of the at-his-time-already- forgotten theory of Wilhelm Weber (1804–1891). Mathematics Subject Classification. 53Dxx, 37J35, 81S10. Keywords. Semiclassical quantization, Integrable system, Hamiltonian system. Contents 1. Introduction 1 2. Weber’s Hamiltonian 3 3. Quantized tori 4 4. Bohr–Sommerfeld quantization 6 Acknowledgements 7 A. Weber’s Lagrangian and delayed potentials 8 B. Proton-proton system—Lorentzian metric 10 References 10 1. Introduction Although Weber’s electrodynamics was highly praised by Maxwell [22,p.XI],seealso[4, Preface],, it was superseded by Maxwell’s theory and basically forgotten. In contrast to Maxwell’s theory, which is a field theory, Weber’s theory is a theory of action-at-a-distance, like Newton’s theory. Weber’s force law can be used to explain Amp`ere’s law and Faraday’s induction law; see [4, Ch. -
The Meaning of the Constant C in Weber's Electrodynamics
Proe. Int. conf. "Galileo Back in Italy - II" (Soc. Ed. Androme-:ia, Bologna, 2000), pp. 23-36, R. Monti (editor) The Meaning of the Constant c in Weber's Electrodynamics A. K. T. Assis' Instituto de Fisica 'Gleb Wat.aghin' Universidade Estadual de Campinas - Unicamp 13083-970 Campinas, Sao Paulo, Brasil Abstract In this work it is analysed three basic electromagnetic systems of units utilized during last century by Ampere, Gauss, Weber, Maxwell and all the others: The electrostatic, electrodynamic and electromagnetic ones. It is presented how the basic equations of electromagnetism are written in these systems (and also in the present day international system of units MKSA). Then it is shown how the constant c was introduced in physics by Weber's force. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic Wlits of charge. Weber and Kohlrausch '5 experiment to determine c is presented, emphasizing that they were 'the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff and Weber obtained independently of one another, both working in the framev.-ork of \Veber's electrodynamics, the fact that an electromagnetic signal (of current or potential) propagate at light velocity along a thin wire of negligible resistivity. Key Words: Electromagnetic units, light velocity, wave equation. PACS: O1.55.+b (General physics), 01.65.+g (History of science), 41.20.·q (Electric, magnetic, and electromagnetic fields) ·E-mail: assisOiCLunicamp.br, homepage: www.lCi.unicamp.brrassis AA. VV•. -
Weber's Law and Mach's Principle
Weber's Law and Mach's Principle Andre K. T. Assis 1. Introduction Recently we applied a Weber's force law for gravitation to implement quantitatively Mach's Principle (Assis 1989, 1992a). In this work we present a briefreview of Weher's electrodynamics and analyze in greater detail the compliance of a Weber's force law for gravitation with Mach's Principle. 2. Weber's Electrodynamics In this section we discuss Weber's original work as applied to electro magnetism. For detailed references of Weber's electrodynamics, see (Assis 1992b, 1994). In order to unify electrostatics (Coulomb's force, Gauss's law) with electrodynamics (Ampere's force between current elements), W. Weber proposed in 1846 that the force exerted by an electrical charge q2 on another ql should be given by (using vectorial notation and in the International System of Units): (1) In this equation, (;0=8.85'10- 12 Flm is the permittivity of free space; the position vectors of ql and qz are r 1 and r 2, respectively; the distance between the charges is r lZ == Ir l - rzl '" [(Xl -XJ2 + (yj -yJZ + (Zl -ZJ2j112; r12=(r) -r;JlrI2 is the unit vector pointing from q2 to ql; the radial velocity between the charges is given by fIZ==drlzfdt=rI2'vIZ; and the Einstein Studies, vol. 6: Mach's Principle: From Newton's Bucket to Quantum Gravity, pp. 159-171 © 1995 Birkhliuser Boston, Inc. Printed in the United States. 160 Andre K. T. Assis radial acceleration between the charges is [VIZ" VIZ - (riZ "VIZ)2 + r lz " a 12J r" where drlz dvlz dTI2 rIZ=rl-rl , V1l = Tt' a'l=Tt= dt2· Moreover, C=(Eo J4J)"'!12 is the ratio of electromagnetic and electrostatic units of charge %=41f·1O-7 N/Al is the permeability of free space). -
