Telomere-To-Telomere Assembly of a Complete Human X Chromosome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome-Wide Analysis of Macrosatellite
Schaap et al. BMC Genomics 2013, 14:143 http://www.biomedcentral.com/1471-2164/14/143 RESEARCH ARTICLE Open Access Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions Mireille Schaap1, Richard JLF Lemmers1, Roel Maassen1, Patrick J van der Vliet1, Lennart F Hoogerheide2, Herman K van Dijk3, Nalan Baştürk4,5, Peter de Knijff1 and Silvère M van der Maarel1* Abstract Background: Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely understudied. Here, we describe a detailed study of six autosomal and two X chromosomal MSRs among 270 HapMap individuals from Central Europe, Asia and Africa. Copy number variation, stability and genetic heterogeneity of the autosomal macrosatellite repeats RS447 (chromosome 4p), MSR5p (5p), FLJ40296 (13q), RNU2 (17q) and D4Z4 (4q and 10q) and X chromosomal DXZ4 and CT47 were investigated. Results: Repeat array size distribution analysis shows that all of these MSRs are highly polymorphic with the most genetic variation among Africans and the least among Asians. A mitotic mutation rate of 0.4-2.2% was observed, exceeding meiotic mutation rates and possibly explaining the large size variability found for these MSRs. By means of a novel Bayesian approach, statistical support for a distinct multimodal rather than a uniform allele size distribution was detected in seven out of eight MSRs, with evidence for equidistant intervals between the modes. -
X-Linked Recessive Inheritance
X-LINKED RECESSIVE Fact sheet 09 INHERITANCE This fact sheet talks about how genes affect our health when they follow a well understood pattern of genetic inheritance known as X-linked recessive inheritance. The exception to this rule applies to the genes carried on the sex chromosomes called X and Y. IN SUMMARY The genes in our DNA provide the instructions • Genes contain the instructions for for proteins, which are the building blocks of the growth and development. Some gene cells that make up our body. Although we all have variations or changes may mean that variation in our genes, sometimes this can affect the gene does not work properly or works in a different way that is harmful. how our bodies grow and develop. • A variation in a gene that causes a Generally, DNA variations that have no impact health or developmental condition on our health are called benign variants or is called a pathogenic variant or polymorphisms. These variants tend to be more mutation. common in people. Less commonly, variations can change the gene so that it sends a different • If a genetic condition happens when message. These changes may mean that the gene a gene on the X chromosome has does not work properly or works in a different way a variation, this is called X-linked that is harmful. A variation in a gene that causes inheritance. a health or developmental condition is called a • An X-linked recessive gene is a gene pathogenic variant or mutation. located on the X chromosome and affects males and females differently. -
Reference Genome Sequence of the Model Plant Setaria
UC Davis UC Davis Previously Published Works Title Reference genome sequence of the model plant Setaria Permalink https://escholarship.org/uc/item/2rv1r405 Journal Nature Biotechnology, 30(6) ISSN 1087-0156 1546-1696 Authors Bennetzen, Jeffrey L Schmutz, Jeremy Wang, Hao et al. Publication Date 2012-05-13 DOI 10.1038/nbt.2196 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLES Reference genome sequence of the model plant Setaria Jeffrey L Bennetzen1,13, Jeremy Schmutz2,3,13, Hao Wang1, Ryan Percifield1,12, Jennifer Hawkins1,12, Ana C Pontaroli1,12, Matt Estep1,4, Liang Feng1, Justin N Vaughn1, Jane Grimwood2,3, Jerry Jenkins2,3, Kerrie Barry3, Erika Lindquist3, Uffe Hellsten3, Shweta Deshpande3, Xuewen Wang5, Xiaomei Wu5,12, Therese Mitros6, Jimmy Triplett4,12, Xiaohan Yang7, Chu-Yu Ye7, Margarita Mauro-Herrera8, Lin Wang9, Pinghua Li9, Manoj Sharma10, Rita Sharma10, Pamela C Ronald10, Olivier Panaud11, Elizabeth A Kellogg4, Thomas P Brutnell9,12, Andrew N Doust8, Gerald A Tuskan7, Daniel Rokhsar3 & Katrien M Devos5 We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. -
Chromosomal Aberrations in Head and Neck Squamous Cell Carcinomas in Norwegian and Sudanese Populations by Array Comparative Genomic Hybridization
