View metadata, citation and similar papers at core.ac.uk brought to you by CORE

provided by Directory of Open Access Journals

JournalofEngineeringScienceandTechnology Vol.6,No.2(2011)146-160 ©SchoolofEngineering,Taylor’sUniversity

HUNTINGPHENOMENONSTUDYOFRAILWAY CONVENTIONALTRUCKONTANGENTTRACKSDUETO CHANGEINRAILWHEEL

KARIMH.ALIABOOD*,R.A.KHAN

DepartmentofMechanicalEngineering,CollegeofEngineering&Technology JamiaMilliaIslamiaNewDelhi-110025,India *CorrespondingAuthor:[email protected] Abstract A mathematical dynamic model of railway conventional truck is presented with 12 degrees of freedom equations of motion. The presented dynamic systemconsistsofconventionaltruckattachedwithtwosinglewheelsetsin which equipped with lateral, longitudinal and vertical linear stiffness and primary and secondary suspensions. This investigated model governslateraldisplacement,verticaldisplacement,rollyawanglesofeach ofwheelsetandthelateraldisplacement,verticaldisplacement,rollandyaw angle of conventional truck. Kalker's linear theory has been adopted to evaluate the creep which are introduced on rail wheels due to rail wheel contact. The railway truck mathematical equations of motion are solvedusingfourthorderRung-Kuttamethodwhichrequiresthatdifferential equationstobetransformedintoasetoffirstorderdifferentialequations.The transformed state space equations are simulated with computer aided simulationtorepresentthedynamicbehaviorandtimesolutionof ofconventionaltruckmovingontangenttracks.Influencesofthegeometric parametersoftherailwheelsuchaswheelconicityandnominalrollingradius onthedynamicstabilityofthesystemareinvestigated.Itisconcludedthat the geometric parameters of the rail wheel have different effects on the huntinginstabilityandonthechangeofthecriticalhuntingvelocityofthe system. In addition critical hunting velocity of rail trucks is proportional inversely with the square roots of wheel conicity but high critical hunting velocityobtainedbyincreasingthenominalrollingradiusoftherailwheel. Keywords:Railwheel,Conventionaltruck,Criticalhuntingvelocity,Tangent tracks,Lateralresponse,Yawresponse.

146 HuntingPhenomenonStudyofRailwayConventionalTruck 147

Nomenclatures a Halfoftrackgage,m b2 Halfdistancebetweenlongitudinalsecondarysuspensions,m Cpx Viscousdampingconstantoflongitudinalprimarysuspension,N.s/m Cpy Viscousdampingconstantoflateralprimarysuspension,N.s/m Cpz Viscousdampingconstantofverticalprimarysuspension,N.s/m Crail Lateralraildampingcoefficient,N.s/m Csx Viscousdampingconstantoflongitudinalsecondarysuspension,N.s/m Csy Viscousdampingconstantoflateralsecondarysuspension,N.s/m dp Halfdistancesbetweenprimarylongitudinalsuspensions,m Fciw Creepforcesinrail-wheelcontact(i=right,left),N Fniw Normalforcesinrail-wheelcontact(i=right,left),N Fraili producedbyrail(flangecontactforce),(i=right,left),N Fsyt Lateraltrucksuspensionforce,N Fsywi Lateralwheelsetsuspensionforce,(i=front,rear),N Fszwi Verticalwheelsetsuspensionforce,(i=front,rear),N f11 Lateralcreepcoefficient,N f12 Lateral/spincreepcoefficient,N.m 2 f22 Spincreepcoefficient,N.m f33 Forwardcreepcoefficient,N hT Verticaldistancefromwheelsetcentretothelateralsecondary suspension,m 2 Itx Truckmomentofabout X-axis,kg.m 2 Itz Truckmassmomentofinertiaabout Z-axis,kg.m 2 Iwx Wheelsetmassmomentofinertiaabout X-axis,kg.m 2 Iwy Wheelsetmassmomentofinertiaabout Y-axis,kg.m 2 Iwz Wheelsetmassmomentofinertiaabout Z-axis,kg.m Kpx Springstiffnessoflongitudinalprimarysuspension,N/m Kpy Springstiffnessoflateralprimarysuspension,N/m Kpz Springstiffnessofverticalprimarysuspension,N/m Krail Lateralrailstiffness,N/m Ksx Springstiffnessoflongitudinalsecondary,N/m Ksy Springstiffnessoflateralsecondary,N/m Lb Halfdistancebetweentwowheelsetsofthetruck,m Lcs Verticaldistancebetweenlateralsecondarysuspension and centre ofthecarbody,m Ls Horizontal distance between vertical secondary suspension and centreofthecarbody,m Msxwi Longitudinalwheelsetsuspensionmoment,( i=front,rear),N.m Mszt Verticaltrucksuspensionmoment,N.m Mszwi Verticalwheelsetsuspensionmoment,( i=front,rear),N.m mt Massoftruck,kg mw Massofwheelset,kg ro Centredrollingradiusofwheel,m V Railwayforwardvelocity,m/s W load,N Yt Trucklateraldisplacement,m Yw Wheelsetlateraldisplacement,m Zt Truckverticaldisplacement,m JournalofEngineeringScienceandTechnology April2011,Vol.6(2) 148 K.H.A.AboodandR.A.Khan

