Hot Physics in the Cold War

Total Page:16

File Type:pdf, Size:1020Kb

Hot Physics in the Cold War books & arts Hot physics in the Cold War Buried Glory: scattering from phonons was probably was rather monogamous, whereas Lev was Portraits of Soviet discovered by Raman in 1928 or Brillouin a serial philanderer. Scientists in 1922, but as quantization only began It is interesting that the author mentions to be understood after de Broglie in 1924, Landau’s condescending misunderstanding By Istvan Hargittai it is moot to attribute phonons to Tamm of Dirac’s antiparticles (although Dirac in 1929, especially as his noted paper himself initially mistook his anti-electrons OXFORD UNIV. PRESS: on phonons appeared in 1932. Russians for protons), and perhaps more interesting 2013. 352PP. US$35.00 have always aggressively maintained that that he remarks on Landau’s publication this was all predicted by Mandelshtam of his own students’ work. This was not in 1918, but he only published his ideas uncommon among Soviet-era physicists, in 1926, and credit in science generally with Ginzburg publishing the so-called goes with publication date, not clever Ginzburg criterion for fluctuation ideas. Perhaps worst of all in the context phenomena as sole author in 1960, despite stvan Hargittai’s book, Buried Glory, of “buried glory” is the discussion of the it being published in detail a year earlier by is a hagiography (‘lives of saints’) of Cherenkov effect — many Soviet physicists his student Arkadiy Levanyuk. Such lapses Ifourteen Soviet scientists of the Cold of that era have spoken of Cherenkov in scientific ethics would not have gone War era, making most of them sound as “the dumbest person to win a Nobel unnoticed or unpunished in the West. more like Mother Teresa than like Prize in physics”, pointing out that the There are a few eccentricities in the Albert Einstein or Richard Feynman. observation was a complete accident, that book. The suggestion that V. S. Letokhov As the title indicates, the author feels he did not understand the effect, and that should have shared Chu’s Nobel Prize that their great contributions (mostly to “he did not understand the effect even after is just silly. Letokhov’s work (mostly on physics) have gone unrecognized. This Tamm explained it to him”. So much for laser separation of isotopes) was not is a remarkable inference, given that half buried glory. of the same rank in science, and this of them (Igor Tamm, Nikolai Semenov, There is a great deal of discussion example shows the author’s prejudices. Lev Landau, Petr Kapitza, Alexei Abrikosov, about those who were elected to the Similarly, leaving Gorkov out of the Nobel Vitaly Ginzburg and Andrei Sakharov) Russian Academy of Sciences as full or Prize shared by Abrikosov has not been were awarded Nobel Prizes. corresponding members. The author seems widely viewed as controversial. Other The book is highly readable and offers surprised that these elections are often questionable comments include the reason some insights (undocumented) into based in part on politics or criteria other for Abrikosov’s second divorce — it was not their personal lives, but it unfortunately than academic accomplishments. Yet this that his wife “became homesick for France.” strays into old areas of polarized opinions seems equally true in the USA in 2013 as The two parted ways with great animosity and controversial history: for example, in the USSR in the 1950s. In both the US that was totally unrelated to homesickness. the developments of hydrogen bomb National Academy of Sciences and the UK Abrikosov stayed with my wife and me in technology credited to Sakharov (or even Royal Society members are explicitly asked Boulder, Colorado, for a few days in 1991 worse, to Edward Teller, about whom to consider gender and geographic location when he emigrated to the USA and gave a Hargittai previously wrote a controversial as priorities, as opposed to scientific merit. very different account. The author is very biography) were largely due to Stan Ulam, As to who got buried in Novodevichy critical of Abrikosov and suggests that “he as indeed his still-classified, single-authored Cemetery — well, it was my pleasure and his wife might find themselves quite work shows. This is now known by much to tour it (a rare privilege in 1981), and lonely” in their twilight years in the USA. of the scientific community — based on Hargittai finds it extremely valuable as I assure him that many of us in the West numerous published histories — as is the a sign of national respect. But I cannot valued our friendship with Abrikosov, and fact that no hydrogen bomb designed by imagine that being buried in a prominent he has indeed made friends outside Russia. Teller ever worked. Thus referring to the Orthodox Christian cemetery would have All societies like having saints. One “Teller–Ulam model” or to Teller as the been important to Ginzburg, for example. should not confuse great physics with a proverbial “father of the hydrogen bomb” The chapters on Kapitza, Landau and pious life. Feynman and Oppenheimer had is