825-843 12/9/08 15:31 Page 825 ONCOLOGY REPORTS 20: 825-843, 2008 825 Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization ERIC ROMAN1,2, LEONARDO A. MEZA-ZEPEDA3, STINE H. KRESSE3, OLA MYKLEBOST3,4, ENDRE N. VASSTRAND2 and SALAH O. IBRAHIM1,2 1Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91; 2Department of Oral Sciences - Periodontology, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 17, 5009 Bergen; 3Department of Tumor Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, 0310 Oslo; 4Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway Received January 30, 2008; Accepted April 29, 2008 DOI: 10.3892/or_00000080 Abstract. We used microarray-based comparative genomic logical parameters showed little correlation, suggesting an hybridization to explore genome-wide profiles of chromosomal occurrence of gains/losses regardless of ethnic differences and aberrations in 26 samples of head and neck cancers compared clinicopathological status between the patients from the two to their pair-wise normal controls. The samples were obtained countries. Our findings indicate the existence of common from Sudanese (n=11) and Norwegian (n=15) patients. The gene-specific amplifications/deletions in these tumors, findings were correlated with clinicopathological variables. regardless of the source of the samples or attributed We identified the amplification of 41 common chromosomal carcinogenic risk factors. regions (harboring 149 candidate genes) and the deletion of 22 (28 candidate genes). Predominant chromosomal alterations Introduction that were observed included high-level amplification at 1q21 (harboring the S100A gene family) and 11q22 (including Head and neck squamous cell carcinoma (HNSCC), including several MMP family members). -
Telomere Length Shortening in Microglia: Implication for Accelerated Senescence and Neurocognitive Deficits in HIV
Article Telomere Length Shortening in Microglia: Implication for Accelerated Senescence and Neurocognitive Deficits in HIV Chiu-Bin Hsiao 1, Harneet Bedi 2, Raquel Gomez 2, Ayesha Khan 2, Taylor Meciszewski 2, Ravikumar Aalinkeel 2, Ting Chean Khoo 3, Anna V. Sharikova 3, Alexander Khmaladze 3 and Supriya D. Mahajan 2,* 1 Medicine Institute, School of Medicine, Infectious Diseases, Drexel University, Positive Health Clinic, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; [email protected] 2 Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; [email protected] (H.B.); [email protected] (R.G.); [email protected] (A.K.); [email protected] (T.M.); [email protected] (R.A.) 3 Department of Physics, University at Albany SUNY, Albany, NY 12222, USA; [email protected] (T.C.K.); [email protected] (A.V.S.); [email protected] (A.K.) * Correspondence: [email protected]; Tel.: +1-1-716-888-4776 Abstract: The widespread use of combination antiretroviral therapy (cART) has led to the accelerated aging of the HIV-infected population, and these patients continue to have a range of mild to moderate HIV-associated neurocognitive disorders (HAND). Infection results in altered mitochondrial function. The HIV-1 viral protein Tat significantly alters mtDNA content and enhances oxidative stress in immune cells. Microglia are the immune cells of the central nervous system (CNS) that exhibit Citation: Hsiao, C.-B.; Bedi, H.; a significant mitotic potential and are thus susceptible to telomere shortening. HIV disrupts the Gomez, R.; Khan, A.; Meciszewski, T.; normal interplay between microglia and neurons, thereby inducing neurodegeneration. -
DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhina, Yegor Vassetzky
DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhina, Yegor Vassetzky To cite this version: Anna Karpukhina, Yegor Vassetzky. DUX4, a Zygotic Genome Activator, Is Involved in Onco- genesis and Genetic Diseases. Ontogenez / Russian Journal of Developmental Biology, MAIK Nauka/Interperiodica, 2020, 51 (3), pp.176-182. 10.1134/S1062360420030078. hal-02988675 HAL Id: hal-02988675 https://hal.archives-ouvertes.fr/hal-02988675 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISSN 1062-3604, Russian Journal of Developmental Biology, 2020, Vol. 51, No. 3, pp. 176–182. © Pleiades Publishing, Inc., 2020. Published in Russian in Ontogenez, 2020, Vol. 51, No. 3, pp. 210–217. REVIEWS DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhinaa, b, c, d and Yegor Vassetzkya, b, * aCNRS UMR9018, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy, Villejuif, F-94805 France bKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, -
Epigenetic Control of Mammalian Centromere Protein Binding: Does DNA Methylation Have a Role?
