Kennecott Utah Copper-Sustainable Over Time PHOTOS/VIDEO AUDIO

Total Page:16

File Type:pdf, Size:1020Kb

Kennecott Utah Copper-Sustainable Over Time PHOTOS/VIDEO AUDIO 1 UNIVERSITY OF UTAH DEPARTMENT OF MINING ENGINEERING PRESENTATION to IMOA by Louie Cononelos “Kennecott Utah Copper-Sustainable Over Time PHOTOS/VIDEO AUDIO This is a story that had its beginning over 150 ago…and that story is still being written today. It began in Bingham Canyon, Utah located about 26 miles southwest of Salt Lake City, which was destined to become one of the greatest “mining camps” anywhere in the country. Mining in Utah, which was part of Spanish Mexico, can be traced back to Spanish miners in the mid-1700s. The start of mining in Utah, however, is credited to the United States Army in 1863. Troops under the command of Colonel Patrick Connor are credited with the discovery of Utah’s first mining claim and helping to form the first mining company and mining district in Bingham Canyon. The early mining at Bingham was underground with the exception of placer mining. 2 Bingham Canyon was a beehive of mining activity at the turn of the Century. Dozens of small companies dug tunnels and sank shafts in the mountains where they were mining lead, silver and gold ores…but not the low- grade copper ores that were in abundance and considered a nuisance. Then, along came Daniel C. Jackling, a 29-year-old metallurgical engineer, who with his partner, a mining engineer named Robert Gemmell, studied and assayed ore samples from the operations that dotted the canyon. They determined that there were vast tonnages of low- grade copper ore in the main mountain that divided the canyon…it was the kind of ore the mining companies tried to avoid because it interfered with the recovery of the metals they were mining. Jackling’s vision was to mine and process this mountain of porphyry copper ore using steam shovels for removing the ore and waste, and steam locomotives to transport it from the mine to large scale mills. 3 This was the first time that mass production technology was used in copper mining. Mining experts of the day scoffed at his crazy idea…especially when 98 percent of the rock was waste. Most investors also agreed that it was a bad idea. But Jackling took some influential financiers to Bingham Canyon in June 1903 to convince them that his theory would work, and that handsome profits could be made by mining low grade ores containing 39 pounds of copper per ton. Jackling’s determined conviction was good enough for the backers. They invested $500,000…enough to get Jackling started…and that gave birth to the Utah Copper Company on June 4, 1903. That was the beginning of what was to become one of the greatest mining enterprises in the world. Jackling and Gemmell went to work and built a small experimental plant, the Copperton Mill, at the mouth of Bingham Canyon. They were testing 4 new engineering technologies and theories to prove they could mine, crush, grind and process about 300 tons daily of low-grade copper ore and produce high- grade copper concentrate. They did it and in its first year of operations showed a very handsome profit of $142,000. Some investors who initially were skeptical now wanted to come on board and invested an additional $5,000,000 for what would prove to be the ride of the decade. Other companies were also interested in these massive low grade copper ores. One of Jacking’s biggest competitors was the Boston Consolidated Mining Company operated by Samuel Newhouse. There were about 40 companies in the Bingham District mining underground for lead, silver, zinc and gold but only a few were interested in mining copper from the surface. In 1906, these two mining giants started mining “The Hill”. Utah Copper purchased steam shovels with two-and- 5 half-yard dippers, like those digging the Panama Canal, and steam locomotives with rail cars and started mining the mountain for the copper ore. Boston Consolidated did the same and was the first to actually remove waste with steam shovels but Jacking’s Utah Copper was the first to mine ore. Jackling built a large 6,000 tpd mill near the town of Magna to replace the successful experimental mill and his rival Boston Consolidated built their 3,000 tpd Arthur Mill one mile away. Demands for electricity were increasing, so Utah Copper built its own power plant near the Magna Mill. Meanwhile, a smelter was being built by American Smelting and Refining Company near the Great Salt Lake to process copper concentrates from both Utah Copper and Boston Consolidated into cakes of nearly pure copper. To move the ore from Bingham to the new Magna Mill, the 20-mile Bingham and Garfield Railroad was constructed. 