Chapter 6. Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws
Chapter 6. Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws 6.1 Displacement Current The magnetic field due to a current distribution satisfies Ampere’s law, (5.45) Using Stokes’s theorem we can transform this equation into an integral form: ∮ ∫ (5.47) We shall examine this law, show that it sometimes fails, and find a generalization that is always valid. Magnetic field near a charging capacitor loop C Fig 6.1 parallel plate capacitor Consider the circuit shown in Fig. 6.1, which consists of a parallel plate capacitor being charged by a constant current . Ampere’s law applied to the loop C and the surface leads to ∫ ∫ (6.1) If, on the other hand, Ampere’s law is applied to the loop C and the surface , we find (6.2) ∫ ∫ Equations 6.1 and 6.2 contradict each other and thus cannot both be correct. The origin of this contradiction is that Ampere’s law is a faulty equation, not consistent with charge conservation: (6.3) ∫ ∫ ∫ ∫ 1 Generalization of Ampere’s law by Maxwell Ampere’s law was derived for steady-state current phenomena with . Using the continuity equation for charge and current (6.4) and Coulombs law (6.5) we obtain ( ) (6.6) Ampere’s law is generalized by the replacement (6.7) i.e., (6.8) Maxwell equations Maxwell equations consist of Eq. 6.8 plus three equations with which we are already familiar: (6.9) 6.2 Vector and Scalar Potentials Definition of and Since , we can still define in terms of a vector potential: (6.10) Then Faradays law can be written ( ) The vanishing curl means that we can define a scalar potential satisfying (6.11) or (6.12) 2 Maxwell equations in terms of vector and scalar potentials and defined as Eqs. -
Presenting Electromagnetic Theory in Accordance with the Principle of Causality Oleg D Jefimenko
Faculty Scholarship 2004 Presenting electromagnetic theory in accordance with the principle of causality Oleg D Jefimenko Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Jefimenko, Oleg D, "Presenting electromagnetic theory in accordance with the principle of causality" (2004). Faculty Scholarship. 290. https://researchrepository.wvu.edu/faculty_publications/290 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 25 (2004) 287–296 PII: S0143-0807(04)69749-2 Presenting electromagnetic theory in accordance with the principle of causality Oleg D Jefimenko Physics Department, West Virginia University, PO Box 6315, Morgantown, WV 26506-6315, USA Received 1 October 2003 Published 28 January 2004 Online at stacks.iop.org/EJP/25/287 (DOI: 10.1088/0143-0807/25/2/015) Abstract Amethod of presenting electromagnetic theory in accordance with the principle of causality is described. Two ‘causal’ equations expressing time-dependent electric and magnetic fields in terms of their causative sources by means of retarded integrals are used as the fundamental electromagnetic equations. Maxwell’s equations are derived from these ‘causal’ equations. Except for the fact that Maxwell’s equations appear as derived equations, the presentation is completely compatible with Maxwell’s electromagnetic theory. An important consequence of this method of presentation is that it offers new insights into the cause-and-effect relations in electromagnetic phenomena and results in simpler derivations of certain electromagnetic equations. -
Weber's Electrodynamics and the Hall Effect
Weber’s Electrodynamics and the Hall Effect Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (June 5, 2020) 1Problem In 1846, Weber used a model of electric current as moving electric charge (of both signs) to give an instantaneous, action-at-a-distance, “microscopic” force law, from which Amp`ere’s force law between current-carrying circuits could be deduced.1 In Gaussian units, the force on electric charge e due to moving charge e is, according to Weber, 2 ee 2 ∂r r ∂2r Fe,Web er = − 1 − + ˆr, (1) r2 c2 ∂t c2 ∂t2 where r = re −re,andc is the speed of light in vacuum. Following Amp`ere, Weber supposed that the force between two moving charges (current