Card8 Barents Sea 11July2017

Total Page:16

File Type:pdf, Size:1020Kb

Card8 Barents Sea 11July2017 Central Graben South Norwegian - Danish Basin DK UK/NO NO DK Kolga Forhes Kolga Fur Eo- Eo- Ypresian Sele Ypresian Sele cene cene 56.0 Fur Balder 56.0 Fiskebank Balder Thanetian 59.2 Rind Idun ListaAndrew Thanetian 59.2 Lista Idun Rind Selandian 61.6 Tyr Våle Selandian 61.6 Våle Tyr gene gene Bor Bor cene cene Paleo- Paleo- Paleo- Paleo- Danian 66.0 Ekofisk Maureen Danian 66.0 Ekofisk Maastrichtian Maastrichtian Tor 72.1 Tor 72.1 Mackerel Magne Campanian Hod Campanian Chalk Gp. 83.6 83.6 Chalk Gp. Santonian 86.3 Santonian 86.3 Late Late Thud Coniacian 89.8 Herring Coniacian 89.8 Narve Turonian Turonian 93.9 93.9 Blodøks Cenomanian Blodøks Black Band Cenomanian 100.5 Hidra 100. 5 Hidra Albian Rødby Albian Rødby 113.0 113.0 Sola Ran Ran Sola Cretaceous Cretaceous Aptian Aptian 126.3 126.3 Early Early Tuxen Barremian 130.8 Tuxen Barremian 130.8 Åsgard Hauterivian 133.9 Valhall Hauterivian 133.9 Åsgard Valanginian 139.4 Valanginian 139.4 Berrias. Ryazan. Berrias. Ryazan. Flekkefjord 145.0 Mandal 145.0 Frederiks- Volgian Sauda/Bjørghavn havn Tithon. Volgian Poul Farsund Tithon. 152.1 Heno 152.1 Kimmeridgian Ula/ Kimmeridgian Tau 157.3 Eldfisk 157.3 Late Late Fulmar Egersund Flyv- Oxfordian Haugesund Oxfordian bjerg 163.5 Lola 163.5 Callovian 166.1 Callovian 166.1 Sandnes Bathonian 168.3 Pentland/ Bathonian 168.3 Bryne Haldager Bajocian 170.3 Bryne Rattray Bajocian 170.3 Mid. Mid. Aalenian 174.1 Aalenian 174.1 Toarcian Toarcian 182.7 182.7 Jurassic Jurassic Pliensbachian Pliensbachian 190.8 190.8 Fjerritslev Early Early Dunlin Gp. Sinemurian Sinemurian 199.3 199.3 Hettangian 201.3 Hettangian 201.3 Rhaetian Rhaetian Gassum 209.5 ? ? ? 209.5 Norian Norian Skagerrak Vinding Late Late 228.4 Skagerrak Josephine 228.4 riassic riassic Carnian Carnian Oddesund T T 237.0 237.0 Smith Ladinian 241.5 Joanne sst Ladinian 241.5 Tønder Mid. Mid. Anisian Anisian Bank Falster 247.1 Judy sst 247.1 Olenekian 250.0 Olenekian 250.0 Bunter Sst. Øreslev E. E. Induan 252.2 Smith Bank Induan 252.2 Bunter shale Changhsingian Anhydrite Zechstein Gp. Shearwater Changhsingian Zechstein Gp. Wuchiapingian Kupferschiefer Wuchiapingian Kupferschiefer Lop. Lop. Fraserburg Fraser- Capitanian 265.1 Fm Auk Capitanian 265.1 burg Auk Fm Rotliegend Gp. Wordian 268.8 Wordian 268.8 Elly Gua. Gua. Roadian 272.3 Roadian 272.3 Mbr Karl Fm ? Permian Permian Kungurian Kungurian Cis. Cis. 279.3 279.3 July 2017, Copyright: F. Gradstein July 2017, Copyright: F. Gradstein Southern Viking Graben Southern Viking Graben Utsira - Stord Basin Utsira - Stord Basin W E W E Qu. Plei. Lt. Pleist./Gelasian Naust Mid Jurassic Plio. Piacenz./Zancl. 