PC/104 and Small Form Factors Buyer’S Guide

Total Page:16

File Type:pdf, Size:1020Kb

PC/104 and Small Form Factors Buyer’S Guide RSC# 2 @ www.smallformfactors.com/rsc RSC# 3 @ www.smallformfactors.com/rsc www.smallformfactors.com www.pc104online.com Volume 10 • Number 5 COLUMNS FEATURES 8 PC/104 Embedded Consortium HARDWARE: Storage and networking Runaway technology threatens our future By Jonathan Miller 16 Net-centric military operations connect with PC/104, 10 Fundamentals 101 Mobile IP Choices, choices, choices By Mike Southworth, Parvus By Joel Huebner 14 European Technology 20 Surviving oil pipeline pigging operations with Speeders busted on film E-Disk SSDs By Hermann Strass By Jun Alejo, BiTMICRO 54 Editor’s Insight Rugged SFFs ... Windows ate my homework ... 24 What’s big in small storage and why I won’t buy another iPod By Don Dingee By Chris A. Ciufo TECHNOLOGY: Taking the heat DEPARTMENTS 26 Micro thermofluidic technology cools rising heat 13,36,50 Editor’s Choice Products By George Meyer, Celsia Technologies By Don Dingee 53 Advertiser Index SPECIAL: Small form factors in outer space 32 SPACE-104: A stackable solution for space electronics By Dr. Robert Hodson, NASA E-CASTS MicroTCA – A Powerful New Standard for Cost Effective BUYER’S GUIDE Carrier Grade Equipment November 16, 2 p.m. EST 38 2007 PC/104 and Small Form Factors Buyer’s Guide www.opensystems-publishing.com/ecast EVENTS E-LETTER electronica Winter: www.smallformfactors.com/eletter November 14-17 XTX versus COM Express – the gloves come off New Munich Trade Fair Centre Munich, Germany By Colin McCracken, Ampro Computers www.global-electronics.net/id/20308 Cooling takes on smaller forms On the cover: By Martin Mayer, Advanced Digital Logic The Gecko EPIC-format SBC from VersaLogic Corp. coordinates communication with the central server and GPS system inside a futuristic media display module that changes advertising messages to correspond with the location WEB RESOURCES of the taxi it’s mounted on. Pictured: Vert Intelligent Display Subscribe to the magazine or E-letter at: courtesy of Vert Inc. www.opensystems-publishing.com/subscriptions Industry news: Read: www.smallformfactors.com/news Published by: OpenSystems Submit: www.opensystems-publishing.com/news/submit Publishing™ © 2006 OpenSystems Publishing © 2006 PC/104 and Small Form Factors Submit new products at: All registered brands and trademarks in PC/104 and Small Form Factors are property of their respective owners. www.opensystems-publishing.com/vendors/submissions/np 4 / Winter 2006 PC/104 and Small Form Factors A N O PEN S Y S TEM S P UBLIC A TI O N Military & Aerospace Group n DSP-FPGA Product Resource Guide n DSP-FPGA.com n DSP-FPGA.com E-letter n Military Embedded Systems n Military Embedded Systems E-letter n PC/104 and Small Form Factors n PC/104 and Small Form Factors E-letter n PC/104 and Small Form Factors Resource Guide n VMEbus Systems n VMEbus Systems E-letter Group Editorial Director Chris Ciufo [email protected] Contributing Editor Don Dingee [email protected] Associate Editor Jennifer Hesse [email protected] Senior Editor (columns) Terri Thorson [email protected] Assistant Editor Sharon Schnakenburg European Representative Hermann Strass [email protected] Art Director Steph Sweet Senior Web Developer Konrad Witte Graphic Specialist David Diomede RSC# 01 @ www.smallformfactors.com/rsc Circulation/Office Manager Phyllis Thompson [email protected] OpenSystems Publishing™ OpenSystems Publishing Editorial/Production office: 16872 E. Ave. of the Fountains, Ste 203 Fountain Hills, AZ 85268 Tel: 480-967-5581 n Fax: 480-837-6466 Website: www.opensystems-publishing.com Publishers John Black, Michael Hopper, Wayne Kristoff Vice President Editorial Rosemary Kristoff Communications Group Editorial Director Joe Pavlat Assistant Managing Editor Anne Fisher Senior Editor (columns) Terri Thorson Technology Editor Curt Schwaderer European Representative Hermann Strass Embedded and Test & Analysis Group Editorial Director Jerry Gipper Editorial Director Don Dingee Technical Editor Chad Lumsden Associate Editor Jennifer Hesse Special Projects Editor Bob Stasonis European Representative Hermann Strass ISSN Print 1096-9764, ISSN Online 1550-0373 Publication Agreement Number: 40048627 Canada return address: WDS, Station A, PO Box 54, Windsor, ON N9A 615 PC/104 and Small Form Factors is published five times a year by OpenSystems Publishing LLC, 30233 Jefferson Ave., St. Clair Shores, MI 48082. Subscriptions are free upon request to persons interested in PC/104 and other small form factor single board computer technology. For others inside the US and Canada, subscriptions are $35/year. For 1st class delivery outside the US and Canada, subscriptions are $50/year (advance payment in US funds required). RSC# 02 @ www.smallformfactors.com/rsc POSTMASTER: Send address changes to PC104 and Small Form Factors 16872 E. Ave. of the Fountains, Ste 203, Fountain Hills, AZ 85268 6 / Winter 