mythology, not history. Ulam is never Evgeny Lifshits are insightful and balanced. complex personal lives and were not saints; mentioned in this book, which is odd as he Kapitza was larger than life. His disdain don’t confuse that with evaluations of their and the author (like Teller) are Hungarian. for Sergey Vavilov could be clarified great work. Writing a book about Russian He clearly invented many of Sakharov’s somewhat; it is downplayed — in actuality physics and physicists should not be an “discoveries”. And crediting Sakharov with he refused to use the Institute stationery excuse for lionizing the ones you liked re-discoveries that may have been based as Vavilov’s name was on the letterhead. personally or feigning worry about the on espionage is hardly appropriate without And Lifshits was certainly more of a retirement years of those you didn’t. ❐ further documentation. genuine collaborator with Landau than Similar ill-advised excursions by the scribe. Landau’s marriage to Kora was not REVIEWED BY JAMES F. SCOTT author include repeated credit to Tamm exactly as the author describes: he writes James F. Scott is at the Cavendish Laboratory, for discovering phonons in 1929. Phonons that “When they married, they gave each University of Cambridge, J. J. Thomson Road, are quantized vibrational waves, and their other full freedom.” That is misleading; as Cambridge CB3 0HE, UK. “discovery” is partly semantics: quantized described in Kora’s recent biography, she e-mail: [email protected] NATURE PHYSICS | VOL 9 | NOVEMBER 2013 | www.nature.com/naturephysics 691 © 2013 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Igor Tamm 1895 - 1971 Awarded the Nobel Prize for Physics in 1958
    Igor Tamm 1895 - 1971 Awarded the Nobel Prize for Physics in 1958 The famous Russian physicist Igor Evgenievich Tamm is best known for his theoretical explanation of the origin of the Cherenkov radiation. But really his works covered various fields of physics: nuclear physics, elementary particles, solid-state physics and so on. In about 1935, he and his colleague, Ilya Frank, concluded that although objects can’t travel faster than light in a vacuum, they can do so in other media. Cherenkov radiation is emitted if charged particles pass the media faster than the speed of light ! For this research Tamm together with his Russian colleagues was awarded the 1958 Nobel Prize in Physics. Igor Tamm was born in 1895 in Vladivostok when Russia was still ruled by the Tsar. His father was a civil engineer who worked on the electricity and sewage systems. When Tamm was six years old his family moved to Elizavetgrad, in the Ukraine. Tamm led an expedition to He graduated from the local Gymnasium in 1913. Young Tamm dreamed of becoming a revolutionary, but his father disapproved . However only his mother was able to convince him to search for treasure in the Pamirs change his plans. She told him that his father’s weak heart could not take it if something happened to him. In 1923 Tamm was offered a teaching post at the Second Moscow University and later he was And so, in 1913, Tamm decided to leave Russia for a year and continue his studies in Edinburgh. awarded a professorship at Moscow State University.
    [Show full text]
  • Magnetic Vortices in Gauge/Gravity Duality
    Magnetic Vortices in Gauge/Gravity Duality Dissertation by Migael Strydom Magnetic Vortices in Gauge/Gravity Duality Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Migael Strydom aus Pretoria M¨unchen, den 20. Mai 2014 Dissertation submitted to the faculty of physics of the Ludwig{Maximilians{Universit¨atM¨unchen by Migael Strydom supervised by Prof. Dr. Johanna Karen Erdmenger Max-Planck-Institut f¨urPhysik, M¨unchen 1st Referee: Prof. Dr. Johanna Karen Erdmenger 2nd Referee: Prof. Dr. Dieter L¨ust Date of submission: 20 May 2014 Date of oral examination: 18 July 2014 Zusammenfassung Wir untersuchen stark gekoppelte Ph¨anomene unter Verwendung der Dualit¨at zwischen Eich- und Gravitationstheorien. Dabei liegt ein besonderer Fokus einer- seits auf Vortex L¨osungen, die von einem magnetischem Feld verursacht werden, und andererseits auf zeitabh¨angigen Problemen in holographischen Modellen. Das wichtigste Ergebnis ist die Entdeckung eines unerwarteten Effektes in einem ein- fachen holografischen Modell: ein starkes nicht abelsches magnetisches Feld verur- sacht die Entstehung eines Grundzustandes in der Form eines dreieckigen Gitters von Vortices. Die Dualit¨at zwischen Eich- und Gravitationstheorien ist ein m¨achtiges Werk- zeug welches bereits verwendet wurde um stark gekoppelte Systeme vom Quark- Gluonen Plasma in Teilchenbeschleunigern bis hin zu Festk¨orpertheorien zu be- schreiben. Die wichtigste Idee ist dabei die der Dualit¨at: Eine stark gekoppelte Quantenfeldtheorie kann untersucht werden, indem man die Eigenschaften eines aus den Einsteinschen Feldgleichungen folgenden Gravitations-Hintergrundes be- stimmt. Eine der Gravitationstheorien, die in dieser Arbeit behandelt werden, ist ei- ne Einstein{Yang{Mills Theorie in einem AdS{Schwarzschild Hintergrund mit SU(2)-Eichsymmetrie.
