Comparison Between Weber's Electrodynamics and Classical Electrodynamics

Total Page:16

File Type:pdf, Size:1020Kb

Comparison Between Weber's Electrodynamics and Classical Electrodynamics PRAMANA ­c Indian Academy of Sciences Vol. 55, No. 3 — journal of September 2000 physics pp. 393–404 Comparison between Weber’s electrodynamics and classical electrodynamics A K T ASSIS £ and H TORRES SILVA Facultad de Ingenieria, Universidad de Tarapaca, Av. 18 de Septiembre 2222, Arica, Chile £ Permanent address: Instituto de F´ısica ‘Gleb Wataghin’, Universidade Estadual de Campinas - Unicamp, 13083-970 Campinas, S˜ao Paulo, Brasil Email: [email protected]; [email protected] MS received 20 January 2000; revised 25 April 2000 Abstract. We present the main aspects of Weber’s electrodynamics and of Maxwell’s equations. We discuss Maxwell’s point of view related to Weber’s electrodynamics. We compare Weber’s force with Lorentz’s force. We analyse the relation between Weber’s law and Maxwell’s equations. Finally, we discuss some experiments performed and proposed with which we can distinguish Weber’s force from Lorentz’s one. Keywords. Weber’s electrodynamics; Maxwell’s equations; Lorentz’s force; classical electromag- netism. PACS Nos 41.20.Bt; 41.20.-q; 03.50.De 1. Weber’s electrodynamics Wilhelm Weber (1804–1891) developed his electrodynamics during the same period in which James Clerk Maxwell (1831–1879) was putting together what are known as Maxwell’s equations. In this work we compare these two electrodynamics. We begin presenting the main aspects of Weber’s electrodynamics. For complete ref- Õ ~Ö ¾ erences, see [1] and [2]. Suppose we have a point charge ¾ located on relative to the Ë ~Ú ~a ¾ origin of an inertial frame of reference , moving with velocity ¾ and acceleration , Õ ~Ö ~Ú ~a ½ ½ ½ and another point charge ½ located on and moving with velocity and acceleration relative to Ë . Weber’s force (1846) exerted by 2 on 1 is given by ¾ Õ Õ Ö^ Ö_ ÖÖ ½ ¾ ~ F = ½ · ¾½ ¾ ¾ ¾ 4" Ö ¾c c ¼ Õ Õ Ö^ ½ ¿ ½ ¾ ¾ ½· ~Ú ¡~Ú ´^Ö ¡ ~Úµ · ~Ö ¡ ~a : = (1) ¾ ¾ 4" Ö c ¾ ¼ ½¾ ¾ ½ ¾ " 8:85 ¢ ½¼ In this equation ¼ C N m is called the permittivity of free space, Ö j~Ö ~Ö j ~Ö ~Ö ~Ö ¾ ½ ¾ ½ is the distance between the charges, is the vector pointing from 393 A K T Assis and H Torres Silva Ö^ ~Ö=Ö ~Ú ~Ú ~Ú ¾ 2to1, is the unit vector pointing from 2 to 1, ½ is the relative vectorial ~a ~a ~a Ö_ dÖ=dØ =^Ö¡~Ú ¾ velocity, ½ is the relative vectorial acceleration, is the relative ¾ ¾ ¾ Ö d Ö=dØ =[~Ú¡~Ú ´^Ö ¡ ~Úµ · ~Ö ¡ ~a]=Ö radial velocity, is the relative radial acceleration 8 ½ =¿¢½¼ Ñ× and c is the ratio of electromagnetic and electrostatic units of charge. The experimental value of c was first determined by Weber and Kohlrausch in 1856. In 1848, Weber presented a velocity dependent potential energy from which this force might be derived, namely: ¾ Ö_ Õ Õ ½ ½ ½ ½ : = Í (2) ¾ 4" Ö ¾c ¼ ~ ~ Í F F = Ö^dÍ=dÖ ¾½ The relation between and ¾½ is . These two expressions form the basis of Weber’s electrodynamics. 2. Maxwell–Lorentz’s electrodynamics Based mainly on the works of Coulomb, Amp`ere, Gauss, Neumann and Faraday, Maxwell put together between 1855 and 1864 a set of four equations relating the electric and mag- ~ ~ B netic fields, E and , to their sources: the volumetric charge density and the current ~ density  . In vectorial notation, in differential form, supposing the sources and fields in vacuum, these four equations can be written as ~ Ö¡ E = ; (3) " ¼ ~ ½ @E ~ ~ Ö¢B =  · ; ¼ (4) ¾ c @Ø ~ B =¼; Ö¡ (5) ~ @B ~ E = : Ö¢ (6) @Ø ¾ 7 4 ¢ ½¼ kgÑC In these equations ¼ is called the vacuum permeability. ~  These equations describe how the sources and create the electric and magnetic fields, ~Ú but not how these fields act on another test charge Õ moving with velocity relative to an inertial frame of reference. This last equation was given by H A Lorentz (1853–1928) in 1895: ~ ~ ~ = Õ E · Õ~Ú ¢ B: F (7) In