Journal of Cell Science 109, 2199-2206 (1996) 2199 Printed in Great Britain © The Company of Biologists Limited 1996 JCS3386 Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? Arthur R. Mitchell*, Peter Jeppesen, Linda Nicol†, Harris Morrison and David Kipling MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *Author for correspondence (internet [email protected]) †Present address: MRC Reproductive Biology Unit, Edinburgh, UK SUMMARY Chromosome 1 of the inbred mouse strain DBA/2 has a block of minor satellite DNA sequences on chromosome 1. polymorphism associated with the minor satellite DNA at The binding of the CENP-E protein does not appear to be its centromere. The more terminal block of satellite DNA affected by demethylation of the minor satellite sequences. sequences on this chromosome acts as the centromere as We present a model to explain these observations. This shown by the binding of CREST ACA serum, anti-CENP- model may also indicate the mechanism by which the B and anti-CENP-E polyclonal sera. Demethylation of the CENP-B protein recognises specific sites within the arrays minor satellite DNA sequences accomplished by growing of minor satellite DNA on mouse chromosomes. cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal Key words: Centromere satellite DNA, Demethylation, Centromere block and in addition it now binds to the more internal antibody INTRODUCTION A common feature of many mammalian pericentromeric domains is that they contain families of repetitive DNA The centromere of mammalian chromosomes is recognised at sequences (Singer, 1982). -
Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and P53 Loss
H OH metabolites OH Article Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss Christopher Chronowski 1, Viktor Akhanov 1, Doug Chan 2, Andre Catic 1,2 , Milton Finegold 3 and Ergün Sahin 1,4,* 1 Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (C.C.); [email protected] (V.A.); [email protected] (A.C.) 2 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 3 Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA; fi[email protected] 4 Department of Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA * Correspondence: [email protected]; Tel.: +1-713-798-6685; Fax: +1-713-798-4146 Abstract: Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO Citation: Chronowski, C.; Akhanov, is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, V.; Chan, D.; Catic, A.; Finegold, M.; Sahin, E. -
Y Chromosome Dynamics in Drosophila
Y chromosome dynamics in Drosophila Amanda Larracuente Department of Biology Sex chromosomes X X X Y J. Graves Sex chromosome evolution Proto-sex Autosomes chromosomes Sex Suppressed determining recombination Differentiation X Y Reviewed in Rice 1996, Charlesworth 1996 Y chromosomes • Male-restricted • Non-recombining • Degenerate • Heterochromatic Image from Willard 2003 Drosophila Y chromosome D. melanogaster Cen Hoskins et al. 2015 ~40 Mb • ~20 genes • Acquired from autosomes • Heterochromatic: Ø 80% is simple satellite DNA Photo: A. Karwath Lohe et al. 1993 Satellite DNA • Tandem repeats • Heterochromatin • Centromeres, telomeres, Y chromosomes Yunis and Yasmineh 1970 http://www.chrombios.com Y chromosome assembly challenges • Repeats are difficult to sequence • Underrepresented • Difficult to assemble Genome Sequence read: Short read lengths cannot span repeats Single molecule real-time sequencing • Pacific Biosciences • Average read length ~15 kb • Long reads span repeats • Better genome assemblies Zero mode waveguide Eid et al. 2009 Comparative Y chromosome evolution in Drosophila I. Y chromosome assemblies II. Evolution of Y-linked genes Drosophila genomes 2 Mya 0.24 Mya Photo: A. Karwath P6C4 ~115X ~120X ~85X ~95X De novo genome assembly • Assemble genome Iterative assembly: Canu, Hybrid, Quickmerge • Polish reference Quiver x 2; Pilon 2L 2R 3L 3R 4 X Y Assembled genome Mahul Chakraborty, Ching-Ho Chang 2L 2R 3L 3R 4 X Y Y X/A heterochromatin De novo genome assembly species Total bp # contigs NG50 D. simulans 154,317,203 161 21,495729 -
The Bacteria Genome Pipeline (BAGEP): an Automated, Scalable Workflow for Bacteria Genomes with Snakemake
The Bacteria Genome Pipeline (BAGEP): an automated, scalable workflow for bacteria genomes with Snakemake Idowu B. Olawoye1,2, Simon D.W. Frost3,4 and Christian T. Happi1,2 1 Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria 2 African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria 3 Microsoft Research, Redmond, WA, USA 4 London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom ABSTRACT Next generation sequencing technologies are becoming more accessible and affordable over the years, with entire genome sequences of several pathogens being deciphered in few hours. However, there is the need to analyze multiple genomes within a short time, in order to provide critical information about a pathogen of interest such as drug resistance, mutations and genetic relationship of isolates in an outbreak setting. Many pipelines that currently do this are stand-alone workflows and require huge computational requirements to analyze multiple genomes. We present an automated and scalable pipeline called BAGEP for monomorphic bacteria that performs quality control on FASTQ paired end files, scan reads for contaminants using a taxonomic classifier, maps reads to a reference genome of choice for variant detection, detects antimicrobial resistant (AMR) genes, constructs a phylogenetic tree from core genome alignments and provide interactive short nucleotide polymorphism (SNP) visualization across -
A Novel Trna Variable Number Tandem Repeat at Human Chromosome 1Q23.3 Is Implicated As a Boundary Element Based on Conservation of a CTCF Motif in Mouse Emily M
Published online 21 April 2014 Nucleic Acids Research, 2014, Vol. 42, No. 10 6421–6435 doi: 10.1093/nar/gku280 A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse Emily M. Darrow and Brian P. Chadwick* Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA Received February 14, 2014; Revised March 24, 2014; Accepted March 25, 2014 ABSTRACT dividuals making macrosatellites some of the largest vari- able number tandem repeats (VNTRs) in the genome The human genome contains numerous large tan- (3,5,6,7,8,9,10,11,12). dem repeats, many of which remain poorly charac- What role macrosatellites fulfill in our genome is un- terized. Here we report a novel transfer RNA (tRNA) clear. Some contain open reading frames (ORFs) that tandem repeat on human chromosome 1q23.3 that are predominantly expressed in the testis or certain can- shows extensive copy number variation with 9–43 cers (13,14,15), whereas the expression of others is more repeat units per allele and displays evidence of mei- widespread (16,17,18,19). However, reduced copy number otic and mitotic instability. Each repeat unit consists of some is associated with disease (5,20) due to inappro- of a 7.3 kb GC-rich sequence that binds the insulator priate reactivation of expression (21). Others contain no protein CTCF and bears the chromatin hallmarks of obvious ORF (6,11); further complicating what purpose a bivalent domain in human embryonic stem cells. -
Non-Synonymous Mutations Mapped to Chromosome X Associated With
de Camargo et al. BMC Genomics (2015) 16:384 DOI 10.1186/s12864-015-1595-0 RESEARCH ARTICLE Open Access Non-synonymous mutations mapped to chromosome X associated with andrological and growth traits in beef cattle Gregório Miguel Ferreira de Camargo1,2,3, Laercio R Porto-Neto2, Matthew J Kelly3, Rowan J Bunch2, Sean M McWilliam2, Humberto Tonhati1, Sigrid A Lehnert2, Marina R S Fortes3* and Stephen S Moore4 Abstract Background: Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits. Results: Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits.