Postharvest Fruit Quality and Storage Life in Relation to Mineral Nutrients

Total Page:16

File Type:pdf, Size:1020Kb

Postharvest Fruit Quality and Storage Life in Relation to Mineral Nutrients Postharvest Fruit Quality Today’s market demands high quality fruit. and Storage Life in Mineral levels in the fruit as it grows and after Relation to Mineral it is harvested are highly significant factors Nutrients in producing and maintaining fruit quality. William J. Bramlage and Sarah A. Weis Clearly N, Ca, B, Mg Department of Plant and Soil Science and K have the most University of Massachusetts, Amherst, MA 01003 impact on fruit quality. “ uality of fruit” means different Following storage, they are more likely to whatever stresses are producing the things to different people. In this develop scald, bitter pit, brown core, in- symptoms. Q article, we view it as the fruit ternal browning, and internal breakdown. Ca is often said to be related to fruit grower does: possessing the properties They are also more likely to develop rots. softening, with low Ca levels producing that yield a profitable price. These include Furthermore, research has shown that in softer fruit. Large increases in fruit Ca size, color, firmness, and freedom from Red Delicious apples, high N can reduce definitely increase firmness. However, defects. Of these, size and color will be the development of fruit flavor as they none of the practical Ca treatments are determined before harvest, and so we are ripen. likely to increase Ca sufficiently to result focused primarily on maintaining firm- Much attention has been given to the in firmer fruit. We have nearly 30 years ness and freedom from defects after har- form of N being applied. Are some forms of data on effects of Ca treatments, and vest, if we include loss of a “fresh appear- less damaging to quality than others? We significant differences in firmness have ance” as a developed defect. It shall be have conducted many experiments in- been rare. Our opinion is that a Ca treat- argued that taste should be included, and cluding different N forms, and rarely have ment might increase firmness slightly, we will comment on taste where there is we found N form to be a significant fac- but if so, you’ve received a bonus ben- relevant information available. tor. We believe that it is the total amount efit. Ca treatments should be applied to A long list of mineral nutrients are of N being applied during the growing reduce the occurrence of storage disor- essential for plant growth, but not all of season, not the form or the timing, that ders, not to obtain firmer fruit. them have been related to postharvest influences postharvest quality. fruit quality. Therefore, we will discuss Phosphorus (P) the effects of only nitrogen, calcium, phos- Calcium (Ca) phorus, boron, potassium, and magne- The significance of P in maintaining sium. Let’s look at how these elements are In 1936 bitter pit in apples was first fruit quality is hard to assess. In Europe, related to the growers’ task of delivering related to fruit Ca content. Since then, increased fruit P has often led to longer quality of apples to the consumer. awareness that Ca plays a central role in postharvest life, and periodically there postharvest fruit performance has become are reports in North America, especially Nitrogen (N) universal. In warmer growing regions from Canada of benefits from P treat- bitter pit is generally a big concern, but in ments. However, we have conducted To stimulate growth of young trees, cooler regions such as the Northeast we numerous trials with P-containing ma- N is commonly applied at high rates. are usually more concerned with more terials that have raised fruit P, and sel- These rates might continue as cropping subtle effects of Ca. Ca is one of the cellu- dom have they produced any benefit. begins since they can increase yield. But lar regulators of fruit ripening and dete- Others, especially in the Northeast, have even if they are reduced when trees be- rioration: when Ca is low, these processes had similar results. Thus we believe that, gin to bear (as they should be), the re- proceed more rapidly. We see this in the under our conditions, P treatments of es- sponse to lower rates will probably be susceptibility of the fruit to many prob- tablished trees are quite unlikely to im- slow because reserves of N can accumu- lems. When Ca is low, fruit are likely to prove fruit quality. late in the tree and the soil during the time ripen earlier and have greater pre-harvest of high N fertilization. It is not unusual drop, to have more watercore at harvest Boron (B) for harvested fruit, especially from and to develop more scald, browncore, younger trees, to be high in N. internal breakdown, internal browning, B deficiency in apples is a constant