Zw Wheelsetverticaldisplacement,m GreekSymbols δ Flangeclearancebetweenwheelandrail,m λ Wheelconicity φt Truckrollangle,rad. φw Wheelsetrollangle,rad. ψt Truckyawangle,rad. ψw Wheelsetyawangle,rad. 1.Introduction Rail vehicles are considered as the most important transportation systems in the modernsocietyduetoitsabilitytomovemanypersonsandheavyloadsfast,safely andwithlowimpactontheenvironment.Theimportantfactortothepassengersto use appropriate rail vehicles is ride comfort in addition to safety. Railway transportation system safety requires that derailment or the wheel flange climb duringrailvehiclerunningisneverbeallowedwhileridecomfortrequiresaself excitedlateralrailwayorwhatcalledhuntingphenomenoniseliminated. Theclassicalhuntingoscillationisaswayingmotionofrailvehiclecausedby theforwardspeedofthevehicleandbywheel-railinteractiveforcesduetowheel- railcontactgeometryandcreepcharacteristics. Huntingisinstabilityappearsathigherspeedsasanoscillationinthewheelset and other vehicle components such as trucks and carbody. These higher rail vehiclespeedsknownasthecriticalvelocitiesinwhichtherailvehiclestartsto huntorstartstobeinstableequilibrium.Belowacertaincriticalspeed,themotion isdampedoutandabovethecriticalspeedthemotioncanbeviolent,damaging trackandwheels,andpotentiallycausingderailment. Wheelsetisthebasiccomponentoftherailvehicleresponsibleforsafeand comfortabletransportationanditisthemostcomponentinrailvehicleplayingan important role in this undesirable derailment and hunting phenomenon which causedduetoproducedforcesbetweenthewheelandtracks.Mostoftheseforces whicharecalledthecreepforcesintroducedaccordingtofrictionpropertiesofthe wheel rail contact geometry. It is well known that the undesirable hunting instabilities of wheelset transform to the trucks and car body in which can be eliminatedbyincreasingthecriticalvelocitiesoftherailwayvehicle. There are two types of trucks in the rail vehicle conventional and uncon- ventionaltrucks.Inwhichtherailwheelsareattachedtogetherwithasolidaxlein conventionaltruckssotherailwheelsaredependentlyrotatingandmovingwhile thewheelsareindependentlyrotatingandmovingintheunconventionaltrucks.The importantparametersintherailwheelgeometryarethewheelconicityandnominal rollingradius.Influencesofthesewheelparametersofgeometryonthestabilityof thetrucksareinvestigatedinthisresearch. Many researches have been presented to study the dynamic behaviour and stability of rail vehicle components due to wheel rail contact creep forces at the criticalhuntingvelocitywhiletheparametersoftherailwheelgeometryhavetaken intoconsideration.AnearlystudyonthissubjectwaspresentedbyWickens[1,2]

