ENL 10.Pdf (1.0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Echinoidea Clypeasteroidea
Biodiversity Journal, 2014, 5 (2): 291–358 Analysis of some astriclypeids (Echinoidea Clypeast- eroida) Paolo Stara1* & Luigi Sanciu2 1Centro Studi di Storia Naturale del Mediterraneo - Museo di Storia Naturale Aquilegia, Via Italia 63, Pirri-Cagliari and Geomuseo Monte Arci, Masullas, Oristano, Sardinia, Italy; e-mail: [email protected] *Corresponding author The systematic position of some astriclypeid species assigned through times to the genera Amphiope L. Agassiz, 1840 and Echinodiscus Leske, 1778 is reviewed based on the plating ABSTRACT pattern characteristics of these two genera universally accepted, and on the results of new studies. A partial re-arrangement of the family Astriclypeidae Stefanini, 1912 is herein pro- posed, with the institution of Sculpsitechinus n. g. and Paraamphiope n. g., both of them char- acterized by a peculiar plating-structure of the interambulacrum 5 and of the ambulacra I and V. Some species previously attributed to Amphiope and Echinodiscus are transferred into these two new genera. Two new species of Astriclypeidae are established: Echinodiscus andamanensis n. sp. and Paraamphiope raimondii n. sp. Neotypes are proposed for Echin- odiscus tenuissimus L. Agassiz, 1840 and E. auritus Leske, 1778, since these species were still poorly defined, due to the loss of the holotypes and, for E. auritus, also to the unclear geographical/stratigraphical information about the type-locality. A number of additional nom- inal fossil and extant species of "Echinodiscus" needs revision based on the same method. KEY WORDS Astriclypeidae; Amphiope; Paraamphiope; Echinodiscus; Sculpsitechinus; Oligo-Miocene. Received 28.02.2014; accepted 14.03.2014; printed 30.06.2014 Paolo Stara (ed.). Studies on some astriclypeids (Echinoidea Clypeasteroida), pp. -
Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 6: Conclusions
pp 507-580 15-01-2007 14:51 Pagina 505 Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions John W.M. Jagt Jagt, J.W.M. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions. — Scripta Geol., 121: 505-577, 8 figs., 9 tables, Leiden, December 2000. John W.M. Jagt, Natuurhistorisch Museum Maastricht, Postbus 882, NL-6200 AW Maastricht, The Netherlands, E-mail: [email protected] Key words: Echinodermata, Late Cretaceous, Early Palaeogene, palaeobiology, K/T boundary, extinc- tion. The palaeobiology of echinoderms occurring in the Meerssen and Geulhem members is discussed and changes in diversity across the K/T boundary are documented. Using literature data on the ecology of extant faunas, the various echinoderm groups are considered. Naturally, such data can only be applied with due caution to fossil forms, whose skeletal morphology is often incompletely known. This holds especially true for asteroids, ophiuroids, and crinoids, which, upon death, rapidly disinte- grate into jumbles of dissociated ossicles. Bioturbation, scavenging, and current winnowing all con- tribute to blurring the picture still further. However, data on extant forms do allow a preliminary sub- division of fossil species into various ecological groups, which are discussed herein. Combining recently published data on K/T boundary sections in Jylland and Sjælland (Denmark) with the pic- ture drawn here for the Maastricht area results in the following best constrained scenario. The demise of the highly diverse latest Maastrichtian echinoderm faunas, typical of shallow-water settings with local palaeorelief and associated unconsolidated bottoms, was rapid, suggestive of a catastrophic event (e.g. -
From Liège-Limburg (Belgium, the Netherlands)
bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre, 69-supp. a: 103-118, 1999 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 69-supp. a: 103-118, 1999 An overview of Late Cretaceous and Early Palaeogene echinoderm faunas from Liège-Limburg (Belgium, The Netherlands) by John W. M. JAGT Abstract My3eftHbiM kojitckj tttaM. h B ocoöeiniocTH co'i;iaHHbiM ao 1975 ro;ia. He xBaTaeT, b Hacntocnt, nojtpoÔHoit HH(j)opMaiinH o With the exception of echinoids, echinoderm faunas from the type area crpainrpaiJiHMecKOM nponcxoacaeHHH. HoBaa KOJOieKUHH He of the Maastrichtian Stage still are more or less terra incognita. TOJibKO 3HaHHTenbito yrayôJiaeT Haiim sHarain o (jtavnax Material collected recently in the area by a group of professional and htjiokojkhx rio3;[Hei o Mena (KaMnaHCKO-MacTpHXTCKHH apycbi) amateur palaeontologists comprises numerous new records, which h PaitHero IîajieoreHa (JJaTCKHH apye) b /jannoit oöjiacra, ho h have the added advantage of being well documented stratigraphically. rio3Bo:weT noflBecm htoth no Museum collections, and those pre-dating 1975 in particular, generally CTpyicrype pa3Hoo6pa3Ha h suffer from a lack of detail where stratigraphie provenance is con- BbiMHpaHHH, iipc/unec i BOBaBirieH rpaimne K/T h BKpecT ipaHHtte K/T. cerned. Not only do these new collections considerably increase our Kpancoe o6o3peHHe tjiayu htjiokoxchx npejiCTaBJieHO b knowledge of Late Cretaceous (Campanian-Maastrichtian) and Early jtamtoM onepKe, ocoôoe BHHMaHHe yneneHo MopcKHM eacaM h Palaeogene (Danian) echinoderm faunas in the area, they also allow acTepoiptaM. conclusions on diversification and extinction patterns prior to and across the K/T boundary to be drawn. -
Florida Fossil Invertebrates 2 (Pdf)
FLORIDA FOSSIL INVERTEBRATES Parl2 JANUARY 2OO2 SINGLE ISSUE: $z.OO OLIGOCENE AND MIOCENE ECHINOIDS CRAIG W. OYEN1 and ROGER W. PORTELL, lDeparlment of Geography and Earth Science Shippensburg U niversity 1871 Old Main Drive Shippensburg, PA 17257 -2299 e-mail: cwoyen @ ark.ship.edu 2Florida Museum of Natural History University of Florida P. O. Box 117800 Gainesville, FL 32611 -7800 e-mail: portell @flmnh.ufl.edu A PUBLICATTON OF THE FLORTDA PALEONTOLOGTCAL SOCIETY tNC. r,q)-.'^ .o$!oLo"€n)- .l^\ z*- il--'t- ' .,vn\'9t\ x\\I ^".{@^---M'Wa*\/i w*'"'t:.&-.d te\ 3t tu , l ". (. .]tt f-w#wlW,/ \;,6'#,/ FLORIDA FOSSIL INVERTEBRATES tssN 1536-5557 Florida Fossil lnvertebrafes is a publication of the Florida Paleontological Society, Inc., and is intended as a guide for identification of the many, common, invertebrate fossils found around the state. lt will deal solely with named species; no new taxonomic work will be included. Two parts per year will be completed with the first three parts discussing echinoids. Part 1 (published June 2001) covered Eocene echinoids, Parl2 (January 2002 publication) is about Oligocene and Miocene echinoids, and Part 3 (June 2002 publication) will be on Pliocene and Pleistocene echinoids. Each issue will be image-rich and, whenever possible, specimen images will be at natural size (1x). Some of the specimens figured in this series soon will be on display at Powell Hall, the museum's Exhibit and Education Center. Each part of the series will deal with a specific taxonomic group (e.9., echinoids) and contain a brief discussion of that group's life history along with the pertinent geological setting. -
Sand Dollar (Echinoidea: Clypeasteroida: Monophorasteridae)
Zootaxa 4173 (1): 045–054 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4173.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:05B8BB34-90F3-4216-910B-206F55EC61DB A new South American Miocene species of 'one-holed' sand dollar (Echinoidea: Clypeasteroida: Monophorasteridae) RICH MOOI1,4, SERGIO A. MARTÍNEZ2 & CLAUDIA J. DEL RÍO3 1California Academy of Sciences, Department of Invertebrate Zoology and Geology, 55 Music Concourse Drive, San Francisco, Cali- fornia 94118, USA. E-mail: [email protected] 2Departamento de Paleontología, Facultad de Ciencias,Universidad de la República, Iguá 4225,11400 Montevideo, Uruguay. E-mail: [email protected] Museo Argentino de Ciencias Naturales Bernardino Rivadavia, División Paleoinvertebrados, Angel Gallardo 470, (C1405DJR) Bue- nos Aires, Argentina. E-mail: [email protected] 4Corresponding author Abstract A new species of monophorasterid sand dollar, Monophoraster telfordi n. sp., is described from the Early Miocene basal horizons of the Chenque Formation of Patagonia, Santa Cruz Province, in southern Argentina. The new taxon raises the number of known species in the family to six, and represents first unequivocal record of the genus for the Early Miocene of South America. It is therefore also the oldest member of the genus. M. telfordi is characterized by its test width to length ratio, which is much higher than for the other two described species in the genus, but less than that known for the extremely wide members of the sister taxon, Amplaster. M. telfordi is also unusual among monophorasterids in lacking broad conti- nuity between basicoronal and post-basicoronal plates in the oral interambulacra. -
Variation in Growth Pattern in the Sand Dollar, Echinarachnius Parma, (Lamarck)
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1964 VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) PRASERT LOHAVANIJAYA University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LOHAVANIJAYA, PRASERT, "VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK)" (1964). Doctoral Dissertations. 2339. https://scholars.unh.edu/dissertation/2339 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 65-950 microfilmed exactly as received LOHAVANIJAYA, Prasert, 1935- VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHJNARACHNIUS PARMA, (LAMARCK). University of New Hampshire, Ph.D., 1964 Zoology University Microfilms, Inc., Ann Arbor, Michigan VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, EC’HINARACHNIUS PARMA, (LAMARCK) BY PRASERT LOHAVANUAYA B. Sc. , (Honors), Chulalongkorn University, 1959 M.S., University of New Hampshire, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Zoology June, 1964 This thesis has been examined and approved. May 2 2, 1 964. Date An Abstract of VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) This study deals with Echinarachnius parma, the common sand dollar of the New England coast. Some problems concerning taxonomy and classification of this species are considered. -
Evolutionary Modification of Mesenchyme Cells in Sand Dollars in the Transition from Indirect to Direct Development
EVOLUTION & DEVELOPMENT 9:3, 257–266 (2007) Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development Mamiko Yajima Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, 11 Koyatsu, Tateyama, Chiba 294-0301, Japan Correspondence (email: [email protected]) Present address: Bio Med Molecular, Cellular Biology Biochemistry Department, Brown University, 185 Meeting Street, Providence, RI 02912, USA SUMMARY Peronella japonica, an intermediate type of cells (PMCs) and LMCs are similar to the SMCs of typical direct-developing sand dollar, forms an abbreviated pluteus, indirect developers, suggesting that heterochrony in the timing followed by metamorphosis within 3 days without feeding. In of mesenchyme cell ingression may have occurred in this this species, ingression of mesenchyme cells starts before species. EMCs disappeared after metamorphosis and LMCs hatching and continues until gastrulation, but no typical were involved in adult skeletogenesis. Embryos from which secondary mesenchyme cells (SMCs) migrate from the tip of micromeres were removed at the 16-cell stage formed the archenteron. Here, I investigated the cell lineage of armless plutei that went on to form adult skeletons and mesenchyme cells through metamorphosis in P. japonica and resulted in juveniles with normal morphology. These results found that mesenchyme cells migrating before hatching (early suggest that in P. japonica, LMCs form adult skeletal mesenchyme cells [EMCs]) were exclusively derived from elements, whereas EMCs are specialized for larval spicule micromeres and became larval skeletogenic cells, whereas formation. The occurrence of evolutionary modifications in cells migrating after hatching (late mesenchyme cells [LMCs]) mesenchyme cells in the transition from indirect to direct appeared to contain several nonskeletogenic cells. -
Echinoidea: Clypeasteroida) from Patagonia
Zootaxa 3608 (5): 369–378 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3608.5.5 http://zoobank.org/urn:lsid:zoobank.org:pub:9C4ED45B-1A5F-4C32-9DF9-0C73E5B33902 A new late Cenozoic species of Abertella (Echinoidea: Clypeasteroida) from Patagonia ANDREAS KROH1,5, RICH MOOI2, CLAUDIA DEL RÍO3 & CHRISTIAN NEUMANN4 1Naturhistorisches Museum Wien, Burgring 7, 1010 Vienna, Austria. E-mail: [email protected] 2California Academy of Sciences, Department of Invertebrate Zoology and Geology, 55 Music Concourse Drive, San Francisco, California 94118, USA. E-mail: [email protected] 3Museo Argentino de Ciencias Naturales Bernardino Rivadavia, División Paleoinvertebrados, Angel Gallardo 470, (C1405DJR) Buenos Aires, Argentina. E-mail: [email protected] 4Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Invalidenstraße 43, 10115 Berlin, Germany. E-mail: [email protected] 5Corresponding author Abstract A new species of abertellid sand dollar, Abertella miskellyi n. sp., is described from the Miocene Camarones Formation of Patagonia, southern Argentina. The new taxon corroborates the existence of the genus in South America, given that Abertella is most common in the southeastern USA and the eastern coast of Central America. It is characterized by a unique basicoronal circle, in which the interambulacral basicoronal plates are very heterogeneous in size (small in interambulacrum 5, largest in interambulacra 2 and 3). Additionally, it features disjunct oral interambulacra involving two ambulacral plates in some of the interambulacra rather than one, thus being the most disjunct of all known species of Abertella. -
Echinodermata
Echinodermata Gr : spine skin 6500 spp all marine except for few estuarine, none freshwater 1) pentamerous radial symmetry (adults) *larvae bilateral symmetrical 2) spines 3) endoskeleton mesodermally-derived ossicles calcareous plates up to 95% CaCO3, up to 15% MgCO3, salts, trace metals, small amount of organic materials 4) water vascular system (WVS) 5) tube feet (podia) Unicellular (acellular) Multicellular (metazoa) protozoan protists Poorly defined Diploblastic tissue layers Triploblastic Cnidaria Porifera Ctenophora Placozoa Uncertain Acoelomate Coelomate Pseudocoelomate Priapulida Rotifera Chaetognatha Platyhelminthes Nematoda Gastrotricha Rhynchocoela (Nemertea) Kinorhyncha Entoprocta Mesozoa Acanthocephala Loricifera Gnathostomulida Nematomorpha Protostomes Uncertain (misfits) Deuterostomes Annelida Mollusca Echinodermata Brachiopoda Hemichordata Arthropoda Phoronida Onychophora Bryozoa Chordata Pentastomida Pogonophora Sipuncula Echiura 1 Chapter 14: Echinodermata Classes: 1) Asteroidea (Gr: characterized by star-like) 1600 spp 2) Ophiuroidea (Gr: snake-tail-like) 2100 spp 3) Echinoidea (Gr: hedgehog-form) 1000 spp 4) Holothuroidea (Gr: sea cucumber-like) 1200 spp 5) Crinoidea (Gr: lily-like) stalked – 100 spp nonstalked, motile comatulid (feather stars)- 600 spp Asteroidea sea stars/starfish arms not sharply marked off from central star shaped disc spines fixed pedicellariae ambulacral groove open tube feet with suckers on oral side anus/madreporite aboral 2 Figure 22.01 Pincushion star, Culcita navaeguineae, preys on coral -
An Overview of Late Cretaceous and Early Palaeogene Echinoderm Faunas from Liege-Limburg (Belgium, the Netherlands)
BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 103-118, 1999 BULLETIN VAN HIT KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN. 69-SUPP. A: 103-1 IX. 19» An overview of Late Cretaceous and Early Palaeogene echinoderm faunas from Liege-Limburg (Belgium, The Netherlands) by John W. M. JAGT Abstract My3eHHHM KOJUieKIJKHM, H B OC06eHHOCTH C034aHHbIM RO 1975 roaa, He XBaraeT, B nacTHOCTH, noapoôHoft HHthopMauHH o With the exception of echinoids, echinoderm faunas from the type area CTpaTHrpatnHHecKOM npoHcxo»c;reHHH. HoBaa KOJLieKima He of the Maastrichtian Stage still are more or less terra incognita. TOJibKO SHaHHTeiiBHO \TJiy6jiHeT Hanm 3H3HH5I O tbavHax Material collected recently in the area by a group of professional and HraoK05KHX LIo3ÄHero Mena (KaMnaHCKo-MacipHXTCKHH apycbi) amateur palaeontologists comprises numerous new records, which H Parmero riarteoreHa (TJaTCKMH apyc) B aaHHOH oônactn, HO H have the added advantaue of being well documented stratigraphically. Museum collections, and those pre-dating 1975 in particular, generally