5.33 Toarcian unconformity Messinian 7.25 Hutton Sst. 182.7 Dunlin Tortonian 11.63 Gp. 13.82 Pliensbachian Serravallian Utsira 190.8 Dunlin Langhian 15.97 Gp. Burdigalian 20.44 Miocene Sinemurian Jurassic Neogene Aquitanian 23.03 Skade 199.3 Hettangian 201.3 Chattian 28.1 Lark Ull Rhaetian Statfjord Rupelian 209.5 Statfjord Oligocene 33.9 Priabonian 37.8 Bartonian 41.2 Grid Hegre Gp. Horda Norian Lutetian 47.8 Skag- Eocene Frigg Ypresian 228.4 errak Balder Paleogene 56.0 Odin Hermod Sele riassic Thanetian 59.2 Carnian Heimdal Lista T Selandian 61.6 237.0 cene Ty Paleo- Vale Smith Danian 66.0 Ladinian 241.5 Ekofisk Ekofisk Bank Maastrichtian Jorsalfare Anisian 247.1 72.1 Tor Olenekian 250.0 Kyrre Induan 252.2 Campanian Changhsingian254.2 Shetland Chalk Gp. Wuchiapingian Zechstein Gp. 83.6 259.8 86.3 Gp. Kupferschiefer Late Santonian Capitanian Coniacian 89.8 Tryggvason 265.1 268.8 Turonian 93.9 Tryggvason Tryggvason Wordian Rotliegendes Gp. Blodøks Blodøks Roadian 272.3 Cenomanian Svarte Svarte 100.5 Kungurian 279.3 Albian Rødby Rødby Permian . Artinskian 113.0 290.1 Sakmarian 295.5 noll Gp Cretaceous Aptian Sola Sola K Asselian 298.9 126.3 Early Gzhelian 303.7 mer Barremian 130.8 o Kasimovian 307.0 Hauterivian 133.9 Cr Åsgard Moscovian Valanginian Åsgard 315.2 139.4 1 ? Berrias Ryazan ? ? 145.0 Bashkirian Draupne 323.2 . 2 Tithon Volgian 2 152.1 Heather Serpukhovian Kimmeridgian Sst. 330.9 Late 157.3 ing Gp Heather Oxfordian k Hugin Hugin ? 163.5 Vi Visean Callovian 166.1 Carboniferous 168.3 Jurassic Bathonian 3 Sleipner Sleipner Bajocian 170.3 346.7 Middle Aalenian 174.1 Mid Jurassic unconformity Tournaisian ? ? ? Scale Break 1 Bifrost Mbr. (Valanginian) 2 Draupne Sandstone (Volgian) inf. Scale Break Sandbian 458.4 3 Vestland Gp. Darriwilian 463 Ma 467.3 Ordov. Dapingian 470.0 Basement July 2017, Copyright: F. Gradstein July 2017, Copyright: F. Gradstein Southern Viking Graben Northern Viking Graben Luno Licenses Area Tampen - Horda Platform W E W E Santonian 86.3 Chalk Gp. Ypresian Frigg Eo- Tryggvason cene Coniacian 89.8 56.0 Balder Tryggvason Thanetian 59.2 Hermod Sele Turonian 93.9 Tryggvason Lista Late Blodøks Blodøks 61.6 gene Selandian Heimdal Paleo- cene Våle Cenomanian Svarte Svarte Paleo- Danian 66.0 Ty 100.5 Maastrichtian Jorsalfare 72.1 Hardråde Albian Rødby Rødby Kyrre Campanian Shetland Gp. 113.0 Cromer Knoll Gp. 83.6 Santonian 86.3 Late Aptian Sola Sola Coniacian 89.8 Turonian 93.9 Tryggvason 126.3 Blodøks Early Cretaceous Cenomanian Svarte Barremian 100.5 130.8 Hauterivian Rødby Agat Valanginian Åsgard Albian 139.4 1 Åsgard 113.0 Cromer Knoll Gp Berrias Ryazan 145.0 Draupne Sola Cretaceous Aptian Tithon Volgian 2 2 152.1 Heather 126.3 Sst. Early Kimmeridgian Barremian 130.8 Late Viking Gp. Heather Mime Åsgard Oxfordian Hugin Hugin Hauterivian133.9 163.5 Valanginian139.4 Callovian 166.1 Bathonian 168.3 Sleipner Sleipner Berrias. Ryazan. Bajocian 170.3 145.0 Mid. Vestland Gp. Munin Draupne Aalenian 174.1 Tithon. Volgian Mid Jurassic 152.1 Magnus unconformity Kimmeridgian Toarcian 157.3 Sognefj. 