Viewed in [80])

Total Page:16

File Type:pdf, Size:1020Kb

Viewed in [80]) UNIVERSITY OF CINCINNATI _____________ , 20 _____ I,______________________________________________, hereby submit this as part of the requirements for the degree of: ________________________________________________ in: ________________________________________________ It is entitled: ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ Approved by: ________________________ ________________________ ________________________ ________________________ ________________________ THE BALANCED, RECIPROCAL TRANSLOCATION OF CHROMOSOMAL SUBBANDS 12q15 AND 14q24 AND ALTERED GENE EXPRESSION IN UTERINE LEIOMYOMA A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) in the Department of Molecular Genetics, Biochemistry and Microbiology of the College of Medicine 2002 by Susan E. Ingraham B.S., University of Wisconsin, 1990 Committee Chair: Anil G. Menon Abstract A balanced, reciprocal translocation between chromosomes 12 and 14 is frequently observed in uterine leiomyoma (UL), a common benign smooth muscle tumor. Cytogenetic evidence suggests that t(12;14)(q15;q24) is an early event and therefore may represent one of the important steps in UL pathogenesis. The breakpoints of t(12;14)(q15;q24) have been localized to unusually large genomic regions (approximately 0.5 Mb) on each of the involved chromosomes. In this study, we investigated the molecular events associated with this translocation, specifically the transcription of genes within the breakpoint regions on 14q24 and 12q15. t(12;14)(q15;q24) had previously been associated with activation of HMGA2 on chromosome 12, a gene implicated in promoting cell proliferation, particularly of lipoid tissues. We analyzed this gene and discovered several novel transcripts from 12q15 that are embedded within HMGA2. On chromosome 14, the breakpoint in one UL was found to lie within RAD51L1, a putative DNA repair and recombination gene. Subsequent analysis of two additional t(12;14) UL breakpoints refined the chromosome 14 breakpoint region to between 700 and 1200 kb. The large size of the breakpoint regions and the mapping of breakpoints well outside both HMGA2 and RAD51L1 suggested that the translocation may alter the structure and long-range regulatory controls of genes including but perhaps not limited to HMGA2 and RAD51L1. To test this hypothesis, an expression map was developed which consisted of ESTs and genes within and flanking both breakpoint regions. Expression of these markers was tested in matched normal and t(12;14) UL tissue samples to identify a domain of altered expression on chromosomes 12 and 14. HMGA2 and the three novel ESTs embedded within HMGA2, A15, B6, and D12, were overexpressed six- to more than twenty-fold, while RAD51L1 and other ESTs on chromosome 14 were not consistently or significantly altered in UL. Positional cloning of the UL breakpoint region and mapping of the domain of altered expression in tumors sets the stage for understanding the molecular mechanism for the pathogenesis of UL. Dedication This dissertation is dedicated to several people who taught me by their example that life goes on in spite of everything. John Bosanec, Judy Ingraham, Roy Lynch, and Alissa Winnard, this work is for you, for without your inspiration it might not have been accomplished at all. Acknowledgements I thank James Liu, Frank Dill, Sheila Blanck and Urvashi Surti for collecting the leiomyoma samples which were critical to this work; and Bruce Aronow, Kathy Saalfeld, David Witte, Tim Hubbell, and Betty Davis for their technical expertise. Judy Harmony, Les Myatt, Bob Colbert, and Terri Berning, administrators of the Physician Scientist Training Program, deserve recognition of their tremendous efforts which have made the MD/PhD program at the University of Cincinnati one of the best and most student-focused in the country. My appreciation also to Sohaib Khan and Susan Eder, administrators of NIH Training Grant T32 CA59268 which has supported me financially and intellectually for the past three years. I thank those who have served on my thesis committee, Anil Menon, Joanna Groden, Jim Stringer, Sue Heffelfinger, Bob Arceci, and Shelley Barton, for their insight and guidance; and my colleagues in the Menon lab (past and present), Vasily Ivanenkov, Martha Jiang, Chuck Klanke, Carissa Krane, Roy Lynch, Shodimu Olufemi, Keya Sen, Zheng Yuan Shan, Katie Smith, Teresa Smolarek, Yan Ru Su, Jennifer Towne, Jessica Woo, Fan Yang, and Shiping Zhang for their friendship and support. My deepest gratitude to Alissa and Phil Winnard and Katie and Doug Smith for seeing me through unexpected hardships and getting me back on my feet with extraordinary kindness and efficiency. And finally, I thank my family, Janet, Andy and Benjamin Ingraham Dwyer and Sam and Judy Ingraham, for always having more faith than I did that what I was doing was important and valuable, even though they rarely understood any of it. Table of Contents List of Figures..................................................................................................................5 List of Tables....................................................................................................................8 List of Symbols and Abbreviations................................................................................9 Cytogenetic Notation........................................................................................................................ 