    [Show full text]
  • The Development of the Science of Superconductivity and Superfluidity
    Universal Journal of Physics and Application 1(4): 392-407, 2013 DOI: 10.13189/ujpa.2013.010405 http://www.hrpub.org Superconductivity and Superfluidity-Part I: The development of the science of superconductivity and superfluidity in the 20th century Boris V.Vasiliev ∗Corresponding Author: [email protected] Copyright ⃝c 2013 Horizon Research Publishing All rights reserved. Abstract Currently there is a common belief that the explanation of superconductivity phenomenon lies in understanding the mechanism of the formation of electron pairs. Paired electrons, however, cannot form a super- conducting condensate spontaneously. These paired electrons perform disorderly zero-point oscillations and there are no force of attraction in their ensemble. In order to create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. As a result of this ordering of zero-point oscillations in the electron gas, superconductivity arises. This model of condensation of zero-point oscillations creates the possibility of being able to obtain estimates for the critical parameters of elementary super- conductors, which are in satisfactory agreement with the measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained, due to the ordering of zero-point fluctuations. It is therefore established that both related phenomena are based on the same physical mechanism. Keywords superconductivity superfluidity zero-point oscillations 1 Introduction 1.1 Superconductivity and public Superconductivity is a beautiful and unique natural phenomenon that was discovered in the early 20th century. Its unique nature comes from the fact that superconductivity is the result of quantum laws that act on a macroscopic ensemble of particles as a whole.
    [Show full text]
  • Presentation Kluwer Online
    Presentation Kluwer Online http://www.kluweronline.com By Walter Montenarie Licensing Manager [email protected] Kluwer Online http://www.kluweronline.com Contents Presentation • Introduction • e-Journals • e-Reference Works • e-Books • Consortium contracts Introduction www.kluweronline.com • Who are we? Online Journals • Facts & figures Reference • Imprints Works • Nobel Prize winners • Current issues eBooks Consortium Contracts Kluwer Online Accelerating the World of Research [email protected] Introduction – Who are we? http://www.kluweronline.com Kluwer Academic Publishers • An international publishing organization active across a broad spectrum of academic and professional fields. • Our goal is provide dedicated service to researchers, scientists and academics through high-quality STM print and online content distribution. • We are involved with sharing scientific content through the WHO’s HINARI and AGORA programs. • We have a prestigious Russian program acquired as part of our 1998 purchase of Plenum Publishers. Introduction – Facts & Figures http://www.kluweronline.com Kluwer Academic Publishers • 1200 New (print) books per year • 13,000 Backlist book titles • More than 200 book series • Printing on Demand • Over 650 Print/Electronic journals • 750+ e-Book Titles (100 new each year) • 7 e-Reference Works Introduction – Imprints http://www.kluweronline.com Publishers Imprints: • Kluwer Academic Publishers • Kluwer Academic/Plenum Publishers • Kluwer Academic/Human Sciences Press • Kluwer Academic/Baltzer Science Publishers
    [Show full text]
  • Aleksei A. Abrikosov 1928–2017
    Aleksei A. Abrikosov 1928–2017 A Biographical Memoir by M. R. Norman ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ALEKSEI ALEKSEEVICH ABRIKOSOV June 25, 1928–March 29, 2017 Elected to the NAS, 2000 Shortly after the 2003 announcement that Aleksei Abrikosov had won the Nobel Prize in Physics, a number of colleagues took Alex to lunch at a nearby Italian restau- rant. During lunch, one of the Russian visitors exclaimed that Alex should get a second Nobel Prize, this time in Literature for his famous “AGD” book with Lev Gor’kov and Igor Dzyaloshinskii (Methods of Quantum Field Theory in Statistical Physics.) Somewhat taken aback, I looked closely at this individual and realized that he was deadly serious. Although I could imagine the reaction of the Nobel Literature committee to such a book (for a lay person, perhaps analogous to trying to read Finnegan’s Wake), I had to admit that my own copy of this book is quite dog-eared, having been put to good use over the By M. R. Norman years. In fact, you know you have made it in physics when your book gets a Dover edition. One of the most charming pictures I ever saw was a rare drawing in color that Alexei Tsvelik did (commissioned by Andrei Varlamov for Alex’s 50th birthday) that was proudly displayed in Alex’s home in Lemont, IL. It showed Alex with his fingers raised in a curled fashion as in the habit of medieval Popes.
    [Show full text]
  • Supplementvolum-E18 Nu-Mber-41989 .__L,___Society
    ISSN 0739-4934 NEWSLETTER I IISTORY OF SCIENCE SUPPLEMENTVOLUM-E18 NU-MBER-41989 .__L,___SOCIETY - WELCOME TO GAINESVILLE HSS EXECUTIVE BY FREDERICK GREGORY COMMITTEE "A SOPI-llSTICATED SLICE of small-town south": so wrote Jonathan Lerner PRESIDENT about Gainesville for Washington Post readers this past spring. Like the majority MARY JO NYE, University of Oklahoma of visitors to Gainesville, Lerner was impressed with the topography of the city, VICE-PRESIDENT which forms a hammock-a dry area, relatively higher than its surroundings, STEPHEN G. BRUSH, University of Maryland that can support hardwood trees. Residents of Gainesville are enormously proud of the extensive canopy that covers 46 percent of their town, the highest per­ EXECUTIVE SECRETARY MICHAEL M. SOKAL, Worcester centage of any Florida city. In addition to the majestic live oaks, the southern Polytechnic Institute pine, and a variety of palm trees, dogwoods and magnolias are also plentiful. TREASURER Unfortunately the HSS Annual Meeting is held at a time of year that misses the MARY LOUISE GLEASON, New York City blossoms of our giant azaleas, some older ones of which are as high as roof tops. EDITOR f obvious interest to historians of science is nearby Paynes Prairie, an 18,000- RONALD L. NUMBERS, University of acre wildlife preserve whose zoological and botanical life was described in vivid Wisconsin-Madison detail by William Bartram after his travels through the region in 1774. Meeting sessions will be held on the campus of the University of Florida, which, at least in this part of the country, is never to be mixed up with Florida State University in Tallahassee.
    [Show full text]
  • Appeal from the Nuclear Age Peace Foundation to End the Nuclear Weapons Threat to Humanity (2003)………………………………………..……...26
    Relevant Appeals against War and for Nuclear Disarmament from Scientific Networks 1945- 2010 Reiner Braun/ Manuel Müller/ Magdalena Polakowski Russell-Einstein-Manifesto (1955)……………..…..1 The first Pugwash Conferenec (1957)………..……4 The Letter from Bertrand Russell to Joseph Rotblat (1956)………………………………..……...6 „Göttinger 18“ (1957)…………………………..…..8 Hiroshima Appeal (1959)………………………..…9 Linus Pauling (1961)…………………………..…..10 The Call to Halt the Nuclear Arms Race (1980)………………..…..11 The Göttingen Draft Treaty to Ban Space Weapons (1984)…………………………………………….....15 Appeal by American Scientists to Ban Space Weapons (1985)………………………………..…..16 The Hamburg Disarmament Proposals (1986)…………………………………………..…...17 Hans A. Bethe to Mr. President (1997)………..…18 Appeal from Scientists in Japan (1998)……….....20 U.S.Nobel laureates object to preventive attack on Iraq (2003)……………………………………...….25 Appeal from the Nuclear Age Peace Foundation to end the nuclear weapons threat to humanity (2003)………………………………………..……...26 Appeal to support an International Einstein Year (2004)……………………………………………….28 Scientists for a Nuclear Weapons Free World, INES (2009)…………………………..……………31 Milan Document on Nuclear Disarmament (2010)……………………..34 Russell-Einstein-Manifesto (1955) 1 Russell-Einstein-Manifesto (1955) In the tragic situation which confronts humanity, we feel that scientists should assemble in conference to appraise the perils that have arisen as a result of the development of weapons of mass destruction, and to discuss a resolution in the spirit of the appended draft. We are speaking on this occasion, not as members of this or that nation, continent, or creed, but as human beings, members of the species Man, whose continued existence is in doubt. The world is full of conflicts; and, overshadowing all minor conflicts, the titanic struggle between Communism and anti-Communism.
    [Show full text]
  • The Discovery of Cherenkov Radiation Roger Huang the Discovery of Cherenkov Radiation
    The Discovery of Cherenkov Radiation Roger Huang The Discovery of Cherenkov Radiation Roger Huang April 22, 2020 1/18 Cherenkov's Scientific Beginnings The Discovery of Cherenkov Pavel Alekseevich Cherenkov began postgraduate studies Radiation at the Institute for Physics and Mathematics in Leningrad Roger Huang in 1930, and began working under direct supervision of Sergei Ivanovich Vavilov in 1932 This institute was transformed into the Lebedev Institute in Moscow in 1934, with Vavilov as director Cherenkov chose to study the luminescence of uranyl salt solutions under the gamma-ray radiation of radium 2/18 Investigating Luminescence The Discovery of Cherenkov Radiation Roger Huang Lumniscence is a weak glow caused when molecules are excited by some external source and then release light when decaying back to their ground state after some finite time This glow is weak, close to the human visibility threshold, and photomultipliers had not yet been developed Vavilov and Brumberg had developed the optical wedge method to quantify this glow, featuring the human eye has the measuring instrument 3/18 The Experimental Setup The Discovery of Cherenkov Radiation Vessel 1 contains the salt Roger Huang solutions under study, with slots for radium samples to be inserted below and to the side A Glan prism at 6 is used to measure polarization An optical wedge (opaque on one side and transparent on the other) is inserted into 4, moving perpendicular to this figure’s plane, to absorb some portion of the light 4/18 The Experimental Procedure The Discovery
    [Show full text]
  • CP Violation's Early Days
    CERN Courier July/August 2014 Anniversary Temperature is our business CP violation’s early days Mineral Insulated Cable Reliable, Highly accurate cabling capable of A brief look back at a discovery that surprised operating in extreme environments. the world of particle physics 50 years ago. MgO and SiO2 Cables. RF Coaxial Cables. Multiconductor Transmission Cables. In the summer of 1964, at the International Conference on High- Welded and hermetically sealed connections. Energy Physics (ICHEP) in Dubna, Jim Cronin presented the results Capable of operating in and measuring temperatures of an experiment studying neutral kaons at Brookhaven National of up to 1,260oC. Laboratory. In particular, it had shown that the long-lived neutral Capable of operating in the following atmospheres - kaon can decay into two pions, which implied the violation of CP oxidising, reducing, neutral and vacuum. symmetry – a discovery that took the physics community by sur- prise. The news was greeted with some scepticism and met a barrage of questions. Everyone wanted to be satisfi ed that nothing had been overlooked, and that all other possibilities had been considered care- The experiment that discovered CP violation at Brookhaven was fully and ruled out. People need not have worried. Cronin, together set up in a neutral beamline, directed inside the ring of the Innovation at Okazaki: Cabling, Temperature Sensors & Heaters | okazaki-mfg.com with Val Fitch, visiting French physicist René Turlay and graduate Alternating Gradient Synchrotron. Visible here are the two student Jim Christenson, had spent months asking themselves the spectrometer magnets positioned at 22° to the beam. Spark CERN_125x193:Mise en page 1 18/09/12 17:17 Page 1 same questions, testing and cross-checking their results thoroughly.