The consequences can be very seri- bitter pit, and rots during and after stor- threat on most Northeastern soils. Grow- ous. At harvest high N fruit tend to be age. Of these, only internal breakdown ers should apply B annually unless they larger, greener, softer, more subject to and bitter pit may be direct symptoms of have clear evidence that B level is suffi- preharvest drop and more likely to be af- low Ca. The others simply result from the cient in their orchard. B deficiency caus- fected with corkspot and/or bitter pit. fruit being “older” and less resistant to es corking inside fruit that can lead to NEW YORK FRUIT QUARTERLY • VOLUME 12 NUMBER 2 • 2004 11 misshapen and cracked fruit. Its effect Interaction of Elements Conclusion destroys visual quality of fruit. Grow- ers should be aware however, that ex- The above discussion has considered Today’s market demands high cess B treatment can cause earlier rip- mineral element effects as direct respons- quality fruit. Mineral levels in the fruit ening, preharvest drop, and poor stor- es. However, there is a great deal of inter- as it grows and after it is harvested are age quality. Thus, B treatments need to action among these elements that greatly highly significant factors in producing be made with great care, since either too influences their effects. fruit that will satisfy this market and little or too much can be very harmful. High N probably worsens the effects maintain financial viability. Clearly, N of deficiencies of all the other elements. and Ca demand careful management by Potassium (K) and The fruit are “weaker” and so more sus- fruit growers to achieve high fruit qual- Magnesium (Mg) ceptible to other problems. However in ity. B must be maintained within an the case of Ca, the consequence is clear: adequate range also. Mg and K are im- K is an important element in fruit high N increases fruit size, and as fruit size portant for tree productivity, but fruit quality. Fairly high K levels in fruit are increases fruit Ca directly decreases. Any- quality may be damaged if excessive often reported to increase red color and thing that increases fruit size will likely treatments are applied. P level in fruits to raise fruit acid level, which can im- decrease fruit Ca and increase storage does not appear to be related to prove fruit taste. We have never losses. postharvest quality in Northeastern worked with K treatments, so have no K and Mg can directly interfere with fruit. personal experience to add to what is the ability of Ca to slow down fruit dete- Growers today must produce larger said in the literature. However, K is a rioration. It has often been shown that sizes of fruit to satisfy market demand. difficult element to manage. It is the ratio of K + Mg : Ca is more closely Larger fruit have lower Ca and are in- present in fairly high concentrations in related to fruit quality than is Ca level herently more at risk of quality loss af- the fruit, so a large crop can deplete a alone. This means that if either K or Mg ter harvest. Futhermore, the longer fruit tree’s K reserves. In a low-crop year, is excessively high in fruits, the impact of is stored before marketing, the physi- however, the K in leaves is released to low Ca will be increased. This makes it ologically older they become and the the soil as leaves decay, and is quickly very important that K and Mg only be more susceptible to disorders they are. recycled to the tree. Thus, K applica- applied if leaf analysis calls for it, and then A slow market makes it harder to main- tions should be done judiciously and be only at the rate indicated by the levels in tain fruit quality. based on annual leaf analyses. the leaves. The challenges don’t seem to get Mg is an element frequently defi- Both P and B also interact with Ca. P easier! cient in Northeastern apple orchards, so apparently works with Ca to maintain it is often applied. There appears to be quality, so if it is low, Ca is less effective Bill Bramlage is an emeritus professor little direct relationship of fruit Mg lev- in maintaining quality. B is somehow in- at the University of Massachussets who els to fruit quality, so applications volved in movement of Ca to fruit on the specializes in factors that influence should be based on tree needs, as tree, so if B is low, it can cause fruit Ca postharvest fruit quality. Dr. Sarah Weis shown in leaf analyses deficiency to occur. is a research technician with Dr. Bramlage. 12 NEW YORK STATE HORTICULTURAL SOCIETY.
Recommended publications
  • (WHO) Report on Microplastics in Drinking Water
    Microplastics in drinking-water Microplastics in drinking-water ISBN 978-92-4-151619-8 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Microplastics in drinking-water. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.
    [Show full text]
  • Minerals in Your Home Activity Book Minerals in Your Home Activity Book
    Minerals In Your Home Activity Book Minerals in Your Home Activity Book Written by Ann-Thérèse Brace, Sheila Stenzel, and Andreea Suceveanu Illustrated by Heather Brown Minerals in Your Home is produced by MineralsEd. © 2017 MineralsEd (Mineral Resources Education Program of BC) 900-808 West Hastings St., Vancouver, BC V6C 2X4 Canada Tel. (604) 682-5477 | Fax (604) 681-5305 | Website: www.MineralsEd.ca Introduction As you look around your home, it is important to think of the many things that you have and what are they made from. It’s simple - everything is made from Earth’s natural resources: rocks, soil, plants, animals, and water. They can be used in their natural state, or processed, refined and manufactured by people into other useable things. The resources that grow and can be replaced when they die or are harvested, like plants and animals, are called renewable resources. Those that cannot be regrown and replaced, like rocks, soil and water, are called non-renewable resources. All natural resources are valuable and we must use them conservatively. Mineral resources are natural Earth materials that must be mined from the ground. We use them every day, and they are non- renewable. Some are changed very little before they are used, like the rock granite for example, that is commonly used to make kitchen countertops or tombstones. Other mineral resources, like those that contain useful metals, must be processed to extract the metal ingredient. The metal is then manufactured into different parts of a product, like a toaster or a smartphone. Whether you are practicing violin in your room, eating a meal in the kitchen, watching TV in the living room or brushing your teeth in the bathroom, your daily activities use things that come from mineral resources.
    [Show full text]
  • 40 Common Minerals and Their Uses
    40 Common Minerals and Their Uses Aluminum Beryllium The most abundant metal element in Earth’s Used in the nuclear industry and to crust. Aluminum originates as an oxide called make light, very strong alloys used in the alumina. Bauxite ore is the main source aircraft industry. Beryllium salts are used of aluminum and must be imported from in fluorescent lamps, in X-ray tubes and as Jamaica, Guinea, Brazil, Guyana, etc. Used a deoxidizer in bronze metallurgy. Beryl is in transportation (automobiles), packaging, the gem stones emerald and aquamarine. It building/construction, electrical, machinery is used in computers, telecommunication and other uses. The U.S. was 100 percent products, aerospace and defense import reliant for its aluminum in 2012. applications, appliances and automotive and consumer electronics. Also used in medical Antimony equipment. The U.S. was 10 percent import A native element; antimony metal is reliant in 2012. extracted from stibnite ore and other minerals. Used as a hardening alloy for Chromite lead, especially storage batteries and cable The U.S. consumes about 6 percent of world sheaths; also used in bearing metal, type chromite ore production in various forms metal, solder, collapsible tubes and foil, sheet of imported materials, such as chromite ore, and pipes and semiconductor technology. chromite chemicals, chromium ferroalloys, Antimony is used as a flame retardant, in chromium metal and stainless steel. Used fireworks, and in antimony salts are used in as an alloy and in stainless and heat resisting the rubber, chemical and textile industries, steel products. Used in chemical and as well as medicine and glassmaking.
    [Show full text]
  • Chapter 2 the Solid Materials of the Earth's Surface
    CHAPTER 2 THE SOLID MATERIALS OF THE EARTH’S SURFACE 1. INTRODUCTION 1.1 To a great extent in this course, we will be dealing with processes that act on the solid materials at and near the Earth’s surface. This chapter might better be called “the ground beneath your feet”. This is the place to deal with the nature of the Earth’s surface materials, which in later sections of the chapter I will be calling regolith, sediment, and soil. 1.2 I purposely did not specify any previous knowledge of geology as a prerequisite for this course, so it is important, here in the first part of this chapter, for me to provide you with some background on Earth materials. 1.3 We will be dealing almost exclusively with the Earth’s continental surfaces. There are profound geological differences between the continents and the ocean basins, in terms of origin, age, history, and composition. Here I’ll present, very briefly, some basic things about geology. (For more depth on such matters you would need to take a course like “The Earth: What It Is, How It Works”, given in the Harvard Extension program in the fall semester of 2005– 2006 and likely to be offered again in the not-too-distant future.) 1.4 In a gross sense, the Earth is a layered body (Figure 2-1). To a first approximation, it consists of concentric shells: the core, the mantle, and the crust. Figure 2-1: Schematic cross section through the Earth. 73 The core: The core consists mostly of iron, alloyed with a small percentage of certain other chemical elements.