12 Genes and Their Products................................................................................................................ 12 Units of Measure.............................................................................................................................. 12 Chapter 1: Introduction ...............................................................................................13 EPIDEMIOLOGY AND PATHOLOGY OF LEIOMYOMA ......................................................13 HORMONAL RESPONSIVENESS AND REGULATION OF UL .............................................14 ANIMAL MODELS OF UL..............................................................................................18 LEIOMYOMA CYTOGENETICS .......................................................................................19 CHROMOSOMAL TRANSLOCATIONS IN HUMAN DISEASE..............................................25 POSITIONAL CLONING OF THE UL TRANSLOCATION ....................................................27 GENE REGULATION BY ACTION AT A DISTANCE ..........................................................29 CANDIDATE GENES ON CHROMOSOME 12: HMGA2 ....................................................33 CANDIDATE GENES ON CHROMOSOME 14: RAD51L1..................................................39 DNA REPAIR IN HUMAN DISEASE ...............................................................................42 ANALYSIS OF GENE EXPRESSION IN T(12;14)(Q15;Q24) UTERINE LEIOMYOMATA ......43 Mapping of Chromosome 14 Breakpoints Relative to RAD51L1..................................................... 43 Identification of EST Markers Significantly Altered in Expression by t(12;14)............................... 44 - 1 - Initial Characterization of Novel 12q15 Transcripts A15, B6, and D12 in Normal Tissue and in UL .......................................................................................................................................................... 45 STATEMENT OF PREMISE AND DEVELOPMENT OF HYPOTHESIS ....................................46 FORMAL STATEMENT OF HYPOTHESIS..........................................................................46 Chapter 2: Materials & Methods................................................................................47 RAD51L1 DISRUPTION BY T(12;14)(Q15;Q24) IN A UTERINE LEIOMYOMA .................47 cDNA Cloning .................................................................................................................................. 47 Polymerase Chain Reaction (PCR).................................................................................................. 49 MAPPING OF ADDITIONAL UL CHROMOSOME 14 BREAKPOINTS .................................49 IDENTIFICATION OF NOVEL TRANSCRIPTS OVEREXPRESSED IN UL..............................50 Exon Trapping.................................................................................................................................. 50 EST Markers .................................................................................................................................... 50 Northern Hybridizations .................................................................................................................. 51 Rapid Amplification of cDNA ends (RACE)..................................................................................... 52 t(12;14) Tumor And Normal Myometrial Samples........................................................................... 54 Tumor and Normal Myometrial Samples Not Analyzed Cytogenetically......................................... 54 cDNA Synthesis from Frozen Tissue Samples.................................................................................. 57 Relative Reverse Transcriptase-Coupled Polymerase Chain Reaction (RT-PCR)........................... 57
Recommended publications
  • The Genetic Bases of Uterine Fibroids; a Review
