RRP: PRC: Forestry and Ecological Restoration Project in Three

Total Page:16

File Type:pdf, Size:1020Kb

RRP: PRC: Forestry and Ecological Restoration Project in Three Report and Recommendation of the President to the Board of Directors ______________________________________________________________________________ Project Number: 40684 March 2011 Proposed Loan and Administration of Grant People's Republic of China: Forestry and Ecological Restoration Project in Three Northwest Provinces CURRENCY EQUIVALENTS (as of 2 March 2011) Currency Unit – yuan (CNY) CNY1.00 = $0.152 $1.00 = CNY6.57 ABBREVIATIONS ADB – Asian Development Bank FIRR – financial internal rate of return GEF – Global Environment Facility IEM – integrated ecosystem management PRC – People’s Republic of China SFF – state forest farm WEIGHTS AND MEASURES ha – hectare km2 – square kilometer m3 – cubic meter t – ton NOTES (i) The fiscal year (FY) of the government and its agencies ends on 31 December. (ii) In this report, "$" refers to US dollars. Vice-President C. Lawrence Greenwood, Jr., Operations 2 Director General K. Gerhaeusser, East Asia Department (EARD) Team leader R. Renfro, Officer-in-Charge, Environment, Natural Resources, and Agriculture Division/Lead Natural Resources Economist, EARD Team members L. Medina, Project Officer, EARD R. O'Sullivan, Principal Counsel, Office of the General Counsel F. Radstake, Senior Environment Specialist, EARD A. San Pedro, Associate Project Analyst, EARD M. Vorpahl, Social Development Specialist, EARD In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. CONTENTS Page PROJECT AT A GLANCE I. THE PROPOSAL 1 II. THE PROJECT 1 A. Rationale 1 B. Impact and Outcome 4 C. Outputs 4 D. Investment and Financing Plans 5 E. Implementation Arrangements 7 III. DUE DILIGENCE 8 A. Economic and Financial 8 B. Governance 8 C. Poverty and Social 8 D. Safeguards 9 E. Risks and Mitigation Measures 9 IV. ASSURANCES 10 V. RECOMMENDATION 10 APPENDIXES 1. Design and Monitoring Framework 11 2. List of Linked Documents 14 I. THE PROPOSAL 1. I submit for your approval the following report and recommendation on (i) a proposed loan, and (ii) a proposed administration of a grant to be provided by the Global Environment Facility (GEF), both to the People’s Republic of China (PRC) for the Forestry and Ecological Restoration Project in Three Northwest Provinces. The design and monitoring framework is in Appendix 1. 2. To support the national and provincial government development policies and plans, the project will help the State Forestry Administration (SFA); and the Gansu and Shaanxi provinces, and the Xinjiang Uygur Autonomous Region (Xinjiang) improve the productivity of the forestry sector, demonstrate an integrated ecosystem management (IEM) forest-development approach, and introduce forest carbon-sequestration and climate change-mitigation measures. The Asian Development Bank (ADB) provided project preparatory technical assistance ($800,000, approved in December 2007).1 Key outputs of the project will include (i) economic tree crop development on about 38,000 hectares (ha) of barren and low-yielding forest lands that will benefit about 207,000 households; (ii) ecological or natural forestry development on about 300,000 ha, including replanting of about 4,700 ha; and (iii) project management support. II. THE PROJECT A. Rationale 3. The rapid development of the PRC through agricultural expansion, industrialization, and urbanization is attributed to the initial impetus from land reforms and the resulting increase in agriculture output and productivity. As the rural economy transitioned from the centrally planned collective and commune systems to market-based management with price and profit incentives and improved property rights, infrastructure and financial services significantly raised income levels and reduced poverty. Rural poverty still persists for a range of reasons, including the small fragmented nature of land plots and the significant influence of the forest sector and the forest lands under its purview. Forest resource management was transferred from the private sector into collectives during 1950–1956, and from 1988 there has been an ongoing movement toward increased integration with market-based decision making through the allocation of forest user certificates to contracted households. 