no3BOjmeT nojp3ecTH HTOTH no cTpyKTvpe pa3Hoo6pa3H« H suffer from a lack of detail where slratigraphic provenance is con• BbiMHpaHH», npejiiiiecTBOBaBuieH rpamme K/T H BKpecT rparame cerned. Not only do these new collections considerably increase our K/T. Kpancoe o6o3peiöie dpavH HTJIOKOJKHX npe^cTaBaeHO B knowledge of Late Cretaceous (Campanian-Maastrichtian) and Early aaHHOM OMepKe, ocoôoe BHHMaHHe yaeaeHO MopcKHM e*aM H Palaeogene (Danian) echinoderm faunas in the area, they also allow acTepoH/raM. conclusions on diversification and extinction patterns prior to and across the KT boundary to be drawn. In the present paper a brief overview is given of these echinoderm faunas, with emphasis on KjiioReBbie cioBa: rio3aHHH Mea, PaHrodi IlajieoreH, echinoids and asteroids. -
A Hydrodynamic Interpretation of Sand Dollar Morphology
BULLETIN OF MARINE SCIENCE, 31(3): 605-622, 1981 A HYDRODYNAMIC INTERPRETATION OF SAND DOLLAR MORPHOLOGY Malcolm Telford ABSTRACT Sand dollars are shallow-domed echinoids which act as lifting bodies in water currents, Coefficients of lift (CI) were determined experimentally in air for a lunulate species, Mel/ita qllinqlliesperforllta (0,040) and for a nonlunulate species, Echinarachllius parma (0.077). The difference in CI., which was shown to be statistically significant (P = 0.001), can be attributed partly to differences in camber and partly to the presence of lunules. Observations of water flow at 10 cm' sec-1 confirmed that flow was attached and of a lift- generating pattern. Flow around E. parma was hindered by a relatively large standing vortex at the anterior margin. For M. sexiesperforata, which is thinner edged and less steeply cambered, the flow was more perfectly attached; flow from oral to aboral surfaces via the lunules was distinct. Similarly, Encope emarginata had a closely attached flow with some passage through the anal lunule and ambital notches. Calculations from weight-length relationships and coefficients of lift indicated that M. qllillqlliesperfora({l should be able to maintain its position in more severe current regimes than could E. parma. Excess pressure on the oral surface of lunulate sand dollars is relieved by flow along pressure drainage channels which lead from the central region of the disc into the lunules and ambital notches. Scanning electron micrographs show that these lack the podia char- acteristic of food grooves and that podia in adjacent food-gathering areas sweep parallel to or away from the pressure drainage channels. -
Echinodermata (Phylum) – Multiple Choice Test Name
Echinodermata (Phylum) – Multiple Choice Test ©Sheri Amsel • www.exploringnature.org Name: _________________________ Date: __________ Class: _________________ 1 5 All the following animals are Starfish eat: Echinoderms, EXCEPT: A seaweed and kelp. A starfish B clams, oysters and scallops. B octopus C whales. C sand dollar D fish. D sea urchin E sea cucumber 2 Echinoderms are found in: 6 Starfish eat by: A desert habitats. A wrapping its arms around its prey and B forest habitats. squeezing. C ocean habitats. B biting it into bits before swallowing it. D all habitats. C pushing their stomach out of their mouths to dissolve prey before eating it. D They don’t eat. Echinoderms: 3 7 To defend against predators, sea urchins have: A are all radially symmetrical. B have an internal skeleton called A sharp spines. endoskeleton. B stinging tentacles. C breathe through a kind of gills. C big teeth. D all of the above. D none of the above. 4 8 Echinoderm adults: Sand dollars and sea urchins have all of the following, EXCEPT: A move on the sea floor on “tube feet” B are free-swimming A Pores that form a flower pattern in C are attached to the sea floor (sessile). their skeleton. D all of the above. B A flattened endoskeleton. C Sharp spines they use to burrow in the sand. D All of the above. Echinodermata (Phylum) – Multiple Choice Test KEY ©Sheri Amsel • www.exploringnature.org Name: _________________________ Date: __________ Class: _________________ 1 5 All the following animals are Starfish eat: Echinoderms, EXCEPT: A seaweed and kelp.