182.7 Late Jurassic Dunlin Oxfordian Heather Fensfj. 163.5 Krossfj. Pliensbachian Gp. Dunlin Callovian 166.1 190.8 Bathonian 168.3 Tarbert Early Gp. Bajocian 170.3 Brent Gp. Ness Mid. Etive Sinemurian Aalenian 174.1 Rannoch Oseberg 199.3 Hettangian201.3 Toarcian 182.7 Cook Rhaetian Statfjord Statfjord Jurassic 209.5 Pliensbachian Burton 190.8 Johansen Early Dunlin Amundsen Hegre Gp. Sinemurian Gp. 199.3 Norian Hettangian 201.3 Nansen Late Eiriksson Skag- Rhaetian Statfjord Gp. 228.4 errak 209.5 riassic Raude T Carnian 237.0 Norian Ladinian Late 241.5 Smith Lunde riassic 228.4 Mid. Bank Anisian 247.1 T 1 Bifrost Mbr. (Valanginian) 2 Draupne Sandstone (Volgian) inf. Carnian 237.0 Lomvi July 2017, Copyright: F. Gradstein July 2017, Copyright: F. Gradstein Southern Norwegian Sea Northern Norwegian Sea W E W E Eo- Eo- Ypresian Ypresian cene cene 56.0 Tare 56.0 Tare Thanetian 59.2 Tang Thanetian 59.2 Tang 61.6 61.6 gene Selandian gene Selandian Paleo- Paleo- cene cene Egga Paleo- Paleo- Danian 66.0 Danian 66.0 Grindhval Hvithval Maastricht. Maastricht. 72.1 Springar 72.1 Springar Spekkhogger Nebbhval Campanian Nise Campanian NiseShetland Gp. 83.6 Tunge 83.6 Tumler Santonian 86.3 Kvitnos Santonian 86.3 Kvitnos Late Late Lysing Breiflabb Coniacian 89.8 Skolest Coniacian 89.8 Turonian Turonian 93.9 93.9 Blålange Blålange Skrubbe Cenomanian Gapeflyndre Cenomanian Sandflyndre 100.5 Shetland Gp. 100.5 Smørflyndre Albian Albian Cromer Knoll Gp. Langebarn 113.0 113.0 Agat Cretaceous Langebarn Cretaceous Aptian Aptian Steinbit 126.3 126.3 Early Early Barremian 130.8 Cromer Knoll Gp. Barremian 130.8 Lyr Hauterivian Lyr Hauterivian Valanginian Valanginian e 139.4 139.4 g Berrias. Ryazan. Berrias. Ryazan. Volgian Tithon. Volgian Spekk Tithon. Rid 152.1 Spekk 152.1 Rogn Kimmeridgian Kimmeridgian d Late Late Melke Viking Gp. Oxfordian Oxfordian 163.5 Viking Gp. 1 163.5 Callovian Callovian Melke Bathonian Garn Bathonian Bajocian Bajocian Garn Not Mid. Mid. Not Aalenian 174.1 Ile Aalenian 174.1 Ile Toarcian Toarcian Tofte Ror Nordlan 182.7 Ror 182.7 Jurassic Jurassic Tofte Pliensbachian Tilje Pliensbachian Tilje 190.8 190.8 Early Early e Sinemurian Åre Sinemurian g 199.3 Åre 199.3 Hettangian 201.3 Hettangian 201.3 Rid Rhaetian Grey Beds Rhaetian Grey Beds 209.5 Frøya High 209.5 klinna Norian Red Beds Norian Red Beds /S Late Late h 228.4 228.4 Hig riassic riassic Carnian Carnian a T T 237.0 237.0 Ladinian 241.5 Ladinian 241.5 oss ? G Mid. Mid. Anisian Anisian 247.1 Red Beds 247.1 Olenekian 250.0 Olenekian 250.0 E. E. Induan 252.2 Induan 252.2 Changhsingian Changhsingian