this way we have the main aspects of Maxwell–Lorentz electrodynamics. In order to compare it with Weber’s electrodynamics, we need expressions describing the force Õ Õ ½ exerted by a point charge ¾ on another point charge . This was obtained by the works of Li´enard, Wiechert and Schwarzschild between 1898 and 1903. The final expression valid 394 Pramana – J. Phys., Vol. 55, No. 3, September 2000 Weber’s and classical electrodynamics up to second order in Ú=c and taking into account retardation of time, radiation phenomena and relativistic effects is given by (see ([3], vol. 1, pp. 215–223), [4] and [5]): ~Ú ¡~Ú Õ ½ ¾ ¾ ¾ ~ ~ ~ F = Õ E ´~Ö µ·Õ ~Ú ¢B ´~Ö µ=Õ Ö^ ½· ¾½ ½ ¾ ½ ½ ½ ¾ ½ ½ ¾ ¾ 4" Ö ¾c ¼ ¾ ~Ö ¡ ~a Ö~a ¿ ´^Ö ¡ ~Ú µ Õ ½ ~Ú ¢ Ö^ ¾ ¾ ¾ ¾ ¾ · Õ ~Ú ¢ : ½ ½ (8) ¾ ¾ ¾ ¾ ¾ ¾ c ¾c ¾c 4" Ö c ¼ The energy of interaction between 1 and 2 in Maxwell–Lorentz’s electrodynamics is obtained from Darwin’s lagrangian of 1920, namely ([6], pp. 150–151 and [7], Section 12.7, pp. 593–595): Õ Õ ~Ú ¡ ~Ú ·´~Ú ¡ Ö^µ´~Ú ¡ Ö^µ ½ ½ ¾ ½ ¾ ½ ¾ = ½ : Í (9) ¾ 4" Ö ¾c ¼ In the next section we present Maxwell’s points of view as regards Weber’s electrody- namics and then begin the comparison between these two formulations. 3. Maxwell’s points of view on Weber’s electrodynamics In his first work dealing with electromagnetism, published in 1855, Maxwell praised highly Weber’s electrodynamics. After presenting Faraday’s ideas which he was trying to follow, Maxwell said: There exists however a professedly physical theory of electro-dynamics, which is so elegant, so mathematical, and so entirely different from anything in this paper, that I must state its axioms, at the risk of repeating what ought to be well known. It is contained in M W Weber, Electrodynamic Measurements, and may be found in the Transactions of the Leibniz-Society, and of the Royal Society of Sciences in Saxony [8]. The assumptions are (...). From these ax- ioms are deducible Amp`ere’s laws of the attraction of conductors, and those of Neumann and others, for the induction of currents. Here then is a really physical theory, satisfying the required conditions better perhaps than any yet invented, and put forth by a philosopher whose experimental researches form an ample foundation for his mathematical investigations ([9], pp. 207–208). In his famous article of 1864 in which he completed his electromagnetic theory of light, Maxwell presented similar points of view. After saying that the most natural theories of electromagnetism are based on forces acting directly between the charges he said: In these theories the force acting between the two bodies is treated with refer- ence only to the condition of the bodies and their relative position, and without any express consideration of the surrounding medium. These theories assume, more or less explicitly, the existence of substances the particles of which have the property of acting on one another at a distance by attraction or repulsion. Pramana – J. Phys., Vol. 55, No. 3, September 2000 395 A K T Assis and H Torres Silva The most complete development of a theory of this kind is that of M W We- ber, who has made the same theory include electrostatic and electromagnetic phenomena. In doing so, however, he has found it necessary to assume that the force between two electric particles depends on their relative velocity, as well as on their distance. This theory, as developed by M W Weber and C Neumann, is exceedingly ingenious, and wonderfully comprehensive in its application to the phenomena of statical electricity, electromagnetic attrac- tions, induction of currents and diamagnetic phenomena; and it comes to us with more authority, as it served to guide the speculations of one who has made so great an advance in the practical part of electric science, both by introduc- ing a consistent system of units in electrical measurement, and by actually determining electrical quantities with an accuracy