4. The total forest area in the PRC is about 175 million ha and it supports a standing tree stock volume of about 13.6 billion cubic meters (m3). On a per capita basis, the PRC falls far below international standards, with a per capita forest area of about 0.13 ha compared with the international average of about 0.65 ha per capita. The standing stock volume of 10 m3 per capita compares to a global average of 66 m3. The PRC is a net importer of timber products. Land classified as forest land accounts for 285 million ha; however, only 60% or 169 million ha is forested. Forest land is typically of three types in the PRC: (i) ecological or natural forests, (ii) timber plantations, and (iii) economic tree crops comprising fruit and nut orchards. Of the forest land, 115.8 million ha (66%) is natural forest and 53.3 million ha (34%) is plantation forestry (timber and economic tree crops). The extent of forest located on nonforest land is only 6 million ha. The area of degraded and barren forest land totals about 116 million ha and has mostly been left out of the modernization of the rural PRC that focused on agricultural land. Within the western PRC, most of this land still supports traditional low-yielding and low-value cropping systems built around wheat and corn rotations, or is steep gully sidings and desert periphery that are barren or wastelands. The scale of the forest sector has continued to grow, with the 1 ADB. 2007. Technical Assistance to the People’s Republic of China for Preparing the Silk Road Ecosystem Restoration Project. Manila. 2 forest cover increasing from less than 9% in 1949 to about 18% in 2007. This growth in forest cover has averaged about 4 million ha per year since 2000 and is in direct contrast with the global average of progressive forest cover loss, amounting to nearly 7.3 million ha per year over the same period. However, this impressive expansion of forest cover does not reveal the current low quality of forest structure, including the thin forest density and lack of biodiversity in the PRC forests. The sector target for forest cover is expected to reach 20% by 2010 with a further increase to 23% by 2020, requiring an additional 29 million ha to be forested during the project period through 2020. The project will contribute less than 1% of the proposed policy target. Within the rural landscape, the forestry sector has lagged behind in reforms and has been slow to respond to market-oriented policy priorities. Policy analyses demonstrate the need for reform with basically two categories of issues: (i) management of publicly owned forests, and (ii) the role of government in guiding managers of privately operated forest land and forest enterprises to support sector growth. 5. The drylands of the western PRC cover about 40% of the country and contain some of the most severely degraded land in the world. The proposed project area covers about 165,000 square kilometers (km2), incorporating 18 districts and 55 counties selected from some of the worst-affected and poorer parts of Gansu, Shaanxi, and Xinjiang. This area includes three distinct ecological zones: the loess plateau, the central mountain region, and the oases in Xinjiang. The ancient Silk Road ran through this area, starting near Xian and running northwest through Gansu and Xinjiang. The loess plateau in the PRC is characterized by fine, wind-blown soil that is very deep (up to about 200 meters in places) and highly prone to erosion. Much of the area of eastern Gansu and Shaanxi lies on the loess plateau. Agriculture is predominantly rain fed, producing relatively low-value and low-yielding annual crops, such as wheat and corn. The central mountain region includes the Qian mountains in Xinjiang, the Qilian mountains in Gansu, and the Qinling mountains in Shaanxi. It contains several nature and forest reserves that provide important habitats for endangered and protected species. The third zone, the desert oases in Xinjiang, is home to the majority of rural people and agricultural activities, but makes up only 4% of Xinjiang’s territory. The oases require irrigation for agriculture and their desert climate features harsh winters and summers of extreme heat and high winds. To improve economic prospects and living conditions in this region, the establishment of shelter belts to prevent the shifting of the desert sands, and the construction of water management infrastructure (e.g., canals, wells, and high-efficiency irrigation), are vital. Oasis farming of grapes, melons, cotton, and wheat forms the core of local agricultural activities. 6. Between 1980 and 2006, the combined population of Gansu, Shaanxi, and Xinjiang increased from about 60 million to about 84 million, or by about 40%. The population of ethnic minorities therein grew from about 9.2 million to about 15.2 million, or by about 65%, over the same period. Land degradation is a critical environmental problem in all three project areas, seriously affecting about 274,600 km2 of land in Gansu (about 65% of its total area), about 30,000 km2 in Shaanxi (about 14.5% of its province), and about 1.1 million km2 of Xinjiang (about 64% of its total area). The economic cost of land degradation is estimated at about CNY3.1 billion in Gansu (about 15.9% of provincial gross domestic product), and about CNY11.6 billion in Shaanxi (about 3.6% of provincial gross domestic product). About 64% of the population in the three provinces lives in rural areas. In 2006, the average annual urban income in the project area was CNY9,103 ($1,097 equivalent), while the average annual per capita rural income was only CNY2,377 ($286), less than the poverty line defined as $1.25 per day.