6 Meanwhile, Utah Copper was mining the lower portion of “The Hill”, and its major competitor, Boston Consolidated, was mining the upper portion. Clearly, this mountain wasn’t big enough for two large mining competitors. Utah Copper purchased Boston Consolidated in 1910. From the vision of 1903 to the accomplishments of 1910, Utah Copper, through its acquisition, had grown to become part of the largest industrial mining complex in the world. People from all over the world, most of them immigrants from Europe, Asia and Mexico came seeking work and over 40 distinct ethnic groups lived in camps and towns throughout the mining district. Jackling had proved that mass- production of low-grade porphyry copper ore, using revolutionary new processes; technologies and innovations would set new standards for the copper mining industry. 7 Early on, even safety training was innovative, as evidenced by this 1913 “Rules and Regulations of the Mining Department.” Because of the multi- ethnic workforce, the manual was printed in English, Serbo-Croatian, Greek, Italian and Japanese. By 1914, the Mine had 23 steam shovels, 48 steam locomotives and more than 350 ore and waste rail cars. The Magna Concentrator was expanded to process 12,000 tons of ore daily, and the Arthur Concentrator was expanded to 8,000 tons per day. In a joint development between Utah Copper and ASARCO, the first acid plant was installed for pollution control at the Garfield Smelter. By 1915 Utah Copper’s operations were so successful that the giant Kennecott Copper Corporation acquired 25 percent of the company. World War I called for an increased demand for copper, and Utah Copper 8 was second only to the Anaconda Copper as a source for mined copper. Following a post-war slump, in 1923, a major innovation in operations at both the Magna and Arthur mills involved a change from standard gravity separation to froth flotation, which dramatically improved copper recovery. By 1924, the crushing and grinding operations were expanded and new rotary car dumpers were installed in both mills In 1920 electric service was introduced into the Mine and steam shovels were converted to electric power in 1923. By 1928, steam locomotives in the Mine were replaced by electric locomotives. In 1936, Kennecott acquired all the property and assets of Utah Copper. And that same year, engineers devised a new process in the concentrator flotation circuits to recover and produce another valuable by-product: molybdenite concentrate, another product for sale. 9 By 1939, everything was bigger, the Mine covered 648 acres. Electric shovels with four-and-a-half cubic yard dippers loaded 80 to 100-ton capacity ore cars, or 70-ton side-dump waste cars. New 75 ton electric locomotives did the haulage in the mine. Jackling, his Board and managers were proud to see his vision become reality through the accomplishments and innovations of his engineers and employees. Innovations, such as the track shifter, improved mine production significantly. This equipment provided important track relocation for rail operations much more efficiently than labor-intensive hands-on manpower. 350-ton Mallet locomotives pulled 50, 100-ton ore cars from the Mine to the Magna and Arthur Concentrators, The two mills followed almost identical procedures to crush, grind and process a combined 70,000 tons per day. 10 Copper concentrates produced at the Concentrators were hauled by rail to ASARCO’s Garfield Smelter for final processing. In 1941…the nation went to war and demands for copper in the production of munitions and armament soared. Many men at Utah Copper left their jobs to serve their country, and women stepped in to take over many of the mining jobs. Like “Rosie the Riveter” or “Millie the Miner” women were a real force in wartime production. Kennecott’s Utah Copper operations produced 320,000 tons of copper and Kennecott’s combined operations in Utah, New Mexico, Arizona and Nevada produced 637,000 tons of copper in 1943. During World War II, Bingham Canyon alone produced more than one third of the copper needed for the allies’ war efforts. In 1944, increasing demands for electricity were met by Utah Copper’s new 50,000 kilowatt power plant, built just above the Magna Mill. 11 In 1946, Utah Copper drove a 4,650-foot tunnel through the mountain…it was a rail haulage short cut that greatly improved efficiency and reduced costs. In 1947, the original Utah Copper Company was dissolved and became known as the Utah Copper Division of Kennecott Copper Corporation. In 1949… the Mine continued to be the largest man-made excavation on earth, at a depth of more than 1800 feet. The electric shovels were bigger, with five and seven-yard dippers scooping ten tons of material in a single bite. Ore and waste trains operated on 160 miles of standard gauge track inside the huge open pit. In the pit, there was a a network of steel towers that carried electrical service to the shovels and locomotives.