    [Show full text]
  • Complexity, Symmetry and Strong Correlations
    Jak Chakhalian COMPLEXITY, SYMMETRY AND Solid State Physics 601 STRONG CORRELATIONS Fall 2017 Phenomena Emerging from Complexity APPROACH TO COMPLEX PHENOMENA reductionism and emergence 3 Exploring the Unit materials which deform under stress, like polymers, liquids, colloids, and granular materials. The written text for this unit focuses on solid state physics, whereas the video touches on both solid state and soft condensed matter. In today’s session, we will focus on emergence in condensed matter physics: both solid-state and soft condensed matter. By some accounts, all of condensed matter physics can be considered emergent. The simplest definition of emergence is the interaction of individual pieces, following simple rules, which leads to collective behavior. There is no leader, or top-down control in such systems—the collective behavior comes from the bottom-up interaction of many individuals. In flocking, for example, each bird is following simple rules: Stay close to your neighbors, but not too close, and avoid predators. From these rules comes surprisingly coherent behavior of the flock as a whole. (Note: In particular, non-linear interactions, in which the character of the interaction changes with some parameter, like distance, lead to surprising behavior. In this way, complex behavior is not simply the additive sum of many individual interactions.) WHAT IS EMERGENCE ? Here is a definition of emergence from the National Academies: 3 Emergent phenomena in condensed-matter and materials physics are those that cannot be understood with models that treat the motions of the individual particles within the material independently. Instead, the essence of emergent phenomena lies in the complex interactions between many particles that result in the diverse behavior and often unpredictable collective motion of many particles.
    [Show full text]
  • Jewish Nobel Prize Laureates
    Jewish Nobel Prize Laureates In December 1902, the first Nobel Prize was awarded in Stockholm to Wilhelm Roentgen, the discoverer of X-rays. Alfred Nobel (1833-96), a Swedish industrialist and inventor of dynamite, had bequeathed a $9 million endowment to fund significant cash prizes ($40,000 in 1901, about $1 million today) to those individuals who had made the most important contributions in five domains (Physics, Chemistry, Physiology or Medicine, Literature and Peace); the sixth, in "Economic Sciences," was added in 1969. Nobel could hardly have imagined the almost mythic status that would accrue to the laureates. From the start "The Prize" became one of the most sought-after awards in the world, and eventually the yardstick against which other prizes and recognition were to be measured. Certainly the roster of Nobel laureates includes many of the most famous names of the 20th century: Marie Curie, Albert Einstein, Mother Teresa, Winston Churchill, Albert Camus, Boris Pasternak, Albert Schweitzer, the Dalai Lama and many others. Nobel Prizes have been awarded to approximately 850 laureates of whom at least 177 of them are/were Jewish although Jews comprise less than 0.2% of the world's population. In the 20th century, Jews, more than any other minority, ethnic or cultural, have been recipients of the Nobel Prize. How to account for Jewish proficiency at winning Nobel’s? It's certainly not because Jews do the judging. All but one of the Nobel’s are awarded by Swedish institutions (the Peace Prize by Norway). The standard answer is that the premium placed on study and scholarship in Jewish culture inclines Jews toward more education, which in turn makes a higher proportion of them "Nobel-eligible" than in the larger population.
    [Show full text]
  • The Conflicting Case of Lev Davidovich Landau's Cerebral Death
    International Journal of Humanities Social Sciences and Education (IJHSSE) Volume 5, Issue 3, March 2018, PP 30-35 ISSN 2349-0373 (Print) & ISSN 2349-0381 (Online) http://dx.doi.org/10.20431/2349-0381.0503003 www.arcjournals.org The Conflicting Case of Lev Davidovich Landau's Cerebral Death Celso Luis Levada1, Huemerson Maceti2, Ivan José Lautenschleguer3, Miriam de Magalhães Oliveira Levada4 1, 2, 3, 4 Teaching Group of Sciences of Herminio Ometto Foundation - Uniararas /Brazil *Corresponding Author: Celso Luis Levada, Teaching Group of Sciences of Herminio Ometto Foundation - Uniararas /Brazil Abstract: On April 1, 2018, it will complete fifty years of the death of one of the scientists who contributed most to the development of physics in the 20th century, the Russian Lev Davidovich Landau. He was born on January 22, 1908 in Baku, Azerbaijan, in what was then the Russian Empire. He was a prominent soviet physicist who made fundamental contributions to many areas of theoretical physics. He received the 1962 Nobel Prize in Physics for his theory of super fluidity that accounts for the properties of liquid helium. On January, 1962, Landau was seriously injured in an automobile accident and remained three months in a coma, being declared clinically dead four times. Recovered, he lived another six years. Landau died on April, 1968, aged 60, from complications from the accident. The case involving Landau introduces a conflict related to the removal of organs from people believed to be brain dead. Keywords: Landau, Nobel Prize Physics, Brain Death. 1. INTRODUCTION Landau was born in Baku, Azerbaijan, on January 22, 1908, the son of an oil engineer and a doctor.
    [Show full text]