elements) is along their line of centers, and obeys Newton’s third law (of action and reaction). This contrasts with the Lorentz force law, which does not obey Newton’s third law in 2 general, ve e × , Fe,Lorentz = Ee + c Be (2) 3 where the fields Ee and Be are given by the forms of Li´enard and Wiechert. Until the late 1870’s the only experiments possible with electric currents were those in which the currents flowed in complete circuits (as studied by Amp`ere). The first step to- wards a larger context of electric currents was made by Rowland [52, 65] (1876, working in Helmholtz’ lab in Berlin), who showed that a rotating, charged disk produces magnetic effects. More importantly, Rowland’s student Hall (1878) [55] showed that an electric con- ductor in a magnetic field B perpendicular to the current I develops an electric potential 1References to original works are given in the historical Appendix below. -
PHYS 352 Electromagnetic Waves
Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics. -
Chapter 10: Potentials and Fields Example 10.1
Chapter 10: Potentials and Fields Scalar and Vector Potentials 10.1 The Potential Formulation 10.1.1 Scalar and Vector Potentials In the electrodynamics, In the electrostatics and magnetostatics, 1 ∂B (i) ∇⋅EE =ρ (iii) ∇× =− 1 ε ∂t (i) ∇⋅EE =ρ (iii) ∇× =0 0 ε0 ∂E (ii) ∇⋅BBJ =0 (iV) ∇× =µµε000 + (ii) ∇⋅BBJ =0 (iV) ∇× =µ0 ∂t How do we express the fields in terms of scalar and vector the electric field and magnetic field can be expressed using potentials? potential: 1 E =−∇VV −∇2 = ρ B remains divergence, so we can still write, BA=∇× ε0 Putting this into Faraday’s law (iii) yields, BA=∇× ∇×( ∇×A ) =µ J 0 ∂∂∂AA 22 ∇×EA =−() ∇× =∇× () − ⇒ ∇×( E + )0 = ∇×( ∇×A ) =∇ ( ∇⋅ A ) −∇ AJ =µµ00 ⇒ −∇ AJ = ∂∂∂ttt ∂A If A 0. 1 E +=−∇V 2 ∇⋅ = ∂t Scalar and Vector Potentials Example 10.1 ∂A Find the charge and current distributions that would give rise BA=∇× E =−∇V − ∂t to the potentials. 1 ∂ 1 µ0k (||)ct− x 2 zˆ for |xct |< (i) ∇⋅E = ρ −∇2VA −() ∇ ⋅ = ρ V ==0, A 4c ε 0 ∂t ε0 0 for |xct |> ∂E ∂∂V 2A Where k is a constant, and c is the speed of light. (iV) ∇×BJ =µµε + ∇×() ∇×AJ =µµε − ∇ () − µε 000 000 002 ∂ ∂t ∂tt∂ Solution: ρε=−() ∇⋅A 0 ∂t 2 We can further yields. 112 ∂ A JA=− ∇ −µε00 2 + ∇() ∇⋅ A 2 ∂ 1 µµ∂t ∇+V () ∇⋅=−A ρ 00 ∂t ε0 ∂A ∂Ax y ∂Az 2 ∇⋅A = + + =0 2 ∂∂A V ∂∂∂xyz ∇−AAJµ00εµεµ2 −∇∇⋅+ 00 =− 0 ∂∂tt ∂∂∂222 µ k ρ = 0 ∇=2Azz() + +A ˆˆ =0 These two equations contain all the information in Maxwell’s ∂∂∂x222y zcz 4 J = 0 equations. -
Retarded Potentials and Radiation
Retarded Potentials and Radiation Siddhartha Sinha Joint Astronomy Programme student Department of Physics Indian Institute of Science Bangalore. December 10, 2003 1 Abstract The transition from the study of electrostatics and magnetostatics to the study of accelarating charges and changing currents ,leads to ra- diation of electromagnetic waves from the source distributions.These come as a direct consequence of particular solutions of the inhomoge- neous wave equations satisfied by the scalar and vector potentials. 2 1 MAXWELL'S EQUATIONS The set of four equations r · D = 4πρ (1) r · B = 0 (2) 1 @B r × E + = 0 (3) c @t 4π 1 @D r × H = J + (4) c c @t known as the Maxwell equations ,forms the basis of all classical elec- tromagnetic phenomena.Maxwell's equations,along with the Lorentz force equation and Newton's laws of motion provide a complete description of the classical dynamics of interacting charged particles and electromagnetic fields.Gaussian units are employed in writing the Maxwell equations. These equations consist of a set of coupled first order linear partial differen- tial equations relating the various components of the electric and magnetic fields.Note that Eqns (2) and (3) are homogeneous while Eqns (1) and (4) are inhomogeneous. The homogeneous equations can be used to define scalar and vector potentials.Thus Eqn(2) yields B = r × A (5) where A is the vector potential. Substituting the value of B from Eqn(5) in Eqn(3) we get 1 @A r × (E + = 0 (6) c @t It follows that 1 @A E + = −∇φ (7) c @t where φ is the scalar potential.