    Review Article The Genetic Bases of Uterine Fibroids; A Review Veronica Medikare 1, Lakshmi Rao Kandukuri 2, Venkateshwari Ananthapur 3, Mamata Deenadayal 4, Pratibha Nallari 1* 1- Department of Genetics, Osmania University, Hyderabad, India 2- Center for Cellular and Molecular Biology, Habsiguda, Hyderabad, India 3- Institute of Genetics and Hospital for Genetic Diseases, Begumpet, Hyderabad, India 4- Infertility Institute and research Center, Secunderabad, India Abstract Uterine leiomyomas/fibroids are the most common pelvic tumors of the female genital tract. The initiators remaining unknown, estrogens and progesterone are considered as promoters of fibroid growth. Fibroids are monoclonal tumors showing 40-50% karyo- typically detectable chromosomal abnormalities. Cytogenetic aberrations involving chromosomes 6, 7, 12 and 14 constitute the major chromosome abnormalities seen in leiomyomata. This has led to the discovery that disruptions or dysregulations of HMGIC and HMGIY genes contribute to the development of these tumors. Genes such as RAD51L1 act as translocation partners to HMGIC and lead to disruption of gene structure leading to the pathogenesis of uterine fibroids. The mechanism underlying * Corresponding Author: this disease is yet to be identified. The occurrence of PCOLCE amid a cluster of at Downloaded from http://www.jri.ir Pratibha Nallari, Department of Genetics, least eight Alu sequences is potentially relevant to the possible involvement of Osmania University, PCOLCE in the 7q22 rearrangements that occur in many leiomyomata. PCOLCE is Hyderabad, 500 007, implicated in cell growth processes. Involvement of Alu sequences in rearrangements India can lead to the disruption of this gene and, hence, loss of control for gene expression E-mail: leading to uncontrolled cell growth.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Homologous Recombination As a Potential Target for Ca€Eine
    Oncogene (2000) 19, 5788 ± 5800 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Homologous recombination as a potential target for caeine radiosensitization in mammalian cells: reduced caeine radiosensitization in XRCC2 and XRCC3 mutants Nesrin A Asaad1, Zhao-Chong Zeng1, Jun Guan1, John Thacker2 and George Iliakis*,1 1Department of Radiation Oncology of Kimmel Cancer Center, Jeerson Medical College, Philadelphia, Pennsylvania, PA 19107, USA; 2Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire, OX11 ORD, UK The radiosensitizing eect of caeine has been associated Introduction with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also Caeine (1,3,7-trimethylxanthine) at submillimolar implicate inhibition of DNA repair. The role of DNA concentrations exerts a wide variety of physiological repair inhibition in caeine radiosensitization remains eects on dierent organisms from bacteria to man uncharacterized, and it is unknown which repair process, (Garattini, 1993; Timson, 1977). At higher concentra- or lesion, is aected. We show that a radiosensitive cell tions (0.5 ± 10 mM), it strongly enhances the cytotoxic line, mutant for the RAD51 homolog XRCC2 and eect of ionizing radiation and other physical or defective in homologous recombination repair (HRR), chemical agents that act by inducing damage in DNA displays signi®cantly diminished caeine radiosensitiza- (Kihlman, 1977; Murnane, 1995; Timson, 1977; tion that can be restored by expression of XRCC2. Waldren and Rasko, 1978). Radiosensitization is Despite the reduced radiosensitization, caeine eec- manifest at non-cytotoxic concentrations and therefore tively abrogates checkpoints in S and G2 phases in caeine is considered a model radiosensitizer.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Molecular Biology and Applied Genetics
    MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included.
    [Show full text]
  • Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response
    Supplementary Online Content Beltran H, Eng K, Mosquera JM, et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. Published online May 28, 2015. doi:10.1001/jamaoncol.2015.1313 eMethods eFigure 1. A schematic of the IPM Computational Pipeline eFigure 2. Tumor purity analysis eFigure 3. Tumor purity estimates from Pathology team versus computationally (CLONET) estimated tumor purities values for frozen tumor specimens (Spearman correlation 0.2765327, p- value = 0.03561) eFigure 4. Sequencing metrics Fresh/frozen vs. FFPE tissue eFigure 5. Somatic copy number alteration profiles by tumor type at cytogenetic map location resolution; for each cytogenetic map location the mean genes aberration frequency is reported eFigure 6. The 20 most frequently aberrant genes with respect to copy number gains/losses detected per tumor type eFigure 7. Top 50 genes with focal and large scale copy number gains (A) and losses (B) across the cohort eFigure 8. Summary of total number of copy number alterations across PM tumors eFigure 9. An example of tumor evolution looking at serial biopsies from PM222, a patient with metastatic bladder carcinoma eFigure 10. PM12 somatic mutations by coverage and allele frequency (A) and (B) mutation correlation between primary (y- axis) and brain metastasis (x-axis) eFigure 11. Point mutations across 5 metastatic sites of a 55 year old patient with metastatic prostate cancer at time of rapid autopsy eFigure 12. CT scans from patient PM137, a patient with recurrent platinum refractory metastatic urothelial carcinoma eFigure 13. Tracking tumor genomics between primary and metastatic samples from patient PM12 eFigure 14.