Recommended publications
  • Federal Register/Vol. 79, No. 206/Friday, October 24, 2014/Rules
    63540 Federal Register / Vol. 79, No. 206 / Friday, October 24, 2014 / Rules and Regulations ENVIRONMENTAL PROTECTION deletion of these parcels does not were to contain and control sources of AGENCY preclude future actions under contamination. Surface water and Superfund. ground water quality were not 40 CFR Part 300 DATES: This action is effective October specifically addressed in the remedies [EPA–HQ–SFUND–1983–0002; FRL–9918– 24, 2014. for these operable units. Site-wide water quality is specifically addressed in 37–Region 8] ADDRESSES: EPA has established a docket for this action under Docket OU12, which is an active operable unit. National Oil and Hazardous Identification No. EPA–HQ–SFUND– Under OU12, response action can be Substances Pollution Contingency 1983–0002. All documents in the docket conducted anywhere on the Site if Plan; National Priorities List: Partial are listed on the http:// needed to address releases that impact Deletion of the California Gulch www.regulations.gov Web site. Although or may impact water quality goals in the Superfund Site listed in the index, some information is Arkansas River. In OU4, OU5 and OU7, all responses actions have been AGENCY: Environmental Protection not publicly available, i.e., Confidential completed and institutional controls are Agency. Business Information or other in place. A responsiveness summary ACTION: Final rule. information whose disclosure is restricted by statute. Certain other was prepared and placed in both the SUMMARY: The Environmental Protection material, such as copyrighted material, docket, EPA–HQ–SFUND–1983–0002, Agency (EPA) Region 8 announces the is not placed on the Internet and will be on www.regulations.gov, and in the deletion of the Operable Unit 4 (OU4), publicly available only in hard copy local repository listed above.
    [Show full text]
  • Transforming Lives and Advancing Economic Opportunity: EPA's
    TRANSFORMING LIVES and ADVANCING ECONOMIC OPPORTUNITY: EPA’s Environmental Workforce Development and Job Training Program Preparing Unemployed and Underemployed Residents of Waste- Impacted Communities for Full-time Environmental Careers United States Environmental Protection Agency This page is intentionally left blank. B TRANSFORMING LIVES AND ADVANCING ECONOMIC OPPORTUNITY Contents Introduction ..................................................................................1 Superfund Site Cleanup ...............................................................5 • St. Louis Community College, Missouri ...........................................5 • Cypress Mandela Training Center, California ................................8 Solid Waste Management .........................................................13 • Zender Environmental Health and Research Group, Alaska ........13 • Northwest Regional Workforce Investment Board, Connecticut ...16 Wastewater Management ...........................................................20 • Rose State College, Oklahoma .....................................................20 • OAI, Inc. — Greencorps Chicago, Illinois .....................................22 Emergency Planning and Response ..........................................27 • Florida State College at Jacksonville, Florida ..............................27 • The Fortune Society, New York ....................................................30 Renewable Energy Installation ...................................................34 • City of Richmond, California
    [Show full text]
  • Lined Piping List.Xlsx
    3516 East 13th Ave Hibbing, MN 55746 Suite 700, 407-2nd St SW Calgary, AB T2P 2Y3 www.iracore.com 218-262-5211 Partial Listing of Rubber Lined Piping Systems Installed Customers Pipe Diameter Inches Product Transport Lengths Linear Feet LTV Steel 14” Taconite/Tailings 40’ 155,160 Cleveland Cliffs 24” and 26” Taconite/Tailings 20’ to 40’ 58,310 Iron Ore Co. of Canada 20’ Taconite/Tailings 38’ 56,824 Eveleth Mine 16” and 18” Taconite/Tailings 40’ 35,000 National Steel 22” Taconite/Tailings 40’ 51,040 Homestake Gold Mine 4”, 5”, 6” Gold 10’, 20’, 40’ 45,000 MN Power and Light 12” and 18” Power Generation Various 12,000 Wabush Mines Canada 3” to 18” Taconite/Tailings Various 5,000 Unimin 10” Aggragate 40’ 10,000 US Steel 4” to 12” Taconite/Tailings Various 75,000 Cheme (for MN Power) 6” to 30” Power Generation Various 20’ 25,000 SMARCO 20” Iron Ore Various 10,000 Butler Tac 14” Taconite/Tailings Various 100,000 Misc. Power Plants 3” to 30” Power Generation Various 200,000 Chino Mines 12” to 22” Copper/Tailings Various 10,000 Azco 3” to 30” Gold / Copper Various 25,000 Allegheny Power 4” to 36” Power Generation Various 25,000 Harrison Station, WV Kennecott Utah Copper 12”, 28”, 38”, 54”, 60”, 66” Copper/Tailings 60’ 175,000 BHP Nevada Mining 30” Gold / Copper 50’, 60’ 7,850 NY State Electric & Gas 6” and 8” Power Generation Various 1,000 Corporation BATU HIJAU 3” to 44” Gold/Tailings 1” to 60’ 23,970 Newmont Gold ROYAL OAK MINES 24” to 36” Copper/Tailings 40’, 60’ 60,000 Kemess Site Duro Felguera 3" to 30" Iron Ore Various 20,000 Venezuela FMI Bagdad 34" Copper 40’ 8,000 Arizona Hibbing Taconite 16" and 18" Taconite/Tailings 40' , 50' 35,000 Minnesota Suncor 8" Gypsum Slurry 20' , 40’ 12,000 Alberta, Canada Note: The above listed major jobs also included fittings, elbows, etc., which are not included in total linear feet lined.