2006 PC/104 and Small Form Factors RSC# 7 @ www.smallformfactors.com/rsc RSC# 7 @ www.smallformfactors.com/rsc Runaway technology threatens our future Praise the good old days of PC/104! the board designer as well, from changes could ever need more than 640K?”) Yes, The ISA bus was the expansion method in the underlying CPU technology. By but even on today’s latest processors we of choice, processors consumed modest designing to a common bus interface see the LPC bus, a de facto admission power levels, and chips boasted long life (ISA), I/O board makers could avoid wor- that PCI and PCI Express are not one size cycles. Board developers and their cus- rying about what CPU would drive the fits all. A low-cost, low-speed, simple tomers could count on a stable technol- system, and system designers could rely address/data bus is still optimal for many ogy base, so they designed products with on the fact that virtually all I/O boards functions on a CPU board. the confidence that they could recoup the would work on virtually all CPUs. ISA cost of their investment and not spend too was easy and cheap. A simple $1 PAL much time in redesign or requalification. device was enough to implement a basic A new approach register-map interface for many I/O boards. Then a certain pair of companies had a Then came PCI with its higher bandwidth is needed to big idea: Advance technology as fast and corresponding complexity. PC/104 as possible to outrun the competition responded by adding a new connector for incorporate the latest and keep customers coming back every the new bus. But the interface required a two years when their current products larger and significantly more costly logic bus technology into become obsolete. In the consumer and device. Now board vendors and custom- office market, this concept caused enough ers had to choose between two buses, and a common platform headaches, with nonhomogeneous in- the situation started to get more complex: stalled bases making it difficult to keep My PC/104-Plus Ethernet card won’t for the future that can track of who had what, who needed to work with your PC/104 CPU. match PC/104 in its upgrade, and how to make everything work together. In the embedded market This two-bus complexity could be man- simplicity, reliability, where longevity was critical to compa- aged, but it was only a sign of things to nies’ product life cycles and regulatory come. Now, as technology vendors con- and proliferation requirements such as FDA, this runaway tinue their push into the stratosphere, technology philosophy spelled disaster. ISA and PCI are disappearing and a third of vendors and bus, PCI Express, is taking their place. But Board developers have done a good job the extremely high-frequency signaling products. of keeping up by providing reasonable of PCI Express places serious constraints migration paths from old products to new. on connector choices and board layout And to be fair the core technology sup- and interface logic design. Furthermore, So where does this line of inquiry lead pliers (processors and operating systems) with two connectors on the PC/104 board us? Two conclusions: have done their share to make their new already, there isn’t room to add a third products largely backwards compatible connector. In any case, why should we? First of all, as ISA disappears from almost with the old ones, minimizing upgrade Since when must PC/104 serve all custom- all new processors, the very existence of difficulties. But today the situation is get- ers in all applications and be compatible PC/104 is threatened. A long-term solu- ting out of hand. By the time a CPU com- with all existing products? tion is needed now to maintain the viabil- pany comes to market with the latest Intel ity of this hugely successful market and chipset, they are two generations behind. And who needs PCI Express anyway, integrate products that we have developed Core Duo, and now Core Quattro (what’s with its added cost in complex board for the past 15 years. The PC/104 indus- next: Core Centennial?) chips are already design and layout as well as power- try must consider how to address this on the market, while many (if not most) hungry processors that prevent I/O boards threat head on to ensure the survival of PC/104 and PC/104-expandable CPU from being stacked on top due to the need PC/104, or we risk losing the momentum suppliers are still in the early stages of for larger heat sinks and fans? Yes, many and spotlight we have justifiably earned. introducing their Pentium M/945 prod- applications can use the higher bandwidth Secondly, a new approach is needed to ucts. How can board suppliers keep up? and processing power, but a huge market incorporate the latest bus technology And should they even try? still exists of down-to-earth applications into a common platform for the future where an 8 MHz bus clock is more than that can match PC/104 in its simplicity, The beauty of PC/104 was that it isolated enough still.
Recommended publications
  • FPGA 18,752 Les U
    EM7N Data Sheet - 2009-02-16 EM7N - Embedded System Module s n with Pentium® III n Embedded System Module with: o i n ULP Pentium® III / 933 MHz t n ULV Celeron® / up to 650 MHz n FPGA 18,752 LEs u n Up to 512 MB DRAM, 128 MB NAND Flash l n Dual Fast Ethernet (front) n o Dual UART (front) n Graphics, 2 USB 1.1, (E)IDE, 2 CAN bus S n Individual programmable I/O functions in FPGA n Stackable with PCI-104 d e The EM7N is a complete embedded single-board Codec connection for AC'97 audio. In the same d computer for use on any carrier board in different flexible way, additional functionality such as industrial environments. The final application serial interfaces, CAN bus controllers, protocol d consists either of a stand-alone EM7N, the EM7N converters, touch controller etc. can also be with an application-specific carrier card and/or realized in the FPGA to the needs of the individual e with additional plugged PCI-104 modules. application. Before system boot-up, the FPGA is The EM7N is an ideal computing platform for embedded loaded from boot Flash. Updates of the FPGA contents b industrial PCs, offering the whole world of Windows® can be made inside the boot Flash during operation and Linux based software, e.g. for infotainment and are available after a re-boot of the system. applications. m For a first evaluation of the functions of the EM7N it It is controlled by an Ultra-Low Power Pentium® III at is strongly recommended to use the EK5N ESM™ starter E 933 MHz or an Ultra-Low Voltage Celeron® processor up kit.
    [Show full text]
  • 2018 Annual Report on Form 10-K
    2018 ANNUAL REPORT ON FORM 10-K MARCH 2019 DEAR SHAREHOLDERS: From the industry’s first 1GHz CPU to the world’s first GPU delivering a teraflop of computing power, AMD has always stood for pushing the boundaries of what is possible. A few years ago, we made several big bets to accelerate our pace of innovation, strengthen our execution, and enable AMD to deliver a leadership portfolio of computing and graphics processors capable of increasing our share of the $75 billion high-performance computing market. In 2018, we saw those bets begin to pay off as we delivered our second straight year of greater than 20% annual revenue growth and significantly improved our gross margin and profitability from the previous year. REVENUE GROSS MARGIN % R&D INVESTMENT EXPENSE/REVENUE % $ Billions $ Billions $6.5B 38% $1.43B 34% $5.3B 34% 33% $4.3B $1.20B 23% $1.01B 31% 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 Added $2.2B in revenue Significantly improved gross Increased R&D by more than Significant improvement over the last 2 years margin over last 2 years based 40% over the last 2 years in OPEX leverage on new product portfolio Our newest Ryzen™, EPYC™ and datacenter GPU products contributed more than $1.2 billion of revenue in 2018 and helped us gain share across our priority markets. In 2018, we added 3.9% points of desktop processor unit share, 5.3% points of notebook processor unit share and met our goal of exiting the year with mid-single digit server processor market share.
    [Show full text]
  • J7F3 Mini-ITX Motherboard Series
    Mainboard Diagram J7F3 Mini-ITX Motherboard Series -SiS 741CX Northbridge + SiS 964 Southbridge Chipsets -Support Socket-462 AMD Geode NX processor -Support Front Side Bus 133MHz -Single Channel DDR2 400 Memory DIMM -Support 2 Serial ATA Devices with RAID 0, 1 -Support 2xAD Connector With Expansion Daughter-boards -Ethernet LAN Supported -AC’97 6 Channel Audio CODEC -VIA VT6307S IEEE1394a Controller for J7F3E -17 x 17CM Mini-ITX Form Factor Features and Benefits Support Socket 462 AMD Geode™ NX Processor The AMD Geode™ NX processor family gives product designers a wide range of options in low-power, high-performance processors. Based on Mobile AMD Athlon™ processor technology, AMD NX processors deliver superior computing performance for applications including thin-client, point-of-sale terminals, kiosks, high-end printers, and home media systems. AMD Geode Solutions have received new model numbers to better reflect total performance beyond just megahertz. This presentation of attributes gives designers greater understanding of the capabilities of AMD Geode Solutions. SiS 741CX Northbridge Chipset and SiS964 Southbridge Chipset The SiS741CX chipset can be combined with three different AMD Geode NX processors, including the AMD Geode™ NX 1250@6W processor*, AMD Geode™ NX 1500@6W processor** and AMD Geode™ NX 1750@14W processor***, enabling development of a wider variety of products for different market segments. The SiS741CX chipset supports the AMD Geode NX processor family, DDR266 front side bus, as well as high-speed DDR333 DRAM. Furthermore, the SiS741CX chipset incorporates SiS's revolutionary HyperStreaming™ Technology, which provides multiple divided pipelines for data, allows data to be sent concurrently, and separates data for easier memory retrieval, resulting in a remarkable reduction in latency versus traditional chipsets.
    [Show full text]
  • FA143 Modulstandards
    Modulstandards im Vergleich Möglichkeiten und technische Limits der verschiedenen Aufsteck-Boards 1 Seit knapp 2 Jahrzehnten sind Aufsteckmodule verfügbar, die über standardisierte Schnittstellen an ein Doch was bedeuten diese Abkürzungen, Base-Board kontaktiert werden können. Die eindeu- welche Schnittstellen verbergen sich tigen Vorteile bescheren diesen Modulen eine immer dahinter und wo haben diese Konzepte stärker wachsende Nachfrage: Geringere Entwick- Ihre Vorteile im Vergleich zu anderen? lungszeit und -kosten, Verfügbarkeit, Skalierbarkeit von Performance und Preis, die Austauschbarkeit zwischen unterschiedlichen Anbietern und die Reduzierung von Risiken durch das Verwenden von zertifizierten Modulen Nachfolgend werden die geläufigen Abkürzungen rund sind Gründe, sich für Plug-On Boards zu entscheiden. um das Thema Plug-On Modul-Lösungen und Begriffe inkl. deren Schnittstellen und deren Möglichkeiten Die Anforderungen hinsichtlich Größe, Preis, Verfüg- näher erklärt. barkeit und die rasch voranschreitenden Chip-Tech- nologien stellen die Anbieter von Systemlösungen vor Package on a Package (PoP) Herausforderungen, die jedoch durch die Verwendung von Aufsteck-Modulen sehr gut managebar sind. Sind Ein „Package on a Package“ stapelt Einzel-Packages während der Designphase Anforderungen an Perfor- in Form von kleinen bestückten Platinen vertikal über- mance, Schnittstellen, Abmessungen, aber auch z.B. einander, welche durch Ball-Grid-Arrays miteinander Temperaturbereich und Störaussendung definiert, kann verbunden werden. Sozusagen
    [Show full text]
  • Iei's Amd Embedded Solution
    * Issue Date: 1st June, 2006 * Design and specifications are subject to change without prior notice. IEI’S AMD EMBEDDED SOLUTION LX/GX Embedded Series Headquarters America-United States China IEI Technology Corp. IEI Technology USA Corp. Armorlink SH Corp. TEL : +886-2-86916798 FAX : +886-2-66160028 TEL : +1-562-690-6677 FAX : +1-562-690-0898 TEL : +86-21-54429000 FAX : +86-21-54429100 [email protected] www.ieiworld.com [email protected] www.usa.ieiworld.com [email protected] www.ieiworld.com.cn No. 29, Jhongsing Rd.,Sijhih City, 515 N. Puente St., Brea, CA 92821 No.515, Shenfu Road, Minhang District, Shanghai, China Taipei County, 221, Taiwan www.ieiworld.com IEI Technology Corp. www.ieiworld.com IEI’s AMD Embedded Solution Vision of AMD - IEI Alliance When IEI meets AMD... Single Board Computer Geode™ Connectivity y LX u LX800 Design Services Family EXPERT OF AMD’S FULL-LINE EMBEDDED SOLUTIONS Manufacturing Services Geode™ Customer-Centric y GX u GX466 Family ABOUT IEI ABOUT AMD Communication Partnership y A Leading Industrial Computing Solution Provider A Leading Global Provider of Innovative Microprocessor IEI Technology Corp. is a leading industrial computing platform Solutions provider. IEI follows the requirements of the RoHS Directive Advanced Micro Devices (AMD) is a leading global provider on a worldwide basis so that customers can start to work for of innovative microprocessor solutions for computing, their long-term projects. IEI supplies hundreds of industrial communications and consumer electronics markets. Founded computer boards, systems and peripherals in thousands of in 1969, AMD is dedicated to delivering superior computing customer applications and supports OEM/ODM service to solutions based on customer needs that empower users worldwide.
    [Show full text]
  • AMD Geode™ NX Processors BIOS Considerations Application Note
    AMD Geode™ NX Processors BIOS Considerations Application Note PID: 32483 Rev: A Issue Date: October 2004 © 2004 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of mer- chantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Contacts www.amd.com Trademarks AMD, the AMD Arrow logo, AMD Athlon, AMD PowerNow!, and combinations thereof, and Geode are trademarks of Advanced Micro Devices, Inc. Microsoft and Windows are registered trademarks of Microsoft Corporation.
    [Show full text]
  • AMD in Embedded: Proven Leadership and Solutions
    AMD in Embedded: Proven Leadership and Solutions A long history of high-performance low-power solutions for embedded applications For over two decades AMD has been a leader in the embedded market: in the early 1990’s with the introduction of the Am386 and Am486 and their adoption in embedded designs, and followed in 1995 with the introduction of the Am5x86 processor. The AM5x86 processor was one of the fastest and most universally-compatible upgrade paths for users of 486 systems when it was introduced. AMD continued to expand their E86 (Embedded x86) product family in the late 90’s with the release of the Élan™SC520 microcontroller for data communications, telecommunications, and information appliance markets. The ÉlanSC520 microcontroller extended the options available to embedded systems designers by providing fifth-generation x86 performance and was designed to run both 16-bit and 32-bit software. The AMD embedded group grew significantly in early 2000 with the acquisition of Alchemy Semiconductor for its Alchemy line of MIPS processors for the hand-held and portable media player markets. In order to augment its existing line of embedded x86 processor products, AMD also purchased the AMD Geode™ business in August 2003 which was originally part of National Semiconductor. During the second quarter of 2004, AMD launched the new low- power AMD Geode™ NX processors which were based on the AMD-K7™ Thoroughbred architecture with speeds up to 1.4 GHz. These AMD Geode NX processors offered a high performance option in the AMD Geode product line that was still sufficiently low power to be designed into fan-less applications.
    [Show full text]
  • Em B Ed D Ed So Lu Tio
    EK01 Data Sheet - 2004-11-26 EK01 - ESM Starter Kit with s n Pentium® III n Computing module ESM EM02: o - ULP Pentium® III / 933MHz or Celeron® / i 400MHz t - 512MB SDRAM, CompactFlash slot - Graphics, Gigabit Ethernet, USB 1.1 (front) u - COM, keyboard/mouse, (E)IDE, floppy (rear) l n Carrier card EC01 (ATX-compatible format): o - 1 ESM slot, 3 PCI slots - USB 2.0, COM, IDE, floppy connector S n Accessories: - External PSU, PCI-104 adapter d e Embedded System Modules are complete computers on a controlled by an Ultra-Low Power Pentium® III with d module. A final ESM-based embedded application 933MHz or an Ultra-Low Voltage Celeron® Processor with consists either of a stand-alone ESM (the power supply 400MHz. It provides 16KB L1 and 512KB/256KB L2 cache. d connection being sufficient to operate the module), an The EM02 uses the Intel® 815G chip set, including ESM with an application-specific carrier card and/or graphics. It provides one VGA connector, one USB 1.1 e an ESM with additionally plugged PCI-104 modules. connector Type A and one Gigabit Ethernet interface at The EK01 is a ready-to-use starter kit that allows the front panel. It also provides 512MB of DRAM and a b evaluation of the functions of the EM02 Embedded CompactFlash slot on board. As an alternative to System Module. The kit consists of the standard CPU onboard USB, legacy I/O is routed to the carrier board module, DRAM memory, the carrier card with I/O via the J2 system connector of the EM02.
    [Show full text]
  • AMD Geode™ GX Processor/CS5535 Companion Device Geoderom Porting Guide © 2006 Advanced Micro Devices, Inc
    AMD Geode™ GX Processor/ CS5535 Companion Device GeodeROM Porting Guide April 2006 Publication ID: 32430C AMD Geode™ GX Processor/CS5535 Companion Device GeodeROM Porting Guide © 2006 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of mer- chantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD Arrow logo, and combinations thereof, and Geode, GeodeLink, Virtual System Architecture, and XpressGRAPHICS are trademarks of Advanced Micro Devices, Inc.
    [Show full text]
  • Industrial Embedded Systems
    RSC #2 @ www.industrial-embedded.com/rsc RSC #3 @ www.industrial-embedded.com/rsc www.industrial-embedded.com VOLUME 1 • NUMBER 1 OCTOBER 20 05 COMPUTING COLUMNS TECHNOLOGY 7 Foreword Thinking 48 Modern interfaces in light of embedded computer integration A fresh start to getting things done By Andreas Geh, DIGITAL-LOGIC AG By Don Dingee 54 Embedded compute models help contain costs 8 Industrial Europe By Ernest Godsey, MEN Micro Q & A with Ulrich Gerhmann, CEO, and Norbert Hauser, 57 Product Profiles VP of Marketing, Kontron EMEA HUMAN INTERFACE By Stefan Baginski TECHNOLOGY 10 Market Pulse 80 Converging functionality in embedded industrial control IEEE 802.15.4 and ZigBee By Melissa Jones, Ultimodule By Bonnie Crutcher 84 Using software-configurable processors in biometric 98 The Final Word applications It’s all about choices By Philip Weaver, Stretch, and Fred Palma, A4 Vision By Jerry Gipper 87 Product Profiles SENSORS/CONTROL FEATURES TECHNOLOGY NETWORKING 88 Combining a hardware neural network with a powerful SPECIAL: Standards automotive MCU for powertrain applications 16 Opening gates with TCP-to-CANopen By Dr. Paul Neil, Axeon By Holger Zeltwanger, CAN in Automation APPLICATION 20 Performance, implementation, and applications of 90 Open architecture PAC technology drives undersea remotely Ethernet Powerlink operated vehicles By Frank Foerster and Bill Seitz, IXXAT By Chris Ward, C&M Group TECHNOLOGY 91 Product Profiles 12 Ultra-wideband communication for low-power wireless STORAGE body area networks TECHNOLOGY By Bart Van Poucke
    [Show full text]
  • The Next Major Advance in Chip-Level Design Productivity
    The Next Major Advance in Chip-Level Synopsys EDA Interoperability Developers’ Forum Design Productivity Santa Clara, CA st [email protected] October 21 , 2004 The Next Major Advance in Chip-Level Design Productivity A. Richard Newton University of California, Berkeley Synopsys EDA Interoperability Developers’ Forum Santa Clara, CA October 21st, 2004 Fundamental Drivers of Future Chip Designs (1) (2) (3) (4) Silicon Scaling Rising Design Growing Complexity Increased System Requires Concurrency Drives Drives Chip Cost Drives Software-Based Multiple Processor Capacity Programmability Solutions Architectures SoC Becomes A “Sea Of Processors” SoC Programmable Software-Centric Sea-of-Processors Platforms Design Design Source: Chris Rowen, Tensilica Page 1 The Next Major Advance in Chip-Level Synopsys EDA Interoperability Developers’ Forum Design Productivity Santa Clara, CA st [email protected] October 21 , 2004 Key Points The future mainstream building-block of electronic system-level design will present a (configurable) clocked synchronous Von Neumann programmer’s model to the system-level application developer (ASIP or TSP) The majority of large silicon systems will consist of many such processors, connected in an asynchronous network These processors may be integrated on a single chip (CMP) and/or as a (possibly very large) collection of chips These conclusions lead to a number of critical design-technology research challenges and new business opportunities Fundamental Drivers of Future Chip Designs (1) (2) Silicon Scaling
    [Show full text]
  • ADVANCED MICRO DEVICES, INC. (Exact Name of Registrant As Specified in Its Charter)
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 July 20, 2006 Date of Report (Date of earliest event reported) ADVANCED MICRO DEVICES, INC. (Exact name of registrant as specified in its charter) Delaware 001-07882 94-1692300 (State of Incorporation) (Commission File Number) (IRS Employer Identification Number) One AMD Place P.O. Box 3453 Sunnyvale, California 94088-3453 (Address of principal executive offices) (Zip Code) (408) 749-4000 (Registrant’s telephone number, including area code) N/A (Former Name or Former Address, if Changed Since Last Report) Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions: ¨ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425) ¨ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12) ¨ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b)) ¨ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c)) Item 2.02. Results of Operations and Financial Condition Item 7.01. Regulation FD Disclosure The information in this Report, including the Exhibit 99.1 attached hereto, is furnished pursuant to Item 2.02 and Item 7.01 of this Form 8-K. Consequently, it is not deemed “filed” for the purposes of Section 18 of the Securities and Exchange Act of 1934, or otherwise subject to the liabilities of that section.
    [Show full text]