    [Show full text]
  • A Computational Cytogenetic Analysis of Chronic Lymphocytic Leukemia (CLL)
    A Translational Bioinformatics Approach to Parsing and Mapping ISCN Karyotypes: A Computational Cytogenetic Analysis of Chronic Lymphocytic Leukemia (CLL) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Zachary Benjamin Abrams, B.S. * * * * * Biomedical Sciences Graduate Program The Ohio State University 2016 Dissertation Committee: Philip R.O. Payne PhD, Advisor Kevin Coombes PhD Amy Johnson PhD Albert M. Lai PhD Kun Huang PhD Copyright by Zachary Benjamin Abrams 2016 ABSTRACT Translational Bioinformatics is the field of study pertaining to the interpretation, analysis, and storage of large volumes of biomedical data for the purpose of improving human health. This thesis takes a translational bioinformatics approach through the large-scale analysis of karyotype data. Karyotyping, the practice of visually examining and recording chromosomal abnormalities, is commonly used to diagnose and treat disease. Karyotypes are written in a special language known as the International System for Human Cytogenetic Nomenclature (ISCN). Analyzing these karyotypes is currently done in a manual, non-computational manner due to the structure of the ISCN. The ISCN is generally considered not computationally tractable and as such precludes the potential of these genomic data from being fully realized. In response, this thesis presents the development of a cytogenetic platform (the Loss-Gain-Fusion model) that allows the transformation of human-readable ISCN karyotypes into a machine-readable model for computational analysis. This platform then utilizes text based cytogenetic data to create a structured binary karyotype language. Based on this computer readable language, several analyses are performed to demonstrate the potential of these data.
    [Show full text]
  • High Mutation Frequency of the PIGA Gene in T Cells Results In
    High Mutation Frequency of the PIGA Gene in T Cells Results in Reconstitution of GPI A nchor−/CD52− T Cells That Can Give Early Immune Protection after This information is current as Alemtuzumab-Based T Cell−Depleted of October 1, 2021. Allogeneic Stem Cell Transplantation Floris C. Loeff, J. H. Frederik Falkenburg, Lois Hageman, Wesley Huisman, Sabrina A. J. Veld, H. M. Esther van Egmond, Marian van de Meent, Peter A. von dem Borne, Hendrik Veelken, Constantijn J. M. Halkes and Inge Jedema Downloaded from J Immunol published online 2 February 2018 http://www.jimmunol.org/content/early/2018/02/02/jimmun ol.1701018 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2018/02/02/jimmunol.170101 Material 8.DCSupplemental Why The JI? Submit online. by guest on October 1, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 2, 2018, doi:10.4049/jimmunol.1701018 The Journal of Immunology High Mutation Frequency of the PIGA Gene in T Cells Results in Reconstitution of GPI Anchor2/CD522 T Cells That Can Give Early Immune Protection after Alemtuzumab- Based T Cell–Depleted Allogeneic Stem Cell Transplantation Floris C.