Recommended publications
  • Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
    minerals Article Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China) Ying Jiang 1, Guanghai Shi 1,* , Liguo Xu 2 and Xinling Li 3 1 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Geological Museum of China, Beijing 100034, China; [email protected] 3 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang 830004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8232-1836 Received: 6 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents.
    [Show full text]
  • DICTIONARY SUBJ1: Subject Headings
    PINYIN CONVERSION SPECIFICATIONS DICTIONARIES FOR SUBJECT HEADINGS DICTIONARY SUBJ-2: Subject headings (geographics) OCTOBER 1, 2000 *AY* = (in former heading) ayn or apostrophe or alif *AP* = (in revised heading) apostrophe *U* = the lower case letter u with umlaut *UU* = the capital letter u with umlaut *N* = the lower case letter n with tilde *E* = the lower case letter e with circumflex Instructions: Replace WG form with PY equivalent 1 Instructions 1.1_ Identify a subject string which should either be converted from Wade-Giles to pinyin, or should not be converted 2.1 Mark and pass these subject strings where appropriate 3.1 In the 651$a subfield, replace these WG forms with PY equivalents: [chronological subdivisions are covered by Dictionary CHRON] Ling Canal (Hsing-an hsien, China) / Ling Canal (Xing*AP*an Xian, China) Chung-nan-hai (Peking, China) / Zhongnan Hai (Beijing, China) Fu ling Site (Shen-yang shih, China) / Fu Ling Site (Shenyang, Liaoning Sheng, China) Fu ling Site (Shenyang, Liaoning Sheng, China) / Fu Ling Site (Shenyang, Liaoning Sheng, China) I Ho Y*U*an (Peking, China) / Yi He Yuan (Beijing, China) Hsin kang kang chan ch*AY*iao (Dairen, China) / Xin Gang Gang Zhan Qiao (Dalian, Liaoning Sheng, China) Lei-ku-tun Site (Sui-chou, China) / Leigudun Site (Suizhou, China) Lei-ku-tun Site (Suizhou, China) / Leigudun Site (Suizhou, China) 2 Lu-chou Ch*AY*ang-chiang ta ch*AY*iao (Lu-chou shih, China) / Luzhou Chang Jiang Da Qiao (Luzhou, Sichuan Sheng, China) Lu-chou Ch*AY*ang-chiang ta ch*AY*iao (Luzhou, Sichuan Sheng,
    [Show full text]
  • Download From
    Designation date: 07/12/2004 Ramsar Site no. 1441 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Name: Yuxiang Li Institution: Bureau of Liaoning Shuangtai Estuary National Nature Reserve Tel: +86-427-2287002 Designation date Site Reference Number Fax: +86-427-2287011 Address: Shiyou Street 121, Panjin City 124010, Liaoning Province, China. Email: [email protected] 2. Date this sheet was completed/updated: June 5, 2012 3.
    [Show full text]
  • Examining Bias in Pollen-Based Quantitative Climate Reconstructions Induced by Human Impact on Vegetation in China Wei Ding1, Qinghai Xu2, Pavel E
    Examining bias in pollen-based quantitative climate reconstructions induced by human impact on vegetation in China Wei Ding1, Qinghai Xu2, Pavel E. Tarasov1 1Institute of Geological Sciences, Palaeontology, Free University of Berlin, Berlin, 12249, Germany 5 2Institute of Nihewan Archaeology, Hebei Normal University, Shijiazhuang, 050024, China Correspondence to: Qinghai Xu ([email protected]) Abstract. Human impact is a well-known confounder in pollen-based quantitative climate reconstructions as most terrestrial ecosystems have been artificially affected to varying degrees. In this paper, we use a ‘human-induced’ pollen dataset (H-set) and a corresponding ‘natural’ pollen dataset (N-set) to establish pollen-climate calibration sets for temperate eastern China 10 (TEC). The two calibration sets, taking a Weighted Averaging Partial Least Squares (WA-PLS) approach, are used to reconstruct past climate variables from a fossil record, which is located at the margin of the East Asian Summer Monsoon in north-central China and covers the late glacial–Holocene from 14.7 ka BP (thousand years before AD 1950). Ordination results suggest that mean annual precipitation (Pann) is the main explanatory variable of both pollen composition and percentage distributions in both datasets. The Pann reconstructions, based on the two calibration sets, demonstrate consistently similar 15 patterns and general trends, suggesting a relatively strong climate impact on the regional vegetation and pollen spectra. However, our results also indicate that human impact may obscure climate signals derived from fossil pollen assemblages. In a test with modern climate and pollen data, the Pann influence on pollen distribution decreases in the H-set while the human influence index (HII) rises.