JournalofEngineeringScienceandTechnology April2011,Vol.6(2) HuntingPhenomenonStudyofRailwayConventionalTruck 149 in which the dynamic stability of railway vehicle wheelsets and having profiledwheelsisinvestigated.Itwasshownthatthedynamicinstabilityofrailway vehiclebogiesandwheelsetsiscausedbythecombinedactionoftheconicityofthe wheelsandthecreepforcesactingbetweenthewheelsandtherails. In the study presented by Suda et al. [3] the hunting stability and curving performance of high speed rail vehicles is represented considering non-linear creep force and flange contact. In addition, the lateral force of front wheel on outer rail and critical speed of wheelset are calculated and the influence of linkagesbetweenwheelsetandtruckframewereexamined. Conventional and unconventional wheelset were used into the research investigatedbyJawaharetal.[4]inwhichnonlinearmathematicalmodelusedto evaluate the wheel-rail contact forces. In addition the results showed that unconventional system improves the dynamic features positively than the conventional system but at the same time the unconventional system shows a tendencyforaconstantlateraldisplacementofawheelsetfromthecentre. Matsumotoetal.[5]reportedthatthemeasuredcreepcharacteristicsinwheel- railcontactagreewellwiththecalculatedvaluesbasedonKalker'slineartheory [6]andshowedthatasmallchangeinwheelsetlateraldisplacementmayleadto agreatchangeincreepcharacteristics. TheresearchesinwhichdonebyAhmadianandYang[7-9]investigatedthe Hopfbifurcationandhuntingbehaviourinarailwheelsetwithflangecontactand studied the effects of nonlinear longitudinal yaw damping on hunting critical speeds showing that large increasing in yaw damping can increase the hunting critical speeds and improve the hunting behaviour while Dukkipati and Swamy [10-11] considered modified railway passenger truck designs to improve the compatibilitybetweenthedynamicstabilityandtheabilityofthevehicletosteer aroundcurvesalsotheeffectsofsuspensionandwheelconicitywereconsidered toevaluatethetrade-offbetweendynamicstabilityandcurvingperformance. Nathetal.[12]studiedthenon-lineardynamicsonrailwaywheelsetmoving on a tangent track and the governing equations of motion are derived using Lagrangianapproach.Itwasshownintheirresearchthattheresultspresentedare helpfultounderstandthecomplicatedbutimportantbehaviourofwheelsetandits dependenceonaxialvelocityandyawstiffness. An important study is presented by Mohan [13] used controllable primary suspensionstoimprovehuntinginrailwayvehiclesmovingontangenttracks.In whichsingle-pointandtwo-pointwheel-railcontactconditionswereconsideredto study the dynamic responses of the rail vehicle components such as wheelset, trucks and car body. In addition the sensitivity of the critical speed to various primary suspension stiffness and damping parameters with different wheel conicities are examined and concluded that critical hunting velocity is proportionalinverselytowheelconicity. Using linear creep model Lee and Cheng [14] derived the governing differentialequationsofmotionofatruckmovingontangenttracktostudythe influencesofsuspensioncharacteristicsandwheelconicitytothecriticalhunting speed and compared the results with previous researches while in the study presentedbyMessouci[15]itwasconcludedthatthelateraldisplacementandthe yawofboth frameandthe wheelsetaresensitivetovariationofconicity JournalofEngineeringScienceandTechnology April2011,Vol.6(2) 150 K.H.A.AboodandR.A.Khan andtheirnumericalvaluesarelesswithahigherconicityandthereasonisthatthe absolute value of the creep coefficients is higher . In addition the approach is basedonprovidingguidancebycreepforcesinconjunctionwithwheelconicity, sothatflangecontactisnormallyavoided. Themainobjectiveofthepresentstudyistoimprovethedynamicbehaviourof rail vehicle and eliminate the hunting instability of the trucks by increasing the criticalhuntingvelocity.Inwhichmanyparametersaffectthestabilityofthetrucks andchangethecriticalhuntingvelocitysuchasprimaryandsecondarysuspension characteristicsprovidedtothetrucksandwheelsets,geometricpropertiesofwheels and thetracksparameters.In thepresentstudythe influencesof wheel geometry suchaswheelconicityandnominalrollingradiusareinvestigatedandtheireffects onthecriticalhuntingvelocityofthetrucksalsorepresented. The procedure achieved in this study is to construct rail truck model by deriving the concerning governing equations of motion and simulated with computeraidedsimulation.Theconstructedsimulationmodelisusedtostudythe influences of the wheel geometry such as wheel conicity and nominal rolling radiusonthestabilityofthetrucks. 2.RailVehicleModel Therearemanyrailvehiclemodelsconstructedaccordingtotheobjectivestudy in which are used but in this study the adopted rail vehicle model consists of singletruckswithmassmtandmassmomentofinertiaItx, Ity,and Itz,aboutX, Y, and Zaxisrespectively. Thetruckisprovidedwithtwoconventionalsingle wheelsetseach wheelset consistsoftworigidsteelwheelsattachedtogethertoasolidaxlein whichthe wheelsethasmass mwandmassmomentsofinertia Iwx , Iwy ,and Iwz ,aboutX, Y, and Z axes respectively. The truck system is equipped with two longitudinal primary suspensions of spring stiffness Kpx and viscous damping constant Cpx which are located distance 2dp from each other. Also two primary lateral suspensions of spring stiffness Kpy and viscous damping constant Cpy and two vertical suspensions of spring stiffness Kpz and viscous damping constant Cpz whicharelocateddistance2dp,areprovidedtothesystem. Twosecondarylongitudinalsuspensionsareprovidedtoconnectthewheelset withthetruckwithspringstiffness Ksxanddampingcoefficient Csxalsothereare two lateral secondary suspensions with spring stiffness Ksy and damping coefficient Csy . The truck model used in this study of 12 degrees of freedom and the associated governing equations of motion govern lateral displacement Yt, yaw angle ψt, vertical displacement Zt and roll angle φt of the truck while lateral displacementYw,yawangleψw,verticaldisplacement Zwandrollangle φwofeach wheelsetasshowninFig.1.

The rail wheel geometry such as nominal rolling radius ro and the wheel conicityλareshowninFig.2.

JournalofEngineeringScienceandTechnology April2011,Vol.6(2) HuntingPhenomenonStudyofRailwayConventionalTruck 151

2dp Kpx Kpx C Kpy px Kpy

Cpy Xt Cpy L Lb b Yt ψt

L Lb b Kpy Kpy

Cpy Cpy Cpx Kpx Kpx

A-TopView

Kpz Cpz Kpz Kpy Kpy

Zt Cpy ψw Cpy Yt B-TopView

Fig.1.FrontandTopViewsofRailConventionalTruckModelwith Longitudinal, Lateraland Vertical Suspensions.

Fsuspzw Msuspzw LeftWheel RightWheel

Msuspxw λ λ

Fsuspyw

Fcrw Fnlw Fclw Fnrw W

Fig.2.FreeBodyDiagramofaSingleWheelstillustratestheWheel

GeometrysuchNominalRollingRadiusroandtheWheelConicityλλλ. Differentialequationsofmotionofrailtruckmodel There are several forces and moments affect the dynamic behaviour of the rail truckmodelmostimportantofthemarethecreepforceswhichintroducedonrail

JournalofEngineeringScienceandTechnology April2011,Vol.6(2) 152 K.H.A.AboodandR.A.Khan and wheel contact patch area due to wheel rail geometry and due to friction characteristicsbetweenwheelandrail. LinearKalker'screepmodel[6]isusedtoevaluatetheintroducedcreepforces andmoments.Inadditionnormalandsuspensionforcesandmomentsalsohave to be evaluated in the governing equations. The lateral and yaw equations of motionofthetruckaregivenby[14]

mtY&&t = Fsyt (1)

Itz ψ&& t = M szt (2) Roll and vertical differential equations of motion of the truck on tangent tracksarederivedasfollows:

mt Z&& t = −4C pz Z&t + 2C pz Z& w1 + 2C pz Z& w2 − 4K pz Zt + 2K pz Z w1 + 2K pz Z w2 (3)

2 2 2 Itx φ&&t = −4C pz Lsφ&t + 2C pz Lsφ&w1 + 2C pz Lsφ&w2 − 4C py Lcs Y&t + 2C py Lcs Y&w1 2 2 2 (4) + 2C py Lcs Y&w2 - 4K pz Lsφt + 2K pz Lsφw1 + 2K pz Lsφw2 − 4K py Lcs Yt

+ 2K py Lcs Yw1 + 2K py Lcs Yw2 The lateral, yaw, vertical and roll equations of motion of the wheelset are givenby[14] 2 f 2 f 2r f 11 12 0 11 (5) mtY&&wi = − Ywi + 2 f11 ψ wi − ψ& wi −Wφwi − φ&w1 + Fsywi − Fraili V V V

2aλf 2 f  2a 2 f 2 f  33 12  33 22  I wz ψ&& wi = Ywi + Y&wi + (−2 f12 + aλW )ψ wi −  + ψ& wi r0 V  V V  (6)  I V 2r f   wy 0 12  + − + φ&wi + M szwi  r0 V 

2 f11 2 2 f11 2 f12 2 f11 ro 2 f12 2 (7) mwZ&& wi = − λ φ&wi Ywi − φwi Y&wi − φwi ψ& wi − φ&wi φwi + λ + Fszwi V V V V ro

 2 f λ2  2 f (r + aλ)  2 f λ2   12 2  11 0  22  I wx φ&&wi =  λ W Ywi − Y&wi + 2 f11 (r0 + aλ) + ψ wi  r0  V  r0   I V 2 f r 2 f aλ  (8)  wy 12 0 12  2 +  − − ψ& wi + 2( λ f12 + aλW )φwi  r0 V V   2 f ar λ 2 f r 2   11 0 11 0  −  + φ&wi + M sxwi  V V  Thesuspensionforcesandmomentsaregivenby[14]asfollows: F = 2K Y + 2C Y& + 2K Y + 2C Y& syt py w1 py w1 py w2 py w2 (9)

+ (−4K py − 2K sy )Yt + (−4C py − 2Csy )Y&t

JournalofEngineeringScienceandTechnology April2011,Vol.6(2) HuntingPhenomenonStudyofRailwayConventionalTruck 153

2 2 2 2 2 2 M szt = (−4K py Lb − 4K px d p − 2K sx b2 )ψ t + (−4C py Lb − 4C px d p - 2Csx b2 )ψ& t 2 2 (10) + 2K py LbYw1 + 2C py LbY&w1 + 2K px d pψ w1 + 2C px d pψ& w1 − 2K py LbYw2 2 2 − 2C py LbY&w2 + 2K px d pψ w2 + 2C px d pψ& w2 i i (11) Fsywi = −2K py Ywi − (− )1 2K py Lbψ t + 2K py Yt − C py Y&wi − (− )1 2C py Lbψ& t + 2C py Y&t

Fszwi = −2K pz Z wi − 2C pz Z& wi (12)

2 2 M sxwi = −2K sy hT Yt − 2Csy hT Y&t − 2d p K pz φwi − 2d pC pz φ&wi (13)

2 2 2 2 (14) M szwi = 2K px d pψ t − 2K px d pψ wi + 2C px d pψ&t − 2C px d pψ& wi Forceproducedbytheright andleftrail whichis called the flange contact forceandisgivenin[16]:

Krail (Ywi − δ ) Ywi > δ  (15) F raili = 0 − δ ≤ Ywi ≤ δ  − Krail (Ywi + δ ) Ywi < −δ 3.NumericalSimulation Railtruckwithtwowheelsetsmovingontangenttracksismodelledbythesecond order differential equations of motion; Eqs. (1) to (8). A simple and important techniqueusedtotransformthegoverningequationsofmotionfromsecondorder to first order differential equations in suitable form known as state space equationstofacilitatesolvingthemwithnumericalintegrationmethods. The transformed equations of motion are simulated with computer aided simulationtobesolvedbyfourthorderRunge-Kuttanumericalmethodinwhich thegeneralstepsandtheflowchartisillustratedin AppendixA . Data used in numerical simulation is presented in Appendix B also the initial conditionsareassumedforthedynamicmotionsofthesystem.Simulationisexecuted to study the dynamic responses of rail truck subjected to different parameters. Procedure is achieved by increasing the speeds until reaches the critical hunting velocityandusingLyapunovindirectmethodtostudythestabilityofthesystem. 3.1.Rail-truckdynamicbehavior The dynamic behaviour of the rail truck due to different parameters of rail wheel geometry and suspension characteristics can be represented by the considered simulationmodel.Figure3showsthedynamicresponsesoftherailtrucktolateral and vertical motions at speeds (155 km/h) below the critical hunting velocity with 0.05 wheel conicity. The lateral response of the rail truck is more sensitive dynamicallythanverticalresponsebutverticaldisplacementhashighamount. RollresponseoftherailtruckasshowninFig.4referstohighamplitudesof rollanglesbutvanishedafterashorttimewhileyawresponsehaslowamplitudes vanishedaftersomelongtimeanditisclearthatrollmotionhashighamounts thantheyawmotionofrailtruck. JournalofEngineeringScienceandTechnology April2011,Vol.6(2) 154 K.H.A.AboodandR.A.Khan

-4 x10 2 LateralResponse VerticalResponse 1.5

1

0.5

0 LateralandVertical -0.5 DisplacementofTruck(m)

-1 0 2 4 6 8 10 Time(sec) Fig.3.LateralandVerticalDisplacementofRailTruckatSpeed(155km/h) belowtheCriticalHuntingVelocitywithWheelConicity0.05.

-4 x10 1.5 Yawresponse 1 RollResponse

0.5

0

-0.5 ofTruck(rad) YawandRollAngle -1

-1.5 0 2 4 6 8 10 Time(sec) Fig.4.YawandRollResponsesofRailTruckatSpeed(155km/h) belowtheCriticalHuntingVelocitywithWheelConicity0.05. Thedynamicresponsesoflateralandverticalmotionsofrailtruckatcritical huntingvelocity(175km/h)aredepictedinFig.5inwhichshowsthelateral responseismoresensitivetocriticalhuntingvelocitythanlateralresponse. -4 x10 2 LateralResponse 1.5 VerticalResponse

1

0.5

0 LateralandVertical -0.5 DisplacementofTruck(m)

-1 0 2 4 6 8 10 Time(sec) Fig.5LateralandVerticalResponsesofRailTruckwithSpeed (175km/h)attheCriticalHuntingVelocitywithWheelConicity0.05. JournalofEngineeringScienceandTechnology April2011,Vol.6(2) HuntingPhenomenonStudyofRailwayConventionalTruck 155

Yaw and roll responses of the rail truck have different sensitive to critical hunting velocity as shown in Fig. 6 in which both motions have the same behaviortocriticalhuntingvelocitybutmoreoccurforshorttimein roll motion because longitudinal viscous damping coefficient Cpx is more in magnitudethanverticalviscousdampingcoefficientCpz andthatmeansdamping throughyawmotionismorerapidthanrollmotion.

-4 x10 1.5 Yawresponse RollResponse 1

0.5

0

ofTruck(rad) -0.5 YawandRollAngle -1

-1.5 0 2 4 6 8 10 Time(sec) Fig.6.YawandRollResponsesofRailTruckwithSpeed(175km/h) attheCriticalHuntingVelocitywithWheelConicity0.05. 3.2.Influencesofwheelgeometry The geometrical parameters of the wheel such as wheel conicity and nominal rolling radius affect the stability of rail truck and change the critical hunting velocityofthesystem. Wheel conicity has a significant effect on the critical hunting velocity to eliminatethehuntingphenomenoninrailwaytruck.Theeffectofwheelconicity oncriticalvelocityisshowninFig.7in whichrepresents that critical hunting velocity increases with low wheel conicity and as shown in Fig. 8 the critical huntingvelocityofthesystemisproportionalinverselytothesquarerootsofthe wheelconicity λaspresentedalsoin[13].

200 m/h) (k 150

100

50

0

CriticalHuntingVelocity 0 0.1 0.2 0.3 WheelConicity Fig.7.InfluenceofWheelConcity λonCriticalHunting VelocityofRailTruckModelmovingonTangentTracks. JournalofEngineeringScienceandTechnology April2011,Vol.6(2) 156 K.H.A.AboodandR.A.Khan

200 (km/h) 150

100

50

0

CriticalHuntingVelocity 0 1 2 3 4 5 1/sqrt(wheelconicity) Fig.8.CriticalHuntingVelocityproportionalinverselywithSquareRootsof WheelConicityofRailTruckModelmovingonTangentTracks. Thesimulation modelisusedtorepresenttheeffect of the nominal rolling radiusofwheelsonthecriticalhuntingvelocityasshowninFig.9inwhichhigh criticalhuntingvelocityandbetterimprovementofrailtruckstabilityisobtained duetohighnominalrollingradiusofrailwheel. 200 (km/h) 150

100

50

0

CriticalHuntingVelocity 0 0.1 0.2 0.3 0.4 0.5 NominalRollingRadius(m)

Fig.9.InfluenceofNominalRollingRadius roonCriticalHunting VelocityofRailTruckModelmovingonTangentTracks. 4.ResultsandDiscussion The rail truck simulation model presents comparisons between the dynamic behaviourbelowandatcriticalhuntingvelocityofthetruckresponsessubjected todifferentmagnitudesofsuspensionparameters. A compression between lateral and vertical dynamic response shows that lateral response is more sensitive to critical velocity than the vertical response sinceoscillationsinlateraldisplacementtakelongtimetobevanishedtozerobut JournalofEngineeringScienceandTechnology April2011,Vol.6(2) HuntingPhenomenonStudyofRailwayConventionalTruck 157 inverticaldisplacementtheoscillationsvanished withinsmalltimetoacertain magnitudeofverticaldisplacement.Thatmeansthesimulationrailtruckmodel gives acceptable magnitudes for the lateral and vertical displacements also the magnitudes of the suspension parameters used in this simulation model are limitedandacceptable. Atthecomparisonstudybetweenrollandyawdisplacementoftherailtruckit can be noticed that oscillations in both displacements will be vanished to the stable point at zero displacement but with high amplitudes in roll response in whichthatdependsuponthedampingcoefficientoftheverticalsuspensions. Thedynamicresponsesandoscillationsoftherailtruckmodelareincreased whenthesystemmovesatthecriticalhuntingvelocityanditcanbeeasilyshown that the lateral displacement is the most sensitive dynamic response used to determinethecriticalhuntingvelocityofthesystem. Soinstudyoftheinfluenceofwheelgeometricalparameterssuchas wheel conicityandnominalrollingradiusthelateraldynamicresponseoftherailtruck is used to determine the critical hunting velocity. It can be noticed that high criticalhuntingvelocitieswithlawmagnitudesofwheelconicitybutlowcritical huntingvelocitieswithlimitedhighnominalrollingradius. 5.Conclusions Figures obtained from the simulation of rail truck model with 12 degrees of freedomshowthat:  Themodelisabletorepresentthedynamicresponsesofrailtrucktolateral, vertical,yawandrollmotionatdifferentspeedsofrailvehicle.  Lateralandyawresponseofrailtruckaresensitivetochangeinrailvehicle forwardspeedandresponsibleforthecriticalhuntingvelocityandstabilityof railtruckmorethanverticalandrollresponses.Thatreferstohighinfluence oftheintroducedcreepforcesonthe wheeldueto wheel-rail geometry at lateral and yaw direction of motion than that creep forces introduced at verticalandrolldirectionofmotion.  Verticalandroll motionsofrailtruck hashigher amounts than lateral and yawmotionsinwhichcanbeinterpretedthattherearetwogroupsofprimary andsecondarylateralandlongitudinalsuspensionsusedtocontrolthelateral and yaw movements. Meanwhile one group of vertical primary and secondarysuspensionusedtocontroltheverticalandrollmovements.  It is concluded that lateral and yaw are the significant indication of the huntingphenomenonofrailtruck.  Itisstatedthatgeometricalparametersofwheelhaveimportanteffectsonthe railtruckstabilitybutwithdifferentrates.  Finally the critical hunting velocity of the rail truck is increased and the huntingstabilityimprovedatlowwheelconicitywhereasthecriticalhunting velocityisincreasedathighnominalrollingradius.

JournalofEngineeringScienceandTechnology April2011,Vol.6(2) 158 K.H.A.AboodandR.A.Khan

References 1. Wickens,A.H.(1965).Thedynamicstabilityofrailwayvehiclewheelsetand bogies having profiled wheels. International Journal of Solids and Structures,1(3),319-341. 2. Wickens, A.H. (1965). The dynamic stability of a simplified four-wheel railwayvehiclehavingprofiledwheels.InternationalJournalofSolidsand Structures,1(4),385-406. 3. Suda,Y.;Fujioka,T.;andIguchi,M.(1986).Dynamicstabilityandcurving performanceofrailwayvehicle. BulletinoftheJSME ,29(256),3538-3544. 4. Jawahar, P.M.; Gupta, K.N.; and Echempati Raghu (1990). Mathematical modelling for lateral dynamic simulation of a railway vehicle with conventional and unconventional wheelsets. Mathematical and Computer Modelling ,14,989-994. 5. Akira Matsumoto; Yasuhiro Sato; Machi Nakata; Masuhisa Tanimoto; and Kang Qi. (1996). Wheel-rail contact mechanics at full scale on the stand. Wear ,191(1-2),101-106. 6. Kalker, J.J.(1979). Survey of wheel-rail rolling contact theory. Journal of VehicleSystemDynamics ,8(4),317-358. 7. Yang,S.;andAhmadian,M.(1996).TheHopfbifurcationinarailwheelset withnonlineardamping.ASMEJ.RailTransportation ,12,113-119. 8. Ahmadian,M.;andYang,S.(1997).Effectofsuspensionnonlinearitiesonrail vehiclebifurcationandstability. ASMEJ.RailTransportation ,13,97-106. 9. Ahmadian,M.;andYang,S.(1998).Hopfbifurcationandhuntingbehavior inarailwheelsetwithflangeContact. NonlinearDynamics ,15,15-30. 10. Dukkipati,RaoV.;andSwamy,S.N.(2001).Non-linearsteady-statecurving analysis of some unconventional rail trucks. Mechanism and Machine Theory ,36(4),507-521. 11. Dukkipati,RaoV.;andSwamy,S.N.(2001).Lateralstabilityandsteadystate curvingperformanceofunconventionalrailtruck.MechanismandMachine Theory ,36(5),577-587. 12. Nath,Y.;Athre,K.;andJayadev,K.(2003).Non–lineardynamicsofrailway wheelset. NationalNonlinearSystemsandDynamicsConference , NCNSD . 13. Mohan,A.(2003).Nonlinearinvestigationoftheuseofcontrollableprimary suspensionstoimprovehuntinginrailwayvehicles .M.Sc.Thesis,Virginia PolytechnicInstituteandStateUniversity,Virginia. 14. Sen-YungLee;andYung-ChangCheng(2005).Huntingstabilityanalysisof high-speedrailway vehicletrucksontangenttracks. Journal of Sound and Vibration ,282(3-5),881-898. 15. Messouci, M. (2009). Steady state motion of rail vehicle with controlled creep forces on curved track. ARPN Journal of Engineering and Applied Sciences ,4(2),10-18. 16. Ahmadian, M.; and Yang, S. (1998). Effect of system nonlinearities on locomotive bogie hunting stability, Journal of Vehicle System Dynamics , 29(6),366-384.

JournalofEngineeringScienceandTechnology April2011,Vol.6(2) HuntingPhenomenonStudyofRailwayConventionalTruck 159

AppendixA Runge-KuttaMethodofOrder4 Innumericalanalysis,theRunge–Kuttamethodsareanimportantfamilyofimplicit and explicit iterative methods for the approximation of solutions of ordinary differential equations. These techniques were developed around 1900 by the German mathematicians C. Runge and M.W. Kutta. We state the Runge-Kutta methodoforder4whichiswidelyusedalgorithm.Fortheinitialvalueproblemsset b − a xi = a + ih For i=0,1,2,…., nwhere h = . n Also,wesety(a)= yo.For k=0,1,2,…., n-1,wedefine k + 2k + 2k + k y = y + 1 2 3 4 , where k +1 k 6

h k1 h k2 k1 = hf (xk , yk ), k = hf (x + , ), k = hf (x + , y + ), 2 k 2 2 3 k 2 k 2

k4 = hf (xk + h, yk + k3 ), Input

a,b, x0 , y0,h, N

Set m -1

a → xm , y0 → ym

Compute

k1,k2 ,k3 and k4 Asgiveninthealgorithm

xm + h → xm 1 y + (k + 2k + 2k + k ) → y m 6 1 2 3 4 m

Output

xm , ym

xm ≥ b No

Yes Fig.A-1.Flow-ChartofRunge-KuttaMethodofOrder4. JournalofEngineeringScienceandTechnology April2011,Vol.6(2) 160 K.H.A.AboodandR.A.Khan

AppendixB DatausedinNumericalSimulation TableB-1.RailwayTruckModelData. SI Symbol Description Value units a Halfoftrackgage m 0.716 b2 Halfdistancebetweenlongitudinalsecondarysuspensions m 1.18 C Viscousdampingconstantoflongitudinalprimary px N.s/m 83760 suspension Cpy Viscousdampingconstantoflateralprimarysuspension N.s/m 45240 4 Cpz Viscousdampingconstantofverticalprimarysuspension N.s/m 3×10 C Viscousdampingconstantoflongitudinalsecondary sx N.s/m 9×10 4 suspension 3 Csy Viscousdampingconstantoflateralsecondarysuspension N.s/m 1.8×10 dp Halfdistancesbetweenprimarylongitudinalsuspensions m 0.61 6 f11 Lateralcreepcoefficient N 9.43×10 3 f12 Lateral/spincreepcoefficient N.m 1.2×10 2 3 f22 Spincreepcoefficient N.m 10 6 f33 Forwardcreepcoefficient N 10.23×10 h Verticaldistancefromwheelsetcentretothelateral T m 0.47 secondarysuspension 2 Itx Truckmassmomentofinertiaabout X-axis kg.m 3371 2 Itz Truckmassmomentofinertiaabout Z-axis kg.m 3371 2 Iwx Wheelsetmassmomentofinertiaabout X-axis kg.m 761 2 Iwy Wheelsetmassmomentofinertiaabout Y-axis kg.m 130 2 Iwz Wheelsetmassmomentofinertiaabout Z-axis kg.m 761 5 Kpx Springstiffnessoflongitudinalprimarysuspension N/m 2.85×10 5 Kpy Springstiffnessoflateralprimarysuspension N/m 1.84×10 5 Kpz Springstiffnessofverticalprimarysuspension N/m 4.32×10 7 Krail Lateralrailstiffness N/m 1.617×10 3 Ksx Springstiffnessoflongitudinalsecondary N/m 4.5×10 3 Ksy Springstiffnessoflateralsecondary N/m 4.5×10 Lb Halfdistancebetweentwowheelsetsofthetruck m 1.295 L Verticaldistancebetweenlateralsecondarysuspension cs m 0.88 andcentreofthecarbody L Horizontaldistancebetweenverticalsecondary s m 1 suspensionandcentreofthecarbody mt Massoftruck kg 365 mw Massofwheelset kg 1751 ro Centredrollingradiusofwheel m 0.3556 V Railwayforwardvelocity m/s Variable W Axleload N 5.6×10 6 δ FlangeclearancebetweenwheelandRail m 9.23×10 -3 λ Wheelconicity - 0.05

JournalofEngineeringScienceandTechnology April2011,Vol.6(2)