hitherto unknown ([10], pp. 526–527). But if Maxwell knew so well Weber’s electrodynamics and praised it so much, why he did not work with it and develop its properties and applications? Weber presented his force law in 1846. It was the first example appearing in physics of a force depending not only on the distance between the interacting bodies but also on their velocity (Lorentz’s force would appear only in 1895). Only one year after this Helmholtz published his famous and influential work dealing with the conservation of energy. The principle of the conservation of energy had been established by J R Meyer in 1842 and by J P Joule in 1843. In his work of 1847, Helmholtz put this principle in a firm theoretical basis by developing the consequences of central forces. Let us explain some terms which he utilized. At that period ¾ the usual name for ÑÚ was Leibniz’s living force, vis viva, but in this article Helmholtz ¾ =¾ says explicitly that he will call ÑÚ (our kinetic energy) by vis viva, as this last quantity appeared more frequently in mechanics and was more useful. What we call nowadays by ¾ kÜ =¾ potential energy (like Ñg h, etc), Helmholtz called by tension. The main results of his work were presented as: The preceding proposition may be collected together as follows: 1. Whenever natural bodies act upon each other by attractive or repulsive forces, which are independent of time and velocity, the sum of theirvires vivae and tensions must be constant; the maximum quantity of work which can be obtained is therefore a limited quantity. 2. If, on the contrary, natural bodies are possessed of forces which depend upon time and velocity, or which act in other directions than the lines which unite each two separate material points, for example, rotatory forces, then combinations of such bodies would be possible in which forces might be either lost or gained ad infinitum ([11], p.
Recommended publications
  • Experimental Confirmation of Weber Electrodynamics Against Maxwell Electrodynamics
    Experimental confirmation of Weber electrodynamics against Maxwell electrodynamics Steffen Kuhn¨ steff[email protected] April 25, 2019 This article examines by means of an easily reproducible experiment whether Maxwell electrodynamics or the almost forgotten Weber electro- dynamics of Carl Friedrich Gauss and Wilhelm Weber is correct. For this purpose, it is shown that when charging a capacitor with two very flat and horizontally aligned plates a force on a permanent magnet should arise be- tween the plates which differs in both theories diametrically in its direction. Subsequently, the measurement setup is described and, based on the mea- surement results, it is determined that Maxwell electrodynamics contradicts the experiment. The result of the experiment suggests that all aspects of modern physics should be subjected to a careful and critical review. Contents 1 Introduction2 2 Basics 3 2.1 The force between two uniformly moving point charges...........3 2.1.1 Weber force...............................3 2.1.2 Maxwell force..............................3 2.2 Forces between current elements.......................5 2.3 Magnetic forces in a wire gap.........................5 2.4 Solution of Maxwell's equations for a wire stub............... 10 3 Experiment 13 3.1 Experimental setup............................... 13 3.2 Measurement results and evaluation..................... 15 1 4 Summary and conclusion 17 1 Introduction Maxwell's equations have been very successful in describing electromagnetic waves for more than one hundred years. Their rise to the sole theory of electromagnetism be- gins with an article by James Clerk Maxwell in 1865 [Maxwell, 1865]. In this article he shows that from the complete set of Maxwell's equations, including the displacement current, a wave equation can be derived in which electromagnetic disturbances of the field propagate at the speed of light.
    [Show full text]
  • The Meaning of the Constant C in Weber's Electrodynamics
    Proe. Int. conf. "Galileo Back in Italy - II" (Soc. Ed. Androme-:ia, Bologna, 2000), pp. 23-36, R. Monti (editor) The Meaning of the Constant c in Weber's Electrodynamics A. K. T. Assis' Instituto de Fisica 'Gleb Wat.aghin' Universidade Estadual de Campinas - Unicamp 13083-970 Campinas, Sao Paulo, Brasil Abstract In this work it is analysed three basic electromagnetic systems of units utilized during last century by Ampere, Gauss, Weber, Maxwell and all the others: The electrostatic, electrodynamic and electromagnetic ones. It is presented how the basic equations of electromagnetism are written in these systems (and also in the present day international system of units MKSA). Then it is shown how the constant c was introduced in physics by Weber's force. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic Wlits of charge. Weber and Kohlrausch '5 experiment to determine c is presented, emphasizing that they were 'the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff and Weber obtained independently of one another, both working in the framev.-ork of \Veber's electrodynamics, the fact that an electromagnetic signal (of current or potential) propagate at light velocity along a thin wire of negligible resistivity. Key Words: Electromagnetic units, light velocity, wave equation. PACS: O1.55.+b (General physics), 01.65.+g (History of science), 41.20.·q (Electric, magnetic, and electromagnetic fields) ·E-mail: assisOiCLunicamp.br, homepage: www.lCi.unicamp.brrassis AA. VV•.
    [Show full text]
  • Weber's Electrodynamics and the Hall Effect
    Weber’s Electrodynamics and the Hall Effect Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (June 5, 2020) 1Problem In 1846, Weber used a model of electric current as moving electric charge (of both signs) to give an instantaneous, action-at-a-distance, “microscopic” force law, from which Amp`ere’s force law between current-carrying circuits could be deduced.1 In Gaussian units, the force on electric charge e due to moving charge e is, according to Weber, 2 ee 2 ∂r r ∂2r Fe,Web er = − 1 − + ˆr, (1) r2 c2 ∂t c2 ∂t2 where r = re −re,andc is the speed of light in vacuum. Following Amp`ere, Weber supposed that the force between two moving charges (current elements) is along their line of centers, and obeys Newton’s third law (of action and reaction). This contrasts with the Lorentz force law, which does not obey Newton’s third law in 2 general, ve e × , Fe,Lorentz = Ee + c Be (2) 3 where the fields Ee and Be are given by the forms of Li´enard and Wiechert. Until the late 1870’s the only experiments possible with electric currents were those in which the currents flowed in complete circuits (as studied by Amp`ere). The first step to- wards a larger context of electric currents was made by Rowland [52, 65] (1876, working in Helmholtz’ lab in Berlin), who showed that a rotating, charged disk produces magnetic effects. More importantly, Rowland’s student Hall (1878) [55] showed that an electric con- ductor in a magnetic field B perpendicular to the current I develops an electric potential 1References to original works are given in the historical Appendix below.
    [Show full text]
  • Unipolar Induction and Weber's Electrodynamics
    UNIPOLAR INDUCTION AND WEBER'S ELECTRODYNAMICS Andre K T. Assis,1,2 and Daria S. Thoberl lJnstituto de Fisica 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-970, Campinas, Sao Paulo, Brasil Interneis: [email protected], and [email protected] 2Also Collaborating Professor at the Department of Applied Mathematics, HI/IECe, State University of Campinas, 13083-970 Campinas-SP, Brazil INTRODUCTION Unipolar induction is the generation of current on a conductor for the case 1Il which the conductor and the magnet are in relative rotatory motion. A typical case of unipolar induction is shown in figure 1. ¢ I _galvanometer [--@- and circuit A copper­ B disk _cylindrical NI permanent I magnet I SI Iaxis Figure 1. Apparatus used to investigate unipolar induction. The sliding contacts in A and B connect the galvanometer to the copper disk. Copper disk and magnet are free to rotate. FronJiers of FundamenJa[ Physics, Edited by M. Barone and F. Selleri, Plenum Press, New York, 1994 409 Since Fara.day's experimcnts L of 18:12 on electromagnetic induction on rotating systems there are intense debates concern ing the loration of the scat of the electromotive force (cmfJ 1 . In this work whenever we speak of "rotation" it should be understood "rotation relative to the earth or laboratory." Let us see what happens in the laboratory. \Vhen we rotate only t.he disk an emf is produced on the galvanometer-disk circuit (the magnet is fixed in the laboratory), as wee can see on the galvanometer. When we rotate only the magnet (the disk is fixed in the laboratory) no current flows by the galvanometer.
    [Show full text]
  • Revolutionary Propulsion Research at Tu Dresden
    67 REVOLUTIONARY PROPULSION RESEARCH AT TU DRESDEN M. Tajmar Institute of Aerospace Engineering, Technische Universit¨at Dresden, 01062 Dresden, Germany Since 2012, a dedicated breakthrough propulsion physics group was founded at the Institute of Aerospace Engineering at TU Dresden to investigate revolutionary propulsion. Most of these schemes that have been proposed rely on modifying the inertial mass, which in turn could lead to a new propellantless propulsion method. Here, we summarize our recent e↵orts targeting four areas which may provide such a mass modification/propellantless propulsion option: Asymmetric charges, Weber electrodynamics, Mach’s principle, and asymmetric cavities. The present status is outlined as well as next steps that are necessary to further advance each area. 1. INTRODUCTION Present-day propulsion enables robotic exploration of our solar system and manned missions limited to the Earth-Moon distance. With political will and enough resources, there is no doubt that we can develop propulsion technologies that will enable the manned exploration of our solar system. Unfortunately, present physical limitations and available natural resources do in fact limit human ex- ploration to just that scale. Interstellar travel, even to the next star system Alpha Centauri, is some 4.3 light-years away which is presently inaccessible – on the scale of a human lifetime. For example, one of the fastest manmade objects ever made is the Voyager 1 spacecraft that is presently traveling at a velocity of 0.006% of the speed of light [1]. It will take some 75,000 years for the spacecraft to reach Alpha Centauri. Although not physically impossible, all interstellar propulsion options are rather mathematical exercises than concepts that could be put into reality in a straightforward manner.
    [Show full text]
  • The Short History of Science
    PHYSICS FOUNDATIONS SOCIETY THE FINNISH SOCIETY FOR NATURAL PHILOSOPHY PHYSICS FOUNDATIONS SOCIETY THE FINNISH SOCIETY FOR www.physicsfoundations.org NATURAL PHILOSOPHY www.lfs.fi Dr. Suntola’s “The Short History of Science” shows fascinating competence in its constructively critical in-depth exploration of the long path that the pioneers of metaphysics and empirical science have followed in building up our present understanding of physical reality. The book is made unique by the author’s perspective. He reflects the historical path to his Dynamic Universe theory that opens an unparalleled perspective to a deeper understanding of the harmony in nature – to click the pieces of the puzzle into their places. The book opens a unique possibility for the reader to make his own evaluation of the postulates behind our present understanding of reality. – Tarja Kallio-Tamminen, PhD, theoretical philosophy, MSc, high energy physics The book gives an exceptionally interesting perspective on the history of science and the development paths that have led to our scientific picture of physical reality. As a philosophical question, the reader may conclude how much the development has been directed by coincidences, and whether the picture of reality would have been different if another path had been chosen. – Heikki Sipilä, PhD, nuclear physics Would other routes have been chosen, if all modern experiments had been available to the early scientists? This is an excellent book for a guided scientific tour challenging the reader to an in-depth consideration of the choices made. – Ari Lehto, PhD, physics Tuomo Suntola, PhD in Electron Physics at Helsinki University of Technology (1971).
    [Show full text]
  • Christa Jungnickel Russell Mccormmach on the History
    Archimedes 48 New Studies in the History and Philosophy of Science and Technology Christa Jungnickel Russell McCormmach The Second Physicist On the History of Theoretical Physics in Germany The Second Physicist Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 48 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, USA. ASSOCIATE EDITORS FOR MATHEMATICS AND PHYSICAL SCIENCES JEREMY GRAY, The Faculty of Mathematics and Computing, The Open University, UK. TILMAN SAUER, Johannes Gutenberg University Mainz, Germany ASSOCIATE EDITORS FOR BIOLOGICAL SCIENCES SHARON KINGSLAND, Department of History of Science and Technology, Johns Hopkins University, Baltimore, USA. MANFRED LAUBICHLER, Arizona State University, USA ADVISORY BOARD FOR MATHEMATICS, PHYSICAL SCIENCES AND TECHNOLOGY HENK BOS, University of Utrecht, The Netherlands MORDECHAI FEINGOLD, California Institute of Technology, USA ALLAN D. FRANKLIN, University of Colorado at Boulder, USA KOSTAS GAVROGLU, National Technical University of Athens, Greece PAUL HOYNINGEN-HUENE, Leibniz University in Hannover, Germany TREVOR LEVERE, University of Toronto, Canada JESPER LU¨ TZEN, Copenhagen University, Denmark WILLIAM NEWMAN, Indiana University, Bloomington, USA LAWRENCE PRINCIPE, The Johns Hopkins University, USA JU¨ RGEN RENN, Max Planck Institute for the History of Science, Germany ALEX ROLAND, Duke University, USA ALAN SHAPIRO, University of Minnesota, USA NOEL SWERDLOW, California Institute of Technology, USA
    [Show full text]
  • The Electric Self Force on a Current Loop Kirk T
    The Electric Self Force on a Current Loop Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (January 8, 2019; updated January 13, 2019) 1Problem Discuss the electric (and magnetic) self force on a loop of resistive wire that carries a steady electric current, taking into account the retarded electric field of the moving charges.1,2 2Solution If the total self force on a current loop were not zero, Newton’s first law would be violated, and a current loop would be a “bootstrap spaceship”.3 However, the self forces includes the internal “mechanical” forces as well as the (macroscopic) electromagnetic forces, so the former should be considered as well as the latter.4 In a model of the steady current loop in which the (rigid) conductor contains conduction electrons, (positive) lattice ions, and surface charges of either sign, the lattice ions and surface charges are at rest with respect to the conductor, so the electromagnetic force on each of these is balanced by an equal and opposite “mechanical” force, which is ultimately a quantum electrodynamic effect. The conduction electrons are taken to have constant speed v, so they have no acceleration along the axial direction of the conductor/wire, but each has a transverse acceleration v2/ρ,whereρ is the local radius of curvature of the wire. The required centripetal force for this acceleration is the sum of the electromagnetic and “mechanical” forces on a conduction electron. 1This problem was suggested by Vladimir Onoochin [1]. 2In Maxwell’s electrodynamics [2], this problem is not trivial. In contrast, the force between two moving charges e1 and e2 at positions r1 and r2 in Weber’s electrodynamics (1846 [3], p.
    [Show full text]
  • The Genesis and Development of Maxwellian Electrodynamics: Its Intratheoretic Context
    The Genesis and Development of Maxwellian Electrodynamics: Its Intratheoretic Context Author(s): Rinat M. Nugayev Source: Spontaneous Generations: A Journal for the History and Philosophy of Science, Vol. 8, No. 1 (2016) 55-92. Published by: The University of Toronto DOI: 10.4245/sponge.v8i1.19467 EDITORIALOFFICES Institute for the History and Philosophy of Science and Technology Room 316 Victoria College, 91 Charles Street West Toronto, Ontario, Canada M5S 1K7 [email protected] Published online at jps.library.utoronto.ca/index.php/SpontaneousGenerations ISSN 1913 0465 Founded in 2006, Spontaneous Generations is an online academic journal published by graduate students at the Institute for the History and Philosophy of Science and Technology, University of Toronto. There is no subscription or membership fee. Spontaneous Generations provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Peer-Reviewed The Genesis and Development of Maxwellian Electrodynamics: Its Intratheoretic Context* Rinat M. Nugayev Why did Maxwell’s programme supersede the Ampére-Weber one? To give a sober answer one has to delve into the intratheoretic context of Maxwellian electrodynamics genesis and development. What I want to stress is that Maxwellian electrodynamics was created in the course of the old pre-Maxwellian programmes’ reconciliation: the electrodynamics of Ampére-Weber, the wave theory of Young-Fresnel and Faraday’s programme. The programmes’ encounter led to construction of the hybrid theory at first with an irregular set of theoretical schemes. However, step by step, on revealing and gradual eliminating the contradictions between the programmes involved, the hybrid set is “put into order” (Maxwell’s term).
    [Show full text]
  • Includeradiation
    general theory so this concept can Weber electrodynamics extendedto standard science. Here the sec ' include radiation causality does. 0H0 1 J.P. Wesley Conclusion Weiherdammstrasse 24, 7712 B/umberg, FFiG beg/5:,Th and other, speculations are all very ‘ ' Received: June 1985 en matrices and elliptic functions web but for. realizatio ' Chitfas to be forged in detail. Sotam only a case oft a recrpe’ 1'n search ofa n the mH , or better, acordon bleu. ”b References 1 Bohm D t (1980)., ., V/iO/eness and [he2 Imp/(care‑ Order. Routledge & Kevan P1l Ld 2 Clendinnen ' 3‘ (u I 'LOHdOt (1981). 1.1., 'Phase termsI -‘ the iAXlOlTlv of~Choice', Specular. Sci chlznol 44 . Abstract Weber's law for the force between moving charges satisfies Newton’s Third Law, the conservation of energy, and yields Ampere‘s original empirical law for the force between current 4a gag/”10]”Clendinnen,) 6(5),l.l.,521‘Furt‐529her(1983)Remarks on Phase' versus the Axiom of Choice',I.Specular”“3me5n elements. Weber's law predicts the observed force between two closed current loops. It yields the observed temporal and motional electromagnetic induction, and the observed force on Ampere’s World,oten. PJ.7, tand Hersh. , R., 7'"\ll on‐Cantorian’ Set Tl " ' ' I aw is derived. This Weber field Bergm' pp. _12_220‘ W.H. Freeman. San Francisco “3:010 . .IWHI/ICHIHIICS in the Modem bridge. The electromagnetic field appropriate for the Weber force 1 is then extended to rapidly varying effects and radiation by introducing time retardation. An ann, P.G., Introduction to [I r _ .
    [Show full text]
  • A Physical Model for Low-Frequency Electromagnetic Induction in the Near Field Based on Direct Interaction Between Transmitter A
    CORE Downloaded from http://rspa.royalsocietypublishing.org/Metadata, on July citation23, 2016 and similar papers at core.ac.uk Provided by University of Liverpool Repository A physical model for rspa.royalsocietypublishing.org low-frequency electromagnetic induction in the near field based on direct Research interaction between Cite this article: Smith RT, Jjunju FPM, Young IS, Taylor S, Maher S. 2016 A physical model for transmitter and receiver low-frequency electromagnetic induction in the near field based on direct interaction electrons between transmitter and receiver electrons. 1 1 2 Proc.R.Soc.A472: 20160338. Ray T. Smith ,FredP.M.Jjunju, Iain S. Young , http://dx.doi.org/10.1098/rspa.2016.0338 Stephen Taylor1 and Simon Maher1 Received: 13 May 2016 1Department of Electrical Engineering and Electronics, University of Accepted:21June2016 Liverpool, Liverpool L69 3GJ, UK 2Institute of Integrative Biology, University of Liverpool, Liverpool Subject Areas: L69 3BX, UK electrical engineering, electromagnetism SM, 0000-0002-0594-6976 Keywords: A physical model of electromagnetic induction is coils, electromagnetic induction, propagation, developed which relates directly the forces between wireless power transfer, solenoids, electrons in the transmitter and receiver windings transformers of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive Author for correspondence: current loops are summed, allowing the peak-induced Simon Maher voltage in the receiver to be accurately predicted. e-mail: [email protected] Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter.
    [Show full text]
  • Ampère's Hairpin Spaceship
    Amp`ere’s Hairpin Spaceship Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (January 16, 2016; updated February 26, 2016)) 1Problem In 1822, Amp`ere and de La Rive [1] conducted an experiment, illustrated below, in which a conducting “hairpin” npqr floated on two troughs of mercury that were connected to the two terminals of a Voltaic pile (battery). The floating hairpin was observed to move away from the end of the circuit where the battery was located (towards point C in the figure). Consider the variant shown below in which a U-shaped wire of radius r0,lengthl,width b and electrical resistance R is connected to a capacitor made from two conducting spheres of radii a with initial charges ±Q0. Discuss the motion of the system (assumed to be a rigid body) after the switch is closed and the capacitor discharges. 1 2Solution Amp`ere’s hairpin experiment, considered as the first railgun is discussed in [2]. Taking the switch to be closed at time t = 0, an electric current I(t>0) flows between the + and the − spheres, given approximately by, Q Q t I t 0 e−t/RC ≡ ( ) , ( )=RC RC (1) where C ≈ a/2 is the capacitance of the system, and we neglect the transient rise of the 2 current from zero to ≈ Q0/RC over time ≈ L/R,whereL ≈ (4l/c )ln(b/r)istheself inductance. The capacitance of a conducting sphere of radius a is just a (in Gaussian units), so the capacitance of two spheres in series is a/2 in the first approximation.
    [Show full text]