    [Show full text]
  • Kennecott and Utah's Air Quality
    Utah October 2018 kennecott.com/air-quality Kennecott and Utah’s air quality A closer look at winter inversion Wasatch Front Utah continues to have wintertime air quality problems During the winter, Kennecott shuts down its power despite decades of air quality regulations on companies plant reducing the amount of fine particulate emissions like Rio Tinto’s Kennecott Utah Copper. Utah meets the to 3.8 percent of a typical winter day. Additionally, EPA’s annual standard for fine particulate emissions (PM2.5) Kennecott has been actively working to decrease throughout the year. However, the state struggles to meet emissions from the other sources that contribute to the 24-hour standard during the winter inversion season, inversions, such as transportation and area sources. on average about 20-days per year. Though it will take the entire community working According to the Utah Division of Air Quality, Kennecott together to be successful, Kennecott is committed is responsible for 4.4 percent of the annual fine particulate to doing its part. emissions in the Salt Lake air shed. Kennecott’s impact on the valley’s air, especially during an inversion is To learn more, take a closer look at even less. kennecott.com/air-quality. From ore to more: our work makes modern life possible. Cu October 2018 kennecott.com/air-quality Kennecott Utah Copper Kennecott’s contribution to Utah’s air quality 6390 ft. 6390 aboveft. sea6390 level ft. above sea level above sea level Bingham Canyon Mine 6390Bingham ft. CanyonBingham Mine Canyon Mine 5550above sea f levelt. elevation 5550elevation aboveft.
    [Show full text]
  • Kennecott Utah Copper Corporation
    Miningmining BestPractices Plant-Wide Assessment Case Study Industrial Technologies Program Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings BENEFITS • Identified potential annual cost savings of $930,000 Summary • Identified potential annual savings of Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter 452,000 MMBtu in natural gas and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah, to identify projects to • Found opportunities to reduce maintenance, conserve energy and improve production processes. By implementing the projects identified repair costs, waste, and environmental during the assessment, KUCC could realize annual cost savings of $930,000 and annual energy emissions savings of 452,000 million British thermal units (MMBtu). The copper smelting and refining • Found opportunities to improve industrial facilities were selected for the energy assessments because of their energy-intensive processes. Implementing the projects identified in the assessments would also reduce maintenance, hygiene and safety repair costs, waste, and environmental emissions. One project would use methane gas from • Identified ways to improve process an adjacent municipal dump to replace natural gas used to heat the refinery electrolyte. throughput Public-Private Partnership • Identified a potential payback period of less than 1 year for all projects combined The U.S. Department of Energy's (DOE) Industrial Technologies Program (ITP) cosponsored the assessment. DOE promotes plant-wide energy-efficiency assessments that will lead to improvements in industrial energy efficiency, productivity, and global competitiveness, while reducing waste and environmental emissions. In this case, DOE contributed $100,000 of the total $225,000 assessment cost.
    [Show full text]
  • The Primary Copper Industry of Arizona in 1983 Special Report No
    SR·8 THE PRIMARY COPPER INDUSTRY OF ARIZONA IN 1983 SPECIAL REPORT NO. 8 14 KINGMAN 10 BAGDAD 20 22 AJO 6 TUiSON I 11 25• 2-3 51 ~ BISBEE 23. DOUGLAS• BY CLIFFORD J. HICKS FIELD ENGINEER ARIZONA ·DEPARTMENT OF MINES AND MINERAL RESOURCES BOARD OF GOVERNORS Edna Vinck-Globe_ Brian Donnelly-Phoenix Chairman Vice Chairman Richard C. Cole·Pinetop Donald Hart-Phoenix Secretary Member John H. Jett Director ABOUT THE COVER The producing copper mines and operations listed below correspond to the location and numbers on the cover. COMPANY #. Mi·ne ANAMAX MINING COMPANY RANCHERS EXPLORATION &DEVELOPMENT CORP. 1.. -Twi n Buttes 26. Bl uebi rd 2. Eisenhower 27. Old Reliable ASARCO INCORPORATED 2. Eisenhower 3. Mission 4. Sacaton 5. San Xavier 6. Silver Bell CITIES SERVICE COMPANY/PINTO VALLEY COPPER CORP. 7. Copper Cities Operations 8. Miami Mine 9. Pinto Valley CYPRUS MINES CORP. 10. Bagdad 11. Johnson 12. Pima DUVAL CORP. 13. Esperanza 14. Mineral Park 15. Sierrita INSPIRATION CONSOLIDATED COPPER CO. 16. Christmas 17. Inspiration 18. Oxhide Mine KENNECOTT CORPORATION 19. Ray MAGMA COPPER CO. 20. San Manuel 21. Superior NORANDA LAKESHORE MINES, INC. 22. Lakeshore PHELPS DODGE CORP. 23. Copper Queen Branch 24. Morenci Branch Metca 1f t,1i ne Morenci Mine 25. New Cornelia ACKNOWLEDGEMENT The author wishes to express appreciation to individual Arizona copper mining companies and Lorraine Burgin of the U.S. Bureau of Mines for providing production and other data. Additionally, thanks are extended to Nyal Niemuth, Mineral Resources Specialist, Arizona Department of Mines and Mineral Resources for his valuable advice and assis­ tance in the compilation of some of the contained tables.
    [Show full text]
  • The Primary Copper Industry of Arizona 1985 By
    SR-10 THE PRIMARY COPPER INDUSTRY " ~ ! OF ARIZONA ~ ~ ... IN 1985 SPECIAL REPORT NO. 10 .. l$i,"'. - ~ ! 20 22 AJO • 6 TU~SON I 11 25 2-3 51 ~ BISBEE 23. DOUGLAS• '" BY ~ RICHARD R. BEARD MINING ENGINEER ARIZONA DEPARTMENT OF MINES AND MINERAL RESOURCES ERRATA - THE PRIMARY COPPER INDUSTRY OF ARIZONA IN 1985 Page 1 Last sentence of second paragraph should read: By-products of the copper mines (gold, silver and molybdenum) contributed approximately 7.5% more which ma~es the contribution of the copper mines more than 81% of the total. Table XXIII --ACfCf: Company - Freeport McMorRan Deposit - Santa Cruz Major Mineral Type - Oxide Millions of Tons - 800 Average Copper Content - .43 Remarks - 50% joint venture with ASARCO 11/86 ------ABOUT THE COVER The producing copper mines and operations listed below correspond to the locations and numbers on the cover. COMPANY #. Mine ANAMAX MINING COMPANY PHELPS DODGE CORP. 1. Twin Buttes 23. Copper Queen Branch 2. Eisenhower 24. Morenci Branch Metcalf Mine ASARCO INCORPORATED Morenci ~1i ne 2. Ei senhower 25. New Cornelia 3. Mission Complex 4. Sacaton PINTO VALLEY COPPER CORP. 6. Silver Bell ~opper Cities 8. Mi ami Mi ne CYPRUS MINES CORP. 9. Pinto Valley 10. Bagcraa--- II. Johnson DUVAL ~speranza 14. Mineral Park 15. Sierrita INSPIRATION CONSOLIDATED COPPER CO. 16. Christmas 17. Inspiration Mines KENNECOTT CORPORATION 19. Ray MAGMA COPPER CO. 20. San Manue-l-- 21. Superior NORANDA LAKESHORE MINES, INC. 22. Lakeshore THE PRIMARY COPPER INDUSTRY OF ARIZONA IN 1985 Special Report Number 10 By Richard R. Beard, Mining Engineer October 1986 ARIZONA DEPARTMENT OF MINES AND MINERAL RESOURCES JOHN H.
    [Show full text]
  • Governs the Making of Photocopies Or Other Reproductions of Copyrighted Materials
    Warning Concerning Copyright Restrictions The Copyright Law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research. If electronic transmission of reserve material is used for purposes in excess of what constitutes "fair use," that user may be liable for copyright infringement. (Photo: Kennecott) Bingham Canyon Landslide: Analysis and Mitigation GE 487: Geological Engineering Design Spring 2015 Jake Ward 1 Honors Undergraduate Thesis Signatures: 2 Abstract On April 10, 2013, a major landslide happened at Bingham Canyon Mine near Salt Lake City, Utah. The Manefay Slide has been called the largest non-volcanic landslide in modern North American history, as it is estimated it displaced more than 145 million tons of material. No injuries or loss of life were recorded during the incident; however, the loss of valuable operating time has a number of slope stability experts wondering how to prevent future large-scale slope failure in open pit mines. This comprehensive study concerns the analysis of the landslide at Bingham Canyon Mine and the mitigation of future, large- scale slope failures. The Manefay Slide was modeled into a two- dimensional, limit equilibrium analysis program to find the controlling factors behind the slope failure. It was determined the Manefay Slide was a result of movement along a saturated, bedding plane with centralized argillic alteration.
    [Show full text]
  • Reuse and the Benefit to Community: Kennecott South Zone Superfund Site
    Reuse and the Benefit to Community Kennecott South Zone Introduction Mining has long been a way of life in and around Utah’s Bingham Canyon. Few ore deposits in the world have been more productive than those found at Bingham Canyon Mine. The mine has produced millions of tons of copper and tons of gold and silver. Mining operations also contaminated soil, surface water and groundwater in the surrounding area, referred to by regulators as the Kennecott South Zone (the site). During cleanup discussions, the site’s potentially responsible party, Kennecott Utah Copper, LLC (Kennecott), proposed a course of action that would address contamination while avoiding placing the site on the Superfund program’s National Priorities List (NPL). This approach was the template for the Superfund Alternative Approach, which has since been used at sites across the country. EPA approved the cleanup plan, setting the stage for the site’s cleanup and remarkable redevelopment. Open communication, extensive collaboration and innovative thinking helped contribute to the transformation of this once contaminated, industrial site into a thriving residential area and regional economic hub. Superfund site restoration and reuse can revitalize local economies with jobs, new businesses, tax revenues and local spending. Cleanup may also take place while active land uses remain on site. This case study focuses on the Kennecott South Zone, primarily on operable unit (OU) 7 and an area known as the Daybreak development, which includes and surrounds OU7. Today, OU7 and several other parts of the site support a wide range of commercial, industrial, public service, residential and recreational reuses.
    [Show full text]
  • Failure to Capture and Treat Wastewater
    U.S. OPERATING COPPER MINES: FAILURE TO CAPTURE & TREAT WASTEWATER BY BONNIE GESTRING, MAY 2019 In 2012, Earthworks released a report documenting the failure to capture and treat mine wastewater at U.S. operating copper mines accounting for 89% of U.S. copper production.1 The report found that 92% failed to capture and control mine wastewater, resulting in significant water quality impacts. This is an update to that effort. We reviewed government and industry documents for fifteen operating open-pit copper mines, representing 99% of U.S. copper production in 2015 – the most recent data on copper production available from the U.S. Geological Survey (see Table 1). Our research found similar results: 14 out of 15 (93%) failed to capture and control wastewater, resulting in significant water quality impacts (see TaBle 2). These unauthorized wastewater releases occurred from a number of different sources including uncontrolled seepage from tailings impoundments, waste rock piles, open pits, or other mine facilities, or failure of water treatment facilities, pipeline failures or other accidental releases. TABLE 1: Copper production from top 15 (as of 2015) U.S. open-pit copper mines (most recent data availaBle from USGS).2 MINE PRODUCTION (metric tons) Morenci 481,000 Chino 142,000 Safford 91,600 Bagdad 95,300 Bingham Canyon 92,000 Sierrita 85,700 Ray 75,100 Pinto Valley 60,400 Mission CompleX 68,300 Robinson 56,800 Tyrone 38,100 Continental pit 31,000 PhoeniX 21,100 Miami 19,500 Silver Bell 19,300 Total (99% of U.S. production) 1,377,000 U.S.
    [Show full text]
  • Hardrock Mining in Utah
    HARDROCK MINING IN UTAH In 2007, Congress will be considering changes to the antiquated Mining Law of 1872 that governs how gold, silver and other ‘hardrock’ minerals are developed on our National Forests and national resource lands administered by the Bureau of Land Management. Here are some nuggets on mining in Utah. Mining Activities As of 2006 mining interests have staked more than 1,480 active mining claims in Utah, covering an estimated 367,244 acres. The five Utah counties with the most acres claimed on the public lands are: Emery County - 64,605 acres, Beaver County - 59,969 acres, Tooele County - 32,449 acres, Millard - 26,252 acres, and San Juan County - 20,825 acres In 2006, there were 10 active or intermittent hardrock mining operations in Utah, employing 1,402 on site, according to the Mine Safety and Health Administration, representing 0.12% of the total employment in the state of Utah. Controller Mine Commodity Employment Denison Mines (USA) WHITE MESA MILL Uranium Ore 22 Corp. Kennecott Utah Copper Copperton Concentrator Gold Ore 371 Corp Brush Resources Inc BRUSH MINE Beryl-Beryllium 66 Ore Kennecott Barneys KENNECOTT BARNEYS Gold Ore 8 Canyon Mining CANYON MINING Kennecott Utah Copper Bingham Canyon Mine Copper Ore NEC 754 Corp Lisbon Valley Mining Co Lisbon Valley Mining Co Copper Ore NEC 134 LLC Unico Incorporated DEER TRAIL Gold Ore 9 Denison Mines (USA) Pandora Uranium Ore 10 Corp. Denison Mines (USA) Tony M Uranium Ore 7 Corp. Kennecott Utah Copper North Ore Shoot and Copper Ore NEC 21 Corporation Highland Boy DG Above: The Bingham Canyon Mine is the Largest Open Pit Mine in the World Area of Specific Concern – Jacobs Smelter Historically, the Rush Lake/Stockton area was a smelting center that processed ore from several of the mines in the area.
    [Show full text]
  • Restoration Plan and Environmental Assessment for the Upper Arkansas Ri Ve R Watershed Dated January 7, 2010
    Restoration Plan and Environmental Assessment for the April 14, 2010 Upper Arkansas River Watershed PREPARED FOR PREPARED BY U.S. Department of the Interior State of Colorado Stratus Consulting Inc. U.S. Fish and Wildlife Service Department of Natural Resources PO Box 4059 U.S. Bureau of Land Management Department of Public Health and Environment Boulder, CO 80306-4059 U.S. Bureau of Reclamation Department of Law 303-381-8000 Contact: Diana R. Lane, PhD or Allison Ebbets, MS List of Authorities and Responsible Agency Point of Contact Natural Resource Trustees: • U.S. Department of the Interior - U.S. Fish and Wildlife Service - U.S. Bureau of Land Management - U.S. Bureau of Reclamation • State of Colorado - Department of Natural Resources - Department of Public Health and Environment - Department of Law Legal Authority: • Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (as amended), 42 U.S.C. § 9601, et. seq. • Federal Water Pollution Control Act (Clean Water Act) (as amended), 33 U.S.C. § 1251, et. seq. • Natural Resource Damage Assessment Regulation, 43 C.F.R. Part 11 Lead Federal Agency for Restoration Plan: • U.S. Department of the Interior (Region 6, U.S. Fish and Wildlife Service) Lead Federal Agency for Environmental Assessment: • U.S. Department of the Interior (Region 6, U.S. Fish and Wildlife Service) Participating State Agencies: • Colorado Department of Natural Resources - Division of Wildlife, Division of Reclamation Mining and Safety • Colorado Department of Public Health and Environment • Colorado Department of Law Point of Contact: Laura Archuleta U.S. Fish and Wildlife Service, Saguache Field Offi ce 46525 Highway 114 Saguache, CO 81149 719-655-6121 SC11902 Upper Arkansas River Watershed Restoration Plan and Environmental Contents Assessment Executive Summary .......................................................................................................................................................
    [Show full text]