Galaxy Alignments

Total Page:16

File Type:pdf, Size:1020Kb

Galaxy Alignments J. Astrophys. Astr. (1990) 11, 411– 443 Galaxy Alignments Halton Arp Max-Planck-Institut für Physik und Astrophysik, Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 8046 Garching b. München, Germany Received 1989 November 15; revised 1990 July 16; accepted 1990 July 30 Abstract. It is well-known that galaxies tend to form elongated associ- ations stretching many degrees across the sky. It is shown here that especially galaxies of about 3000 to 5000 km s–1 redshift define narrow filaments of from 10 to 50° in length. The surprising feature is that galaxies of very bright apparent magnitude tend to occur at the centre or ends of these alignments. The 20 brightest galaxies in apparent magnitude north of δ = 0° are investigated here and of the 14 which are uncrowded by nearby bright galaxies, a total of 13 have well marked lines and concentrations of fainter, higher redshift galaxies. Key words: galaxies, alignments—galaxies, discordant redshifts 1. Introduction The most conspicuous linear concentration of galaxies in the sky is the so-called Perseus-Pisces supercluster (Gregory, Thompson & Tifft 1981; Giovanelli & Haynes 1982, 1985; Chincarini, Giovanelli & Haynes 1983). Starting from the Perseus cluster of galaxies, one can trace galaxies about 15 degrees due west and then, dis- continuously, for another 15 degrees to the southwest where their density diminishes and the feature becomes uncertain. All along this filament of galaxies the redshifts characteristically range between cz ≃ 4000 to 6000 km s–1. Other, similar strings and elongated distributions of galaxies are rapidly being discovered. There are already difficulties, however, with the standard interpretation of these filaments. The Perseus-Pisces galaxies form a filament of about two degrees in width over much of its more than 30 degrees in length. The observed dispersion in redshift shows a minimum range of from 4000 to 6000 km s–1. In a time equal to the supposed –1 age of the galaxies, random peculiar velocities of ± 1000 km s would widen the filament to ~ 40 Mpc, or more than ten times the measured value of ~ 3 Mpc. To hold these galaxies on a line with gravitational forces would require an extremely large amount of mass distributed linearly down the core of the filament. It seems we already encounter an insoluble paradox if we make the standard interpretation of the redshifts of these galaxies as velocities. In order to understand this alignment phenomenon better, galaxies in other regions of the sky are first investigated in the present paper. One listing of galaxies that can be used for this purpose is the Rood Catalogue. (Privately distributed in 1980, it lists all the galaxies with redshifts known to Rood at that time.) The galaxies in this catalogue are typically from such sources as Tully-Fisher and Bottinelli-Gougenheim (Η I 412 H. Arp redshifts) and Humason-Mayall-Sandage (predominantly absorption-line redshifts). Redshifts from many other sources are also listed. There is no claim to completeness of galaxies measured over any region of the sky but naturally bright galaxies are more completely surveyed than faint. For the purposes of the present analysis, however, incompleteness can only render the alignments and filaments less conspicuous than they really are. The reason for this is that if long lines of galaxies exist, it is implausible that observers would have unknowingly measured along them. Therefore any incompleteness in catalogues would only serve to degrade the lines. More complete surveys in the future would be expected to enhance these long linear concentrations. Another catalogue which is very useful is the survey of low surface brightness (LSB) galaxies by Bothun, Beers & Mould (1985). That survey encompasses galaxies of fainter apparent magnitude than does, for example the CFA survey (Huchra et al. 1983). It turns out that galaxies in a narrow redshift range but over a wide range in apparent magnitude operationally define the lines better than galaxies of all redshifts to a bright apparent magnitude limit. The two catalogues designated here as Rood and LSB will form the bulk of the source material for the investigations in the following paper. Investigations within these catalogues consisted of plotting large areas of the sky and examining whether galaxies of similar redshifts formed continuous chains or alignments. 2. The longest line of galaxies ⋝ ⋝ Fig. ⋜ 1 shows all the galaxies tested in the Rood Catalogue at northern declinations 0 h m h m δ α ⋝ ( 50 ) between 4 40 13 20 Only galaxies with redsh⋝ ifts corrected to the –1 –1 centre of the Local Group which are between 3100 km s cz0 5100 km s are ⋝ plotted ⋝ (see Table 1). The filled circles represent the narrower redshift range cz ⋝ 3100 0 3700 and give⋝ the most unique definition of the filament. The higher redshift range 3700 cz0 5100 also defines the major, long filament but in addition 0 h m furnishes a short filament at about δ≃ 6 5 and and α ≃ 7 30 one just north of δ= 50° h h between 8 < α < 9 . These shorter alignments will be discussed in the following section. The main concentration of galaxies in Fig. 1 is seen to run from α ≃ 6h, δ ≃ 73° to h 0 o α ≃ 13 , δ ≃ 54 This alignment of galaxies has about the same length ( ≳ 40 ) as the Perseus-Pisces superfilament and is comprised of galaxies of roughly similar redshift. The reality of the Perseus-Pisces filament is widely accepted and the configuration in Fig. 1 represents another example of this large scale chaining or filamentary structure in the Universe. Such structures have recently been discussed extensively (see for recent review separate papers by G. Chincarini, M. Geller & J. Einasto in IAU Symposium 124, Beijing 1986). In order to explore further the nature of these galaxy alignments we examine other regions of the sky. In Fig. 2 is shown the section of sky below the main filament in Fig. 1 (see Table 2).In this restricted range of redshift we see that the filament at the bottom edge of Fig. 1 is more conspicuous and angles to the southeast below δ = 50°. This is the same linear alignment of galaxies that was identified as the Lynx-Ursa Major supercluster by Giovanelli & Haynes (1982). It was also noted by Focardi, Morano & Vettolani (1986). In addition Fig. 2 shows a sparser filament slightly south of δ ≃ 35o. Galaxy alignments 413 Figure 1. All galaxies listed in the Rood redshift catalogue are plotted in the pictured area. The –1 filament is best defined by galaxies 3100 < v0 < 3700 km s (filled circles). Figure 2. An extension of a region southward from Fig. 1. All Rood listings in the designated redshift range are plotted. Upper filament was designated as the Lynx-Ursa Major supercluster by Giovanelli & Haynes (1982). 414 H. Arp ⋜ ⋝ ⋝ h m h m o –1 Table 1. Rood galaxies: 4 40 α 13 20 , δ 50 ; 3100 < cz0 < 5100 km s . Galaxy alignments 415 Table 1. Continued. * V means line through M81 (including M81-N2403 line) X denotes line through NGC 2841. blank denotes galaxy not aligned. There is an amazing property of these galaxy filaments, however, which bears not only on their reality but also on their origin. We proceed to the discussion of this. 3. Association with bright apparent magnitude galaxies Fig. 3 is exactly the same as Fig. 1 except that we have now plotted the three brightest galaxies in the area as open squares. We see that M81, the brightest galaxy in the sky outside the Local Group, falls at the centre of the largest superfilament in the sky outside the Local Group. The two shorter filaments present in Fig. 1 contain the second and third brightest apparent magnitude galaxies in this sector of the sky, NGC 2403 and NGC 2841. Further south than M81, Fig. 4 shows the same galaxy filaments as in Fig. 2 but the brightest galaxies in this region, NGC 2841 and NGC 2683, are now added as open 416 H. Arp Table 2. Galaxies aligned through NGC 2841 and 2683 Figure 3. The same plot as in Fig. 1 except the three brightest apparent magnitude galaxies in the region have now been added (see Table 6 for listing of brightest apparent magnitude spirals) Galaxy alignments 417 Figure 4. The same plot as in Fig. 2 except the two brightest galaxies in the region have been added. squares. Again these bright apparent magnitude galaxies fall near the midpoints of the fainter galaxies in the filaments. 3.1 Small Field Samples In Figs 1–4, galaxies obviously sampled only in small areas of the sky have been omitted when plotting from the Rood Catalogue. One such limited region is the Kirshner, Oemler & Schecter (1978) field which falls close to NGC 2403. Fig. 5a shows, however, that when the limits of that field are outlined by a dashed box that only in the top of this field are found galaxies in the redshift range which belong to the NGC 2403 filament. These galaxies form a straight connection across the KOS field from the direction of M81 to NGC 2403. Fig. 5a shows, however, that this is an extraordinary line of galaxies to be found in a fully sampled field. As KOS themselves state: “There –1 are prominent groupings at 4000 and 11000 km s . The galaxies in the near grouping are loosely clustered but the 11,000 km s–1 galaxies are spread over the entire field.” It would be an almost unbelievable coincidence if this straight line of ~ 4000 km s–1 galaxies, by accident, just fit exactly into the longer line of similar redshift galaxies that was observed earlier passing from M81 through NGC 2403.
Recommended publications
  • Observing Galaxies in Lynx 01 October 2015 22:25
    Observing galaxies in Lynx 01 October 2015 22:25 Context As you look towards Lynx you are looking above the galactic plane above the Perseus spiral arm of our galaxy which itself is about 7,000 light years away. The constellation contains a number of brighter galaxies 30 - 50 million light years away and is also relatively rich in galaxies which spread out in to the distance out to over 300 million light years away. The constellation is well placed from early winter to early summer. Relatively bright galaxies This section covers the galaxies that were visible with direct vision in my 16 inch or smaller scopes. This list will therefore grow over time as I have not yet viewed all the galaxies in good conditions at maximum altitude in my 16 inch scope! NGC 2683 This is a very edge on bright galaxy which I can see in my 100mm binoculars. It is a galaxy which does not seem to be part of a group. NGC 2549 By constellation Page 1 A smaller fainter version of NGC 2683. It was still easy to see with direct vision in my 10 inch reflector. NGC 2537 Near a group of three stars in a row. Quite large looking but with a low surface brightness in my 10 inch scope. NGC 2273 By constellation Page 2 Nice circular galaxy in my 14 inch scope. I could only see the bright core in the above image. NGC 2832 This was a lovely looking galaxy in my 14 inch Dark star scope. As you can see this galaxy is the central galaxy of a group.
    [Show full text]
  • Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. III
    Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. III. The Mark III Catalog of Galaxy Peculiar Velocities Jeffrey A. Willicka, St´ephane Courteaub, S.M. Faberc, David Bursteind, Avishai Dekele, and Michael A. Straussf,g a Dept. of Physics, Stanford University, Stanford, CA 94305-4060 ([email protected]) b NOAO/KPNO, 950 N. Cherry Ave., Tucson, AZ 85726 ([email protected]) c UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 ([email protected]) d Arizona State University, Dept. of Physics and Astronomy, Box 871504, Tempe, AZ 85287 ([email protected]) e Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel ([email protected]) f Dept. Astrophysical Sciences, Princeton University, Princeton, NJ 08544 ([email protected]) g Alfred P. Sloan Foundation Fellow ABSTRACT This is the third in a series of papers in which we assemble and analyze a homoge- neous catalog of peculiar velocity data. In Papers I and II, we described the Tully-Fisher (TF) redshift-distance samples that constitute the bulk of the catalog, and our method- ology for obtaining mutually consistent TF calibrations for these samples. In this paper, we supply further technical details of the treatment of the data, and present a subset of the catalog in tabular form. The full catalog, known as the Mark III Catalog of Galaxy Peculiar Velocities, is available in accessible on-line databases, as described herein. The electronic catalog incorporates not only the TF samples discussed in Papers I and II, but also elliptical galaxy Dn-σ samples originally presented elsewhere.
    [Show full text]
  • NGC-2683 (The UFO Galaxy) Edge-On Galaxy in Lynx Introduction the Purpose of the Observer’S Challenge Is to Encourage the Pursuit of Visual Observing
    MONTHLY OBSERVER’S CHALLENGE Las Vegas Astronomical Society Compiled by: Roger Ivester, Boiling Springs, North Carolina & Fred Rayworth, Las Vegas, Nevada With special assistance from: Rob Lambert, Las Vegas, Nevada MARCH 2015 NGC-2683 (The UFO Galaxy) Edge-On Galaxy In Lynx Introduction The purpose of the Observer’s Challenge is to encourage the pursuit of visual observing. It’s open to everyone that’s interested, and if you’re able to contribute notes, and/or drawings, we’ll be happy to include them in our monthly summary. We also accept digital imaging. Visual astronomy depends on what’s seen through the eyepiece. Not only does it satisfy an innate curiosity, but it allows the visual observer to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what the astronomer saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings, and that’s the tradition we’re stressing in the Observers Challenge. We’re not excluding those with an interest in astrophotography, either. Your images and notes are just as welcome. The hope is that you’ll read through these reports and become inspired to take more time at the eyepiece, study each object, and look for those subtle details that you might never have noticed before. NGC-2683 Almost Edge-On Galaxy In Lynx NGC-2683 is also called “The UFO Galaxy.” It was discovered by William Herschel on February 5, 1788. He gave it the designation H-200-1. It lies about 16 to 25 million light-years away and is almost edge-on from our point of view, giving it that narrow, but fat almost streak- like appearance.
    [Show full text]
  • Spiral Galaxy HI Models, Rotation Curves and Kinematic Classifications
    Spiral galaxy HI models, rotation curves and kinematic classifications Theresa B. V. Wiegert A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Physics & Astronomy University of Manitoba Winnipeg, Canada 2010 Copyright (c) 2010 by Theresa B. V. Wiegert Abstract Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolu- tion since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, con- straining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Ex- tensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination > 40 ◦, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC.
    [Show full text]
  • April Constellations of the Month
    April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis.
    [Show full text]
  • The Skyscraper 2009 04.Indd
    A Better Galaxy Guide: Early Spring M67: One of the most ancient open clusters known and Craig Cortis is a great novelty in this regard. Located 1.7° due W of mag NGC 2419: 3.25° SE of mag 6.2 66 Aurigae. Hard to find 4.3 Alpha Cancri. and see; at E end of short row of two mag 7.5 stars. Highly NGC 2775: Located 3.7° ENE of mag 3.1 Zeta Hydrae. significant and worth the effort —may be approximately (Look for “Head of Hydra” first.) 300,000 light years distant and qualify as an extragalactic NGC 2903: Easily found at 1.5° due S of mag 4.3 Lambda cluster. Named the Intergalactic Wanderer. Leonis. NGC 2683: Marks NW “crook” of coathanger-type triangle M95: One of three bright galaxies forming a compact with easy double star mag 4.2 Iota Cancri (which is SSW by triangle, along with M96 and M105. All three can be seen 4.8°) and mag 3.1 Alpha Lyncis (at 6° to the ENE). together in a low power, wide field view. M105 is at the NE tip of triangle, midway between stars 52 and 53 Leonis, mag Object Type R.A. Dec. Mag. Size 5.5 and 5.3 respectively —M95 is at W tip. Lynx NGC 3521: Located 0.5° due E of mag 6.0 62 Leonis. M65: One of a pair of bright galaxies that can be seen in NGC 2419 GC 07h 38.1m +38° 53’ 10.3 4.2’ a wide field view along with M66, which lies just E.
    [Show full text]
  • Reflector June 2021 Final Pages.Pdf
    Published by the Astronomical League Vol. 73, No. 3 JUNE 2021 SIMPLE AMATEUR RADIO ASTRONOMY HIGH SCHOOL AMATEUR ASTRONOMY 75th BLACK WIDOW PULSARS A NOVEL BINOCULAR OBSERVING CHAIR DESIGN AN EMPLOYEE-OWNED COMPANY NEW FREE SHIPPING on order of $75 or more & INSTALLMENT BILLING on orders over $350 PRODUCTS Standard Shipping. Some exclusions apply. Exclusions apply. Orion® StarShoot™ Mini 6.3mp Imaging Cameras (sold separately) Orion® StarShoot™ G24 Full Format Orion® GiantView™ BT-100 ED Orion® EON 115mm ED Triplet Orion® ShoreView™ Pro III 8x42 ED Color #51883 $400 Color Imaging Camera 90-degree Binocular Telescope Apochromatic Refractor Telescope Waterproof Binoculars Mono #51884 $430 #51860 $3,500 #51878 $2,600 #10285 $1,500 #51861 $180 Trust 2019 Proven reputation for innovation, dependability and service… for over 45 years! Superior Value Orion® StarShoot™ Deep Space Orion® 7.2-21.6mm High quality products at Orion® StarShoot™ G21 Deep Space Imaging Cameras (sold separately) Zoom Telescope Orion® 120mm Guide Scope Rings affordable prices Color Imaging Camera G10 Color #51452 $1,200 Eyepiece with Dual-Width Clamps #54290 $950 G16 Mono #51457 $1,300 #8550 $130 #5442 $130 Wide Selection Extensive assortment of award winning Orion brand 2019 products and solutions Customer Support Orion products are also available through select Orion® MagneticDobsonian authorized dealers able to Counterweights offer professional advice and Orion® Premium Linear Orion® EON 130mm ED Triplet Orion® 2x54 Ultra Wide Angle 1-Pound #7006 $25 Binoculars post-purchase
    [Show full text]
  • Strong Evidence for the Density-Wave Theory of Spiral Structure from a Multi-Wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Physical Processes Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Pour-Imani, Hamed, "Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies" (2018). Theses and Dissertations. 2864. http://scholarworks.uark.edu/etd/2864 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Hamed Pour-Imani University of Isfahan Bachelor of Science in Physics, 2004 University of Arkansas Master of Science in Physics, 2016 August 2018 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Daniel Kennefick, Ph.D. Dissertation Director Vincent Chevrier, Ph.D. Claud Lacy, Ph.D. Committee Member Committee Member Julia Kennefick, Ph.D. William Oliver, Ph.D. Committee Member Committee Member ABSTRACT The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C.
    [Show full text]
  • History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance
    RASC History Committee Report NC185: Robotic Telescope— Page | 1 Suggested Celestial Targets with Historical Canadian Resonance 2018 September 16 Robotic Telescope—Suggested Celestial Targets with Historical Canadian Resonance ABSTRACT: At the request of the Society’s Robotic Telescope Team, the RASC History Committee has compiled a list of over thirty (30) suggested targets for imaging with the RC Optical System (Ritchey- Chrétien f/9 0.4-metre class, with auxiliary wide-field capabilities), chosen from mainly “deep sky objects Page | 2 which are significant in that they are linked to specific events or people who were noteworthy in the 150 years of Canadian history”. In each numbered section the information is arranged by type of object, with specific targets suggested, the name or names of the astronomers (in bold) the RASC Robotic Telescope image is intended to honour, and references to select relevant supporting literature. The emphasis throughout is on Canadian astronomers (in a generous sense), and RASC connections. NOTE: The nature of Canadian observational astronomy over most of that time changed slowly, but change it did, and the accepted celestial targets, instrumental capabilities, and recording methods are frequently different now than they were in 1868, 1918, or 1968, and those differences can startle those with modern expectations looking for analogues to present/contemporary practice. The following list attempts to balance those expectations, as well as the commemoration of professionals and amateurs from our past. 1. OBJECT: Detail of lunar terminator (any feature). ACKNOWLEDGES: 18th-19th century practical astronomy (astronomy of place & time), the practitioners of which used lunar observation (shooting lunars) to determine longitude.
    [Show full text]
  • Neutral Hydrogen in Arp
    Neutral Hydrogen in Arp 158 Mansie G. Iyer and Caroline E. Simpson Department of Physics, Florida International University, Miami, Fl 33199 [email protected], [email protected] Stephen T. Gottesman Department of Astronomy, University of Florida, Gainesville, FL 32611 [email protected] and Benjamin K. Malphrus Department of Physical Sciences, Morehead State University, Morehead, KY 40351 [email protected] ABSTRACT We present 21 cm observations of Arp 158. We have performed a study of the neutral hydrogen (H i) to help us understand the overall formation and evolution of this system. This is a disturbed system with distinct optical knots connected by a linear structure embedded in luminous material. There is also a diffuse spray to the southeast. The H i seems to be made up of three distinct, kinematically separate systems. Arp 158 bears a certain optical resemblance to NGC 520 (Arp 157), which has been identified as a mid- stage merger. From our 21 cm observations of Arp 158, we also see a comparable H i arXiv:astro-ph/0405405v1 20 May 2004 content with NGC 520. These similarities suggest that Arp 158 is also an intermediate stage merger. Subject headings: galaxies: interacting – individual galaxy (Arp 158) – ISM: H i 1. INTRODUCTION In the early seventies, Toomre (1970) and Toomre & Toomre (1972), presented numerical models which demonstrated that strong tidal forces between interacting galaxies could result in features like plumes, shells, rings, tidal tails, and bridges. They also proposed that such strong collisions between galaxies would lead to orbital decay and eventual merging. In 1977, Toomre identified a series of galaxies that he believed represented galaxies at different stages of merging – 2 – (“The Toomre Sequence”) and proposed that the end product of such merging could be an elliptical galaxy.
    [Show full text]
  • The Discovery of Cepheids and a New Distance to NGC 2841 Using the Hubble Space Telescope L
    Rochester Institute of Technology RIT Scholar Works Articles 9-20-2001 The Discovery of Cepheids and a New Distance to NGC 2841 Using the Hubble Space Telescope L. M. Macri Harvard-Smithsonian Center for Astrophysics P. B. Stetson National Research Council of Canada G. D. Bothun University of Oregon W. L. Freedman Observatories of the Carnegie Institute of Washington P. M. Garnavich University of Notre Dame See next page for additional authors Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation L. M. Macri et al 2001 ApJ 559 243 https://doi.org/10.1086/322395 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Authors L. M. Macri, P. B. Stetson, G. D. Bothun, W. L. Freedman, P. M. Garnavich, S. Jha, B. F. Madore, and Michael W. Richmond This article is available at RIT Scholar Works: http://scholarworks.rit.edu/article/1587 To appear in the September 20, 2001 issue of the Astrophysical Journal THE DISCOVERY OF CEPHEIDS AND A NEW DISTANCE TO NGC 2841 USING THE HUBBLE SPACE TELESCOPE† L.M. Macri1, P.B. Stetson2, G.D. Bothun3, W.L. Freedman4, P.M. Garnavich5, S. Jha1, B.F. Madore4,6 & M.W. Richmond7 ABSTRACT We report on the discovery of Cepheids in the spiral galaxy NGC2841, based on observations made with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 A STUDY OF ATTENUATION EFFECTS IN HIGHLY INCLINED SPIRAL GALAXIES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Leslie E.
    [Show full text]