Wuchiapingian Wuchiapingian Lop. Lop. Capitanian Gu. Capitanian Perm 265.1 Gu. ? Perm 265.1 1 Melke Sst. (inf.) July 2017, Copyright: F. Gradstein July 2017, Copyright: F. Gradstein South Western Barents Sea South Eastern Barents Sea SW NE W E Cenomanian 100.5 Cenomanian 100.5 Albian Albian 113.0 113.0 Kolmule Kolmule Kolmule Aptian Aptian 126.3 Kolje 126.3 h Barremian 130.8 Barremian 130.8 Hauterivian 133.9 g Hauterivian 133.9 Knurr Cretaceous Valanginian 139.4 Knurr Klippfisk Cretaceous Valanginian 139.4 Berrias. Ryazanian Hi Berrias. Ryazanian Knurr 145.0 145.0 Tithonian Volgian Tithonian Volgian Hekkingen 152.1 a 152.1 Hekkingen Hekkingen Kimmeridgian 157.3 Kimmeridgian 157.3 Oxfordian Oxfordian 163.5 Fuglen 163.5 Callovian 166.1 Callovian 166.1 Bathonian Bathonian Fuglen Bajocian Bajocian Aalenian 174.1 Lopp Aalenian 174.1 Stø Stø Toarcian Stø Toarcian 182.7 182.7 Jurassic Pliensbachian Jurassic Pliensbachian 190.8 190.8 Sinemurian Nordmela Sinemurian Nordmela 199.3 Tubåen 199.3 Hettangian 201.3 Hettangian 201.3 Rhaetian Tubåen Rhaetian 209.5 209.5 Fruholmen Fruholmen Fruholmen Fruholmen Norian Norian 228.4 228.4 Snadd riassic riassic Carnian Snadd Carnian Snadd T 237.0 T 237.0 ? Ladinian 241.5 Ladinian 241.5 Kobbe Kobbe Anisian 247.1 Steinkobbe Anisian 247.1 Klappmyss 250.0 Klappmyss Havert
Recommended publications
  • Or Early Callovian) Ammonites from Alaska and Montana
    Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2.
    [Show full text]
  • Cryptoclidid Plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert
    Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz To cite this article: Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz (2020): Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1764573 To link to this article: https://doi.org/10.1080/02724634.2020.1764573 View supplementary material Published online: 17 Jul 2020. Submit your article to this journal Article views: 153 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764573 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1764573 ARTICLE CRYPTOCLIDID PLESIOSAURS (SAUROPTERYGIA, PLESIOSAURIA) FROM THE UPPER JURASSIC OF THE ATACAMA DESERT RODRIGO A. OTERO,*,1,2,3 JHONATAN ALARCÓN-MUÑOZ,1 SERGIO SOTO-ACUÑA,1 JENNYFER ROJAS,3 OSVALDO ROJAS,3 and HÉCTOR ORTÍZ4 1Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile, [email protected]; 2Consultora Paleosuchus Ltda., Huelén 165, Oficina C, Providencia, Santiago, Chile; 3Museo de Historia Natural y Cultural del Desierto de Atacama. Interior Parque El Loa s/n, Calama, Región de Antofagasta, Chile; 4Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Bío Bío, Chile ABSTRACT—This study presents the first plesiosaurs recovered from the Jurassic of the Atacama Desert that are informative at the genus level.
    [Show full text]
  • Report of the Meeting of the Kimmeridgian Working Group
    Volumina Jurassica, 2015, Xiii (2): 153–158 Report of the Meeting of the Kimmeridgian Working Group Andrzej WIERZBOWSKI1 Convenor of the Kimmeridgian W.G. The Kimmeridgian Working Group Meeting organized under auspices of the International Subcomission on Ju- rassic Stratigraphy took place in Poland between 18 and 21 May 2015 at the Polish Geological Institute – National Research Institute in Warsaw, with a one and a half day excursion to the Jurassic outcrops in the Wieluń Upland (Polish Jura). It was arranged to discuss new advances in recognition of a unique base of the Kimmeridgian Stage, the Oxfordian/Kimmeridgian boundary since 2006 when the first proposal for the GSSP was made (see Wierzbowski et al., 2006). Fifteen researchers were present, mainly members of the Kimmeridgian Working Group: C. D’Arpa (Geological Museum, University of Palermo), M. Barski (Geological Faculty, University of Warsaw), E. Głowniak (Geological Faculty, University of Warsaw), J. Grabowski (Polish Geological Institute – NRI), S. Hesselbo (University of Exeter, chairmen of ISJS), M. Hodbod (Polish Geological Institute – NRI), B. Matyja (Geological Faculty, University of War- saw), A. Mironenko (Russia), N. Morton (former ISJS chairman, France), M. Rogov (Geological Institute, Russian Academy of Science, Moscow), G. Schweigert (Staatliches Museum, Stuttgart), J. Smoleń (Polish Geological Institute – NRI), K. Sobień (Polish Geological Institute – NRI), A. Wierzbowski (Polish Geological Institute – NRI), H. Wierz­ bowski (Polish Geological Institute – NRI), J. Wright (Department of Earth Sciences, Royal Holloway, University of London). Twelve presentations were given (including two posters). These included several aspects of the Oxfordian/ Kimmeridgian boundary such as ammonite biostratigraphy, dinoflagellate cyst biostratigraphy, magnetostratigraphy, geochemistry (both carbon and oxygen records as well as other geochemical data along with geochemical studies which enable the recognition of the paleoenvironmental changes in the succession).
    [Show full text]
  • Lower Jurassic to Lower Middle Jurassic Succession at Kopy Sołtysie and Płaczliwa Skała in the Eastern Tatra Mts (Western
    Volumina Jurassica, 2013, Xi: 19–58 Lower Jurassic to lower Middle Jurassic succession at Kopy Sołtysie and Płaczliwa Skała in the eastern Tatra Mts (Western Carpathians) of Poland and Slovakia: stratigraphy, facies and ammonites Jolanta IWAŃCZUK1, Andrzej IWANOW1, Andrzej WIERZBOWSKI1 Key words: stratigraphy, Lower to Middle Jurassic, ammonites, microfacies, correlations, Tatra Mts, Western Carpathians. Abstract. The Lower Jurassic and the lower part of the Middle Jurassic deposits corresponding to the Sołtysia Marlstone Formation of the Lower Subtatric (Krížna) nappe in the Kopy Sołtysie mountain range of the High Tatra Mts and the Płaczliwa Skała (= Ždziarska Vidla) mountain of the Belianske Tatra Mts in the eastern part of the Tatra Mts in Poland and Slovakia are described. The work concentrates both on their lithological and facies development as well as their ammonite faunal content and their chronostratigraphy. These are basinal de- posits which show the dominant facies of the fleckenkalk-fleckenmergel type and reveal the succession of several palaeontological microfacies types from the spiculite microfacies (Sinemurian–Lower Pliensbachian, but locally also in the Bajocian), up to the radiolarian microfacies (Upper Pliensbachian and Toarcian, Bajocian–Bathonian), and locally the Bositra (filament) microfacies (Bajocian– Bathonian). In addition, there appear intercalations of detrital deposits – both bioclastic limestones and breccias – formed by downslope transport from elevated areas (junction of the Sinemurian and Pliensbachian, Upper Toarcian, and Bajocian). The uppermost Toarcian – lowermost Bajocian interval is represented by marly-shaly deposits with a marked admixture of siliciclastic material. The deposits are correlated with the coeval deposits of the Lower Subtatric nappe of the western part of the Tatra Mts (the Bobrowiec unit), as well as with the autochthonous-parachthonous Hightatric units, but also with those of the Czorsztyn and Niedzica successions of the Pieniny Klippen Belt, in Poland.
    [Show full text]
  • Preservation of Permian Fishes from the Marl Slate of County Durham
    DEPARTMENT OF EARTH SCIENCES- DURHAM UNIVERSITY Prof. David Harper: [email protected] Dr Stuart Jones: [email protected] Preservation of Permian fishes from the Marl Slate of County Durham 1. Background The fossil fishes from the Permian Marl Slate (Fig.1) display superb preservation of palaeonis- A large fauna of beautifully-preserved fishes from coid fish from scales scattered sparingly to com- the Marl Slate was first described by William King plete whole specimens with extraordinary detail. in his landmark monograph on the Permian fossils of England, in 1850. The Marl Slate was deposited over large areas in middle Europe (extending from England to Russia) in a restricted, almost la- goonal environment; the setting is virtually unique in the stratigraphical record. Neverthe- less, we know little of the modes of preservation of the fishes, many of their life styles and their contribution to late Permian food webs. The po- tential too that soft parts may have been pre- served offers a unique opportunity to study the anatomy and decay processes of these Palaeozoic fishes. Outside Britain, the most closely compara- ble fish-bearing formation to the Marl Slate is the Kupferschiefer of Germany. This is a similar fine- grained, flaggy rock in which specimens are well preserved, flattened on individual laminae. The Kupferschiefer extends across north-west Europe (Lower Zechstein), and is regarded as marking a series of anoxic events prior to the main flooding of the Zechstein Basin in the first of five cycles Figure 1: Two examples of Palaeoniscus freislebenen- sis, Marl Slate, County Durham, UK The soft-part preservation remains because of se- lective preservation and subsequent diagenesis Key questions to study: to more resistant biopolymers.
    [Show full text]
  • Gemmologythe Journal of Volume 28 No.7 July 2003
    ^ GemmologyThe Journal of Volume 28 No.7 July 2003 The Gemmological Association and Gem Testing Laboratory of Great Britain ~ ~. ~ Gemmological Association , ~ '.~ , and Gem Testing Laboratory ~, :~ of Great Britain • 27 Greville Street, London ECIN 8TN Tel: +44 (0)20 7404 3334 Fax: +44 (0)20 7404 8843 e-mail: [email protected] Website: www.gem-a.info President: Professor A.T Collins Vice-Presidents: N. W. Deeks, A.E. Farn, RA Howie, D.G. Kent, RK. Mitchell Honorary Fellows: Chen Zhonghui, RA Howie, K. Nassau Honorary Life Members: H . Bank, D.J. Ca llaghan, E.A [obbins, H . Tillander Council of Management: T J. Davidson, RR Harding, I. Mercer, J. Monnickendam, M.J. 0'Donoghue, E. Stern, I. Thomson, Y.P. Watson Members' Council: A J. Allnutt, S. Burgoyne, P. Dwyer-Hickey, S.A Everitt, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.J. Wates, CH. Winter Branch Chairmen: Midlands -G.M. Green, North West -D. M. Brady, Scottish - B. Jackson, South Eas t - CH. Winter, South West - RM. Slater Examiners: A J. Allnutt, M.5e., Ph.D., FGA, L. Bartlett, B.5e., M.Ph il., FGA, DGA, S. Coelho, BS e., FGA, DGA, Prof. AT Co llins, BSe., Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, S. Greatwood, FGA, DGA, G.M. Green, FGA, DGA, G.M. Howe, FGA, DGA, S. Hue Williams MA, FGA, DGA , B. Jackson, FGA, DGA, G.H. Jones, BSe., PhD., FGA, Li Li Ping, FGA, DGA, M.A Medniuk, FGA, DGA, M. Newton, BSe. , D.Phil., CJ.E. Oldershaw, BSe. (Hans), FGA, DGA, H.L.
    [Show full text]
  • Callovian (Middle Jurassic) Dinoflagellate Cysts from the Algarve Basin, Southern
    1 Callovian (Middle Jurassic) dinoflagellate cysts from the Algarve Basin, southern 2 Portugal 3 4 Marisa E.N. Borges a,b, James B. Riding c,*, Paulo Fernandes a, Vasco Matos a, Zélia 5 Pereira b 6 7 a CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, 8 Campus de Gambelas, 8005-139 Faro, Portugal 9 b LNEG-LGM, Rua da Amieira, 4465-965 S. Mamede Infesta, Portugal 10 c British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 11 5GG, UK 12 13 * Corresponding author. Tel.: +44(0)115 9363447 14 E-mail addresses: [email protected] (M.E.N. Borges), [email protected] (J.B. 15 Riding), [email protected] (P. Fernandes), [email protected] (V. Matos), 16 [email protected] (Z. Pereira). 17 18 ABSTRACT 19 The palynology of three Callovian (Middle Jurassic) limestone-marl successions from 20 the Algarve Basin in southern Portugal was studied. These localities are Baleeira 21 Harbour, Mareta Beach and Telheiro Quarry; they provide a composite succession, tied 1 22 to ammonite zones, through the Lower, Middle and Upper Callovian from the western 23 and eastern subbasins of the Algarve Basin. The three sections generally yielded 24 relatively abundant marine and continental palynofloras. Diversity is low to moderate 25 and the dinoflagellate cyst associations are dominated by Ctenidodinium spp., the 26 Ellipsoidictyum/Valensiella group, Gonyaulacysta jurassica subsp. adecta, 27 Korystocysta spp., Meiourogonyaulax spp., Pareodinia ceratophora, Sentusidinium 28 spp., Surculosphaeridium? vestitum and Systematophora spp. Some intra-Callovian 29 marker bioevents were recorded; these include the range bases of Ctenidodinium 30 ornatum, Gonyaulacysta eisenackii, Korystocysta pachyderma, Mendicodinium 31 groenlandicum, Rigaudella spp.
    [Show full text]
  • Subcommission on Permian Stratigraphy International
    Number 30 June 1997 A NEWSLETTER OF THE SUBCOMMISSION ON PERMIAN STRATIGRAPHY SUBCOMMISSION ON PERMIAN STRATIGRAPHY INTERNATIONAL COMMISSION ON STRATIGRAPHY INTERNATIONAL UNION OF GEOLOGICAL SCIENCES (IUGS) Table of Contents Notes from the SPS Secretary...................................................................................................................-1- Claude Spinosa Note from the SPS Chairman....................................................................................................................-2- Bruce R. Wardlaw Proposed new chronostratigraphic units for the Upper Permian ..............................................................-3- Amos Salvador Comments on Subdivisions of the Permian and a Standard World Scale ................................................-4- Neil W. Archbold and J. Mac Dickins Permian chronostratigraphic subdivisions ................................................................................................-5- Jin Yugan, Bruce R. Wardlaw, Brian F. Glenister and Galina V. Kotlyar The Permian Time-scale ...........................................................................................................................-6- J. B. Waterhouse Sequence Stratigraphy along Aidaralash Creek and the Carboniferous/Permian GSSP ..........................-8- Walter S. Snyder and Dora M. Gallegos Upper Paleozoic Fusulinacean Biostratigraphy of the Southern Urals ...................................................-11- Vladimir I. Davydov, Walter S. Snyder and Claude Spinosa Cordaitalean
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • Rowan C. Martindale Curriculum Vitae Associate Professor (Invertebrate Paleontology) at the University of Texas at Austin
    ROWAN C. MARTINDALE CURRICULUM VITAE ASSOCIATE PROFESSOR (INVERTEBRATE PALEONTOLOGY) AT THE UNIVERSITY OF TEXAS AT AUSTIN Department of Geological Sciences E-mail: [email protected] Jackson School of Geosciences Website: www.jsg.utexas.edu/martindale/ 2275 Speedway Stop C9000 Orchid ID: 0000-0003-2681-083X Austin, TX 78712-1722 Phone: 512-475-6439 Office: JSG 3.216A RESEARCH INTERESTS The overarching theme of my work is the connection between Earth and life through time, more precisely, understanding ancient (Mesozoic and Cenozoic) ocean ecosystems and the evolutionary and environmental events that shaped them. My research is interdisciplinary, (paleontology, sedimentology, biology, geochemistry, and oceanography) and focuses on: extinctions and carbon cycle perturbation events (e.g., Oceanic Anoxic Events, acidification events); marine (paleo)ecology and reef systems; the evolution of reef builders (e.g., coral photosymbiosis); and exceptionally preserved fossil deposits (Lagerstätten). ACADEMIC APPOINTMENTS Associate Professor, University of Texas at Austin September 2020 to Present Assistant Professor, University of Texas at Austin August 2014 to August 2020 Postdoctoral Researcher, Harvard University August 2012 to July 2014 Department of Organismic and Evolutionary Biology; Mentor: Dr. Andrew H. Knoll. EDUCATION Doctorate, University of Southern California 2007 to 2012 Dissertation: “Paleoecology of Upper Triassic reef ecosystems and their demise at the Triassic-Jurassic extinction, a potential ocean acidification event”. Advisor: Dr. David J. Bottjer, degree conferred August 7th, 2012. Bachelor of Science Honors Degree, Queen’s University 2003 to 2007 Geology major with a general concentration in Biology (Geological Sciences Medal Winner). AWARDS AND RECOGNITION Awards During Tenure at UT Austin • 2019 National Science Foundation CAREER Award: Awarded to candidates who are judged to have the potential to serve as academic role models in research and education.
    [Show full text]
  • Guadalupian, Middle Permian) Mass Extinction in NW Pangea (Borup Fiord, Arctic Canada): a Global Crisis Driven by Volcanism and Anoxia
    The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia David P.G. Bond1†, Paul B. Wignall2, and Stephen E. Grasby3,4 1Department of Geography, Geology and Environment, University of Hull, Hull, HU6 7RX, UK 2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 3Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada 4Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary Alberta, T2N 1N4, Canada ABSTRACT ing gun of eruptions in the distant Emeishan 2009; Wignall et al., 2009a, 2009b; Bond et al., large igneous province, which drove high- 2010a, 2010b), making this a mid-Capitanian Until recently, the biotic crisis that oc- latitude anoxia via global warming. Although crisis of short duration, fulfilling the second cri- curred within the Capitanian Stage (Middle the global Capitanian extinction might have terion. Several other marine groups were badly Permian, ca. 262 Ma) was known only from had different regional mechanisms, like the affected in equatorial eastern Tethys Ocean, in- equatorial (Tethyan) latitudes, and its global more famous extinction at the end of the cluding corals, bryozoans, and giant alatocon- extent was poorly resolved. The discovery of Permian, each had its roots in large igneous chid bivalves (e.g., Wang and Sugiyama, 2000; a Boreal Capitanian crisis in Spitsbergen, province volcanism. Weidlich, 2002; Bond et al., 2010a; Chen et al., with losses of similar magnitude to those in 2018). In contrast, pelagic elements of the fauna low latitudes, indicated that the event was INTRODUCTION (ammonoids and conodonts) suffered a later, geographically widespread, but further non- ecologically distinct, extinction crisis in the ear- Tethyan records are needed to confirm this as The Capitanian (Guadalupian Series, Middle liest Lopingian (Huang et al., 2019).
    [Show full text]
  • Extinction Events Among Jurassic Bivalves
    中国科技论文在线 http://www.paper.edu.cn 中山大学学报 ( 自然科学版) 第 39 卷 第 1 期 ACTA SCIENTIARUM NATURALIUM Vol 39 No1 2000 年 1 月 UNIVERSITATIS SUNYATSENI Jan 2000 Article ID: 05296579 ( 2000) 01009105 Extinction Events Among Jurassic Bivalves LIU Chunlian ( Department of Earth Sciences, Zhongshan University, Guangzhou 510275) Abstract: Generic/ subgeneric level data on bivalves from the Jurassic ProtoAtlantic record three regional extinction events, at the end of the Pliensbachian, beginning of the Callovian and Tithonian stages. The ex tinction at the T ithonian is the most important in terms of magnitude and duration. These extinctions can cor relate with sealevel changes and associated environmental deterioration. The endPliensbachian extinction, related to anoxia caused by a sharp rise of sea level, selectively eliminated infaunal bivalves. In the Callo vian event, which was linked to a regional regression, the selection against infaunal group occurred only in midlatitude area. T ithonian event was a result of extreme and prolonged regression and lacked the selective extinction of infaunal bivalves. Keywords: extinction; Jurassic bivalves; ProtoAtlantic CLC number: Q9158174 Document code: A 1 Introduction Two extinction events among Jurassic organisms, at the end of the Pliensbachian and Tithonian stages, were confirmed at family level by Sepkoski et al[ 1] . Using specieslevel data of the molluscs, Hallam[ 2] demostrated that marine invertebrate mass extinctions at these times occurred on a regional, not a global scale. He estimated that 84% of species became extinct in West Europe in the endPliens bachian extinction, which was considered the most important of the whole Jurassic. However, no de tailed studies on the Jurassic extinctions at the generic level were published up to date.
    [Show full text]