    [Show full text]
  • Biosynthesis and Deficiencies of Glycosylphosphatidylinositol
    130 Proc. Jpn. Acad., Ser. B 90 (2014) [Vol. 90, Review Biosynthesis and deficiencies of glycosylphosphatidylinositol † By Taroh KINOSHITA*1, (Communicated by Kunihiko SUZUKI, M.J.A.) Abstract: At least 150 different human proteins are anchored to the outer leaflet of the plasma membrane via glycosylphosphatidylinositol (GPI). GPI preassembled in the endoplasmic reticulum is attached to the protein’s carboxyl-terminus as a post-translational modification by GPI transamidase. Twenty-two PIG (for Phosphatidyl Inositol Glycan) genes are involved in the biosynthesis and protein-attachment of GPI. After attachment to proteins, both lipid and glycan moieties of GPI are structurally remodeled in the endoplasmic reticulum and Golgi apparatus. Four PGAP (for Post GPI Attachment to Proteins) genes are involved in the remodeling of GPI. GPI- anchor deficiencies caused by somatic and germline mutations in the PIG and PGAP genes have been found and characterized. The characteristics of the 26 PIG and PGAP genes and the GPI deficiencies caused by mutations in these genes are reviewed. Keywords: glycosylphosphatidylinositol, glycolipid, post-translational modification, somatic mutation, germline mutation, deficiency glycolipid membrane anchors. GPI-APs are typical Introduction raft-associated proteins and tend to form homo- At least 150 different human proteins are post- dimers.3),4) GPI-APs can be released from the translationally modified by glycosylphosphatidylino- cell after cleavage by GPI-cleaving enzymes or sitol (GPI) at the carboxyl (C)-terminus.1),2) These GPIases.5)–8) These characteristics are critical for proteins are expressed on the cell surface by being the functions of individual GPI-APs and for embryo- anchored to the outer leaflet of the plasma membrane genesis, neurogenesis, fertilization, and the immune via the phosphatidylinositol (PI) moiety and termed system.5),8)–11) GPI-anchored proteins (GPI-APs).
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Differential Expression of Thymic DNA Repair Genes in Low-Dose-Rate Irradiated AKR/J Mice
    pISSN 1229-845X, eISSN 1976-555X JOURNAL OF J. Vet. Sci. (2013), 14(3), 271-279 http://dx.doi.org/10.4142/jvs.2013.14.3.271 Veterinary Received: 9 Mar. 2012, Revised: 19 Sep. 2012, Accepted: 23 Oct. 2012 Science Original Article Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice Jin Jong Bong1, Yu Mi Kang1, Suk Chul Shin1, Seung Jin Choi1, Kyung Mi Lee2,*, Hee Sun Kim1,* 1Radiation Health Research Institute, Korea Hydro and Nuclear Power, Seoul 132-703, Korea 2Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea We previously determined that AKR/J mice housed in a harmful to human life. For example, LDR irradiation low-dose-rate (LDR) (137Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation therapy for cancer is known to stimulate antioxidant facility developed less spontaneous thymic lymphoma and capacity, repair of DNA damage, apoptosis, and induction survived longer than those receiving sham or high-dose-rate of immune responses [4], and LDR irradiation has been (HDR) (137Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, shown to mitigate lymphomagenesis and prolong the life histopathological analysis showed a mild lymphomagenesis in span of AKR/J mice [17,18]. Conversely, low-dose (LD) the thymus of LDR-irradiated mice. Therefore, in this study, we irradiation is reportedly involved in carcinogenesis, and LD investigated whether LDR irradiation could trigger the irradiation (lower than 2.0 Gy) has been shown to promote expression of thymic genes involved in the DNA repair process tumor growth and metastasis by enhancing angiogenesis of AKR/J mice.
    [Show full text]
  • Integrated Analysis of Germline and Somatic Variants in Ovarian Cancer
    ARTICLE Received 20 Sep 2013 | Accepted 19 Dec 2013 | Published 22 Jan 2014 DOI: 10.1038/ncomms4156 Integrated analysis of germline and somatic variants in ovarian cancer Krishna L. Kanchi1,*, Kimberly J. Johnson1,2,3,*, Charles Lu1,*, Michael D. McLellan1, Mark D.M. Leiserson4, Michael C. Wendl1,5,6, Qunyuan Zhang1,5, Daniel C. Koboldt1, Mingchao Xie1, Cyriac Kandoth1, Joshua F. McMichael1, Matthew A. Wyczalkowski1, David E. Larson1,5, Heather K. Schmidt1, Christopher A. Miller1, Robert S. Fulton1,5, Paul T. Spellman3, Elaine R. Mardis1,5,7, Todd E. Druley5,8, Timothy A. Graubert7,9, Paul J. Goodfellow10, Benjamin J. Raphael4, Richard K. Wilson1,5,7 & Li Ding1,5,7,9 We report the first large-scale exome-wide analysis of the combined germline–somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2 truncations, respectively. Germline–somatic inter- action analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.
    [Show full text]