    [Show full text]
  • Fission-Track Evidence of Tectonic Evolution in the Northwestern Qaidam Basin, China
    J. Earth Syst. Sci. (2018) 127:12 c Indian Academy of Sciences https://doi.org/10.1007/s12040-017-0914-z Fission-track evidence of tectonic evolution in the northwestern Qaidam Basin, China Guo-Qiang Sun1,*, Wei-Ming Liu1,2, Jia-Jia Guo1,2 and Ye-Tong Wang1,2 1Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730 000, People’s Republic of China. 2University of Chinese Academy of Sciences, Beijing 100 049, People’s Republic of China. *Corresponding author. e-mail: [email protected] MS received 21 February 2017; revised 26 June 2017; accepted 28 June 2017; published online 14 February 2018 Fission-track dating was conducted on zircons and apatites from 11 cores of the upper Xiaganchaigou Formation and lower Shangganchaigou Formation (northwestern Qaidam Basin). The obtained apatite fission-track age is 3.1–61.9 Ma, and the zircon fission-track age is 49.2–123.5 Ma. Although the average apatite age is consistent with ages predicted from the stratigraphy, nine of the 11 apatite fission-track ages have P(χ2) < 5%, indicating that the grains experienced heterogeneous annealing after sedimentation. The average zircon age is greater than that indicated by stratigraphy, and all eight zircon fission ages have P(χ2) > 5%, exhibiting consistent characteristics and indicating that zircons retain provenance age information after burial. From the zircon and apatite ages, the fission-track length distribution, and the geological setting, the northwestern Qaidam Basin has experienced two tectonothermal events since the Late Mesozoic, at 39.1 ± 9.3 to 133.7 ± 6.6Maand1.2 ± 0.6to32.0 ± 3.0 Ma.
    [Show full text]
  • Co-Seismic and Cumulative Offsets of the Recent Earthquakes Along The
    Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet Haibing Li, Jerome van der Woerd, Zhiming Sun, Jialiang Si, Paul Tapponnier, Jiawei Pan, Dongliang Liu, Marie-Luce Chevalier To cite this version: Haibing Li, Jerome van der Woerd, Zhiming Sun, Jialiang Si, Paul Tapponnier, et al.. Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault inwestern Tibet. Gondwana Research, Elsevier, 2011, 21, pp.64-87. 10.1016/j.gr.2011.07.025. hal-00683742 HAL Id: hal-00683742 https://hal.archives-ouvertes.fr/hal-00683742 Submitted on 29 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACCEPTED MANUSCRIPT Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet Haibing Li a,b,*, Jérôme Van der Woerd c, Zhiming Sun d, Jialiang Si a,b, Paul Tapponniere,f, Jiawei Pan a,b, Dongliang Liu a,b, Marie-Luce Chevaliera,b a State Key Laboratory of Continental Tectonic and Dynamics b Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R.
    [Show full text]
  • Cenozoic Deformation of the Tarim Plate and the Implications for Mountain Building in the Tibetan Plateau and the Tian Shan
    TECTONICS, VOL. 21, NO. 6, 1059, doi:10.1029/2001TC001300, 2002 Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan Youqing Yang and Mian Liu Department of Geological Sciences, University of Missouri, Columbia, Missouri, USA Received 11 May 2001; revised 14 March 2002; accepted 8 June 2002; published 17 December 2002. [1] The Tarim basin in NW China developed as a the geology and tectonics of the Himalayan-Tibetan orogen complex foreland basin in the Cenozoic in association [Dewey and Burke, 1973; Molnar and Tapponnier, 1975; with mountain building in the Tibetan Plateau to the Allegre et al., 1984; Armijo et al., 1986; Burchfiel et al., south and the Tian Shan orogen to the north. We 1992; Harrison et al., 1992; Avouac and Tapponnier, 1993; reconstructed the Cenozoic deformation history of the Nelson et al., 1996; England and Molnar, 1997; Larson et Tarim basement by backstripping the sedimentary al., 1999; Yin and Harrison, 2000]. However, some funda- mental questions, such as how stress has propagated across rocks. Two-dimensional and three-dimensional finite the collisional zone and how strain was partitioned between element models are then used to simulate the flexural crustal thickening and lateral extruding of the lithosphere, deformation of the Tarim basement in response to the remain controversial. One end-member model, approximat- sedimentary loads and additional tectonic loads ing the Eurasia continent as a viscous thin sheet indented by associated with overthrusting of the surrounding the rigid Indian plate [e.g., England and McKenzie, 1982; mountain belts.
    [Show full text]
  • Review of Snow Cover Variation Over the Tibetan
    Earth-Science Reviews 201 (2020) 103043 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system T ⁎ Qinglong Youa, , Tao Wub, Liuchen Shenb, Nick Pepinc, Ling Zhangd, Zhihong Jiangd, Zhiwei Wua, Shichang Kange,f, Amir AghaKouchakg a Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China b College of Geography and Environment Sciences, Zhejiang Normal University, Jinhua 321004, China c Department of Geography, University of Portsmouth, PO1 3HE, UK d Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China e State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou 730000, China f CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China g Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, United States of America ARTICLE INFO ABSTRACT Keywords: Variation in snow cover over the Tibetan Plateau (TP) is a key component of climate change and variability, and Tibetan Plateau critical for many hydrological and biological processes. This review first summarizes recent observed changes of Snow cover snow cover over the TP, including the relationship between the TP snow cover and that over Eurasia as a whole; Asian summer monsoon recent climatology and spatial patterns; inter-annual variability and trends; as well as projected changes in snow Climate change cover. Second, we discuss the physical causes and factors contributing to variations in snow cover over the TP, including precipitation, temperature, and synoptic forcing such as the Arctic Oscillation and the westerly jet, and large scale ocean-atmosphere oscillations such as the El Niño–Southern Oscillation (ESNO), the Indian Ocean dipole, and the southern annular mode.
    [Show full text]
  • Rasbdb Subject Keywords
    Leigh Marymor, Compiler KEYWORD GUIDE A joint project of the Museum of Northern Arizona and the Bay Area Rock Art Research Association KEYWORD GUIDE Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 1 September 15, 2020 KEYWORD GUIDE Mortars, cupules, and pecked curvilinear nucleated forms. Canyon Trail Park, San Francisco Bay Area, California, USA. Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 2 September 15, 2020 KEYWORD GUIDE Aerial Photography .......................................... 9 Archival storage ............................................... 9 Table of Contents Augmented Reality .......................................... 9 Bias ................................................................... 9 INTRODUCTION: .................................................. 7 Casts ................................................................. 9 Classification .................................................... 9 SUBJECT KEYWORDS: ........................................... 8 Digital Sound Recording................................... 9 CULTURAL CONTEXT ..............................................8 Digital Storage ................................................. 9 CULTURAL RESOURCE MANAGEMENT ..................8 Drawing.......................................................... 10 Cultural Tourism ...............................................8 Historic Documentation ................................. 10 Community Involvement ...................................8 Laser Scanning
    [Show full text]
  • RESEARCH Towards a Clarification of the Provenance of Cenozoic
    RESEARCH Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam Basin Haijian Lu1,*, Jiacan Ye1,2, Licheng Guo3,4, Jiawei Pan1, Shangfa Xiong3,4, and Haibing Li1 1KEY LABORATORY OF DEEP-EARTH DYNAMICS OF MINISTRY OF NATURAL RESOURCES, INSTITUTE OF GEOLOGY, CHINESE ACADEMY OF GEOLOGICAL SCIENCES, BEIJING 100037, CHINA 2SCHOOL OF EARTH SCIENCE AND RESOURCES, CHINA UNIVERSITY OF GEOSCIENCES, BEIJING 100083, CHINA 3KEY LABORATORY OF CENOZOIC GEOLOGY AND ENVIRONMENT, INSTITUTE OF GEOLOGY AND GEOPHYSICS, CHINESE ACADEMY OF SCIENCES, BEIJING 100029, CHINA 4UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, BEIJING 10049, CHINA ABSTRACT Determining the provenance of sedimentary basin fill in the northern Qaidam Basin is a key step toward understanding the sedimen- tary system dynamics and mountain-building processes of the surrounding orogenic belts in Tibet. The exceptionally thick (average of 6–8 km) Cenozoic fluvio-lacustrine deposits in the northern Qaidam Basin were once thought to have been eroded from the nearby north- ern Qaidam Basin margin and the southern Qilian Shan and to reflect the prolonged thrust-related exhumation of these orogenic belts. However, several recent studies, based mainly on paleocurrent and detrital zircon U-Pb age data, suggested that they were derived from the distant East Kunlun Shan to the south, or the Qimen Tagh to the southwest (at least 200 and 350 km from the northern Qaidam Basin, respectively). That model assumed that the East Kunlun Shan and Qimen Tagh formed significant topographic barriers during the earli- est sedimentation of Cenozoic strata (e.g., the Lulehe Formation) in the northern Qaidam Basin. Therefore, the tectonic significance of the provenance of the Lulehe Formation remains a fundamental problem in understanding the postcollisional uplift history of the northern Tibetan Plateau.
    [Show full text]
  • LCSH Section Q
    Q (Fictitious character) (Not Subd Geog) Qabīlat al-Mālikīyah (Berber tribe) Qadr, Laylat Q-boats USE Mālikīyah (Berber tribe) USE Laylat al-Qadr USE Q-ships Qabīlat Balī (Arab tribe) Qadri Noshahi Q Class (Destroyers) (Not Subd Geog) USE Balī (Arab tribe) USE Naushāhiyyah BT Destroyers (Warships) Qabīlat Banī Hilāl (Arab tribe) Qāf (The Arabic letter) Q-devices USE Banū Hilāl (Arab tribe) BT Arabic alphabet USE Q-machines Qabīlat Banī Kabīr (Arab tribe) Qafar language Q document (Synoptics criticism) USE Banī Kabīr (Arab tribe) USE Afar language USE Q hypothesis (Synoptics criticism) Qabīlat Bū ʻAlī (Arab tribe) Qafzeh Cave (Israel) Q fever (May Subd Geog) USE Banī Bū Alī (Arab tribe) UF Har Qedumim Cave (Israel) [QR201.Q2 (Microbiology)] Qabilat Dhubyān (Arab tribe) Jebel Kafzeh (Israel) [RA644.Q25 (Public health)] USE Dhubyān (Arab tribe) Jebel Qafzeh (Israel) [RC182.Q35 (Internal medicine)] Qabīlat Ghāmid (Arab tribe) Kafzeh Cave (Israel) BT Pneumonia USE Ghāmid (Arab tribe) BT Caves—Israel Rickettsial diseases Qabīlat Ghaṭafān (Arab tribe) Israel—Antiquities Q-groups USE Ghaṭafān (Arab tribe) Qagaamila (Alaska) UF Groups, Q Qabīlat Ḥarb USE Kagamil Island (Alaska) Groups, Rational USE Ḥarb (Arab tribe) Qagaamilan (Alaska) Rational groups Qabīlat Hawāzin USE Kagamil Island (Alaska) BT Finite groups USE Hawāzin (Arab tribe) Qahal (The Hebrew word) Q hypothesis (Synoptics criticism) Qabīlat Jumūʻīyah (Arab people) USE Ḳahal (The Hebrew word) UF Logia source (Synoptics criticism) USE Jumūʻīyah (Arab people) Qahar Mongols Q document (Synoptics
    [Show full text]
  • Tree-Ring-Based Spring Precipitation Reconstruction in the Sikhote-Alin’ Mountain Range
    Clim. Past, 17, 951–967, 2021 https://doi.org/10.5194/cp-17-951-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Tree-ring-based spring precipitation reconstruction in the Sikhote-Alin’ Mountain range Olga Ukhvatkina1, Alexander Omelko1, Dmitriy Kislov2, Alexander Zhmerenetsky1, Tatyana Epifanova1, and Jan Altman3 1Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 100 let Vladivostoku avenue, Vladivostok, 690022, Russia 2Botanical Garden-Institute of the Far East Branch of the Russian Academy of Science, Makovskii Str. 142, Vladivostok, 690024, Russia 3Institute of Botany of the Czech Academy of Sciences, 252 43 Pr˚uhonice,Czech Republic Correspondence: Olga Ukhvatkina ([email protected]) Received: 31 March 2020 – Discussion started: 21 April 2020 Revised: 25 February 2021 – Accepted: 14 March 2021 – Published: 28 April 2021 Abstract. Climate reconstructions provide important insight the study area is still made by the Pacific Ocean, which de- into past climate variability and help us to understand the termines their amount and periodicity. large-scale climate drivers and impact of climate change. However, our knowledge about long-term year-to-year cli- mate variability is still limited due to the lack of high- resolution reconstructions. Here, we present the first precip- 1 Introduction itation reconstructions based on tree rings from Pinus ko- raiensis (Korean pine) from three sites placed along a lati- Water resources are a crucial driving force behind the devel- tudinal (330 km) gradient in the Sikhote-Alin’