    [Show full text]
  • Minerals for Livestock
    Station BulIetn 503 October 1951 Minerals for Livestock J. R. Haag Agrkultural Experiment Station Oregon State College Corvallis Foreword Oregon livestock producers are aware of the need for additional information on the use of mineral sup- plements.These materials frequently are purchased when not needed with the particular rations that are being used.The intelligent use of minerals pays divi- dends.Over-use may be harmful. This bulletin has been revised to give livestock pro- ducers and feed dealers the latest available information that will assist them in selecting and feeding only such materials as may be needed to supplement the natural supply already available in their feedstuffs. Although noteworthy progress is being made we believe that research must be intensified in Oregon to provide more complete information on the adequacy of minerals in feed produced in the various areas of the State.Evidence being accumulated by our research staff indicates that deficiencies peculiar to certain areas are causing serious losses among livestock. Dean and Director Minerals for Livestock By J. R. HAAG, Chemist (Animal Nutrition) Oregon State College animals require an abundance of palatable feedstuffs as a FARMsource of energy, fats, proteins, minerals, and vitamins.These feedstuffs must be suitable for the kind of livestock maintained and, in addition, must be available at a cost that will permit profitable livestock production. The mineral salts constitute only one of the groups of nutrients that play important parts in animal nutrition.Some mineral ele- ments, like calcium and phosphorus, are needed in large amounts, while others, like iodine, are required only invery minute traces.
    [Show full text]
  • 13. Nutrient Minerals in Drinking Water: Implications for the Nutrition
    13. NUTRIENT MINERALS IN DRINKING WATER: IMPLICATIONS FOR THE NUTRITION OF INFANTS AND YOUNG CHILDREN Erika Sievers Institute of Public Health North Rhine Westphalia Munster, Germany ______________________________________________________________________________ I. INTRODUCTION The WHO Global Strategy on Infant and Young Child Feeding emphasizes the importance of infant feeding and promotes exclusive breastfeeding in the first six months of life. In infants who cannot be breast-fed or should not receive breast milk, substitutes are required. These should be a formula that complies with the appropriate Codex Alimentarius Standards or, alternatively, a home-prepared formula with micronutrient supplements (1). Drinking water is indispensable for the reconstitution of powdered infant formulae and needed for the preparation of other breast-milk substitutes. As a result of the long-term intake of a considerable volume in relation to body weight, the concentrations of nutrient minerals in drinking water may contribute significantly to the total trace element and mineral intake of infants and young children. This is especially applicable to formula-fed infants during the first months of life, who may be the most vulnerable group affected by excessive concentrations of nutrients or contaminants in drinking water. Defining essential requirements of the composition of infant formulae, the importance of the quality of the water used for their reconstitution has been acknowledged by the Scientific Committee on Food, SCF, of the European Commission (2). Although it was noted that the mineral content of water may vary widely depending upon its source, the optimal composition remained undefined. Recommendations for the composition of infant formulae refer to total nutrient content as prepared ready for consumption according to manufacturer’s instructions.
    [Show full text]
  • Mineral Materials from BLM-Administered Federal Lands
    How to Obtain Mineral Materials From BLM-Administered Federal Lands Including Stone, Sand and Gravel, Clay, and Other Materials Introduction The Department of the Interior‘s Bureau of Land Man- agement (BLM) is a multiple-use land management agency responsible for administering 262 million acres of public land located primarily in the western United States, including Alaska. The BLM manages many resource programs, such as minerals, forestry, wilderness, recreation, fisheries and wildlife, wild horses and burros, archaeology, and range- land. This brochure con- tains information about the mineral materials program. Mineral materi- als include common vari- eties of sand, stone, gravel, pumice, pumicite, clay, rock, and petrified Concrete and asphalt aggregate (crushed stone) used for airport wood. The major Federal runways, highways, bridges, and high-rise buildings. law governing mineral materials is the Materials Act of 1947 (July 31, 1947), as amended (30 U.S. Code 601 et seq.). This law authorizes the BLM to sell mineral materials at fair market value and to grant free-use permits for mineral materials to Government agencies. It also allows the BLM to issue free-use permits for a limited amount of material to nonprofit organizations. How Are Mineral Materials Important to Our Society? Mineral materials are among our most basic natural resources. These materials are in everyday construction, agriculture, and decorative applications (Table 1). The United States uses about 2 billion tons of crushed stone, dimension stone, and sand and gravel every year. Our highways, bridges, power plants, dams, high-rise buildings, railroad beds, and airport runways, along with their foundations and sidewalks, all use mineral materials of one type or another.
    [Show full text]
  • Laboratory Mineral Soil Analysis and Soil
    Institute of Organic Training & Advice: Research Review: Laboratory mineral soil analysis and soil mineral management in organic farming (This Review was undertaken by IOTA under the PACA Res project OFO347, funded by Defra) RESEARCH TOPIC REVIEW: Laboratory mineral soil analysis and soil mineral management in organic farming Authors: Christine Watson, Scottish Agricultural College Elizabeth Stockdale, School of Agriculture Food and Rural Development, Newcastle University Lois Philipps, Abacus Organic Associates 1. Scope and Objectives of the Research Topic Review The objective of the Research Review “ Laboratory mineral soil analysis and soil mineral management in organic farming ” is to draw together all the available relevant research findings in order to develop the knowledge and expertise of organic advisers and thereby to improve soil management practice on organic farms. The Review will concentrate on N, P and K and: 1. Identify all the relevant research undertaken 2. Collate the results of research and summarise the findings of each project 3. Draw on practical experience 4. Analyse the research and summarise the conclusions in a form that is easily accessible by advisers and can be used to help them select appropriate soil analytical techniques and to interpret the results and provide practical advice to farmers on soil management and amendments. 2. Introduction to measuring soil fertility in organic farming. The capacity to improve the fertility of a given soil through management is inextricably linked to the inherent properties of that site – soil texture, mineralogy, slope and climate. Ideally soil fertility should be assessed for the soil in situ , in the field/farm context, rather than as a list of properties of an isolated sample.
    [Show full text]
  • Inorganic Compounds Organic Compounds
    BOTTLED WATER INFORMATION Aquafina is purified drinking water that meets and exceeds the requirements set forth by the U.S. Environmental Protection Agency (EPA), the U.S. Food and Drug Administration as well as local regulatory requirements. Our Aquafina plants each conduct on average 320 tests daily, 1950 tests weekly, and − when we include off-site monitoring, 102,000 tests annually to assure the consistent quality of our Aquafina bottled water. A 2019 sample water quality analysis for Aquafina is listed below. Inorganic Compounds Analysis Performed MCL* Results for Purified (mg/L) Finished Product Aluminum 0.2 ND Antimony 0.006 ND Arsenic 0.010 ND Barium 2.0 ND Beryllium 0.004 ND Cadmium 0.005 ND Chloride 250.0 ND Chromium 0.1 ND Copper 1 ND Cyanide (As free cyanide) 0.2 ND Fluoride 4.0 ND Iron 0.3 ND Lead 0.005 ND Manganese 0.05 ND Mercury (Inorganic) 0.002 ND Nickel 0.1 ND Nitrogen (as Nitrate) 10 ND-0.26 Nitrogen (as Nitrite) 1 ND Selenium 0.05 ND Silver 0.1 ND Sulfate 250.0 ND-0.96 Thallium 0.002 ND Zinc 5.0 ND Organic Compounds Analysis Performed MCL* Results for Purified (mg/L) Finished Product Alachlor 0.002 ND Atrazine 0.003 ND Benzene 0.005 ND Benzo(a)pyrene (PAHs) 0.0002 ND Carbofuran 0.04 ND Carbon Tetrachloride 0.005 ND Chlordane 0.002 ND PepsiCo, Inc. Date Updated to Website: June 2019 Page 1 Organic Compounds Cont. Analysis Performed MCL* Results for Purified (mg/L) Finished Product 2,4-D 0.07 ND Dalapon 0.2 ND 1,2-Dibromo-3-chloropropane (DBCP) 0.0002 ND o-Dichlorobenzene 0.6 ND p-Dichlorobenzene 0.075 ND 1,2-Dichloroethane
    [Show full text]
  • Rock and Mineral Identification for Engineers
    Rock and Mineral Identification for Engineers November 1991 r~ u.s. Department of Transportation Federal Highway Administration acid bottle 8 granite ~~_k_nife _) v / muscovite 8 magnify~in_g . lens~ 0 09<2) Some common rocks, minerals, and identification aids (see text). Rock And Mineral Identification for Engineers TABLE OF CONTENTS Introduction ................................................................................ 1 Minerals ...................................................................................... 2 Rocks ........................................................................................... 6 Mineral Identification Procedure ............................................ 8 Rock Identification Procedure ............................................... 22 Engineering Properties of Rock Types ................................. 42 Summary ................................................................................... 49 Appendix: References ............................................................. 50 FIGURES 1. Moh's Hardness Scale ......................................................... 10 2. The Mineral Chert ............................................................... 16 3. The Mineral Quartz ............................................................. 16 4. The Mineral Plagioclase ...................................................... 17 5. The Minerals Orthoclase ..................................................... 17 6. The Mineral Hornblende ...................................................
    [Show full text]
  • C Stocks in Forest Floor and Mineral Soil of Two Mediterranean Beech Forests
    Article C Stocks in Forest Floor and Mineral Soil of Two Mediterranean Beech Forests Anna De Marco 1, Antonietta Fioretto 2, Maria Giordano 1, Michele Innangi 2, Cristina Menta 3, Stefania Papa 2 and Amalia Virzo De Santo 1,* 1 Department of Biology, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; [email protected] (A.D.M.); [email protected] (M.G.) 2 Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi, 43, 81100 Caserta, Italy; antonietta.fi[email protected] (A.F.); [email protected] (M.I.); [email protected] (S.P.) 3 Department of Life Sciences, University of Parma, Via Farini, 90, 43124 Parma, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-679-100 or +39-348-353-5925 Academic Editor: Björn Berg Received: 19 May 2016; Accepted: 16 August 2016; Published: 22 August 2016 Abstract: This study focuses on two Mediterranean beech forests located in northern and southern Italy and therefore subjected to different environmental conditions. The research goal was to understand C storage in the forest floor and mineral soil and the major determinants. Relative to the northern forest (NF), the southern forest (SF) was found to produce higher amounts of litterfall (4.3 vs. 2.5 Mg·ha−1) and to store less C in the forest floor (~8 vs. ~12 Mg·ha−1) but more C in the mineral soil (~148 vs. ~72 Mg·ha−1). Newly-shed litter of NF had lower P (0.4 vs. 0.6 mg·g−1) but higher N concentration (13 vs.
    [Show full text]
  • MINERAL to ROCK MINERALS ALL AROUND US Minerals Are All Around Us
    FROM MINERAL TO ROCK MINERALS ALL AROUND US Minerals are all around us. They are used to make many of the products we use everyday. Minerals provide us with the metals that help us make cars, aircraft, jewelry and coins. Below is a list of other items we use that are made of minerals: lead pencils (graphite) Minerals are made of atoms (tiny particles) from fertilizer (potassium, sodium, calcium) different elements such as oxygen, carbon, lead and silicon. The atoms form simple patterns that give chalk (gypsum) mineral cystals characteristic shapes. The hidden flashbulb (zirconium) pattern of the packed together atoms is always the same in any particular mineral. Minerals can be identified by window glass/mirrors (silica) their color, density, hardness and shape. table salt (halite) Color: Streak is a mineral's color in powder form. It can be seen when the mineral is scraped across a Minerals that concentrate into deposits from which one tile. or more minerals and rocks may be extracted are called ores. In Michigan, iron ore (hematite) is mined in the Density: This is the mineral's weight per unit Upper Peninsula. The earliest commercial deposits volume. Water is assigned a density of 1 and the were found in Marquette County in 1844. Until about specific density measurements of other materials are 1900, Michigan was the leading producer of iron ore in compared to it. A mineral fragment that weighs 2.1 the United States. times as much as an equal volume of water has a density measurement of 2.1. Another mineral that brought attention to Michigan was the “native copper” deposits of the Keweenaw Peninsula Hardness: A mineral's hardness is one of the most in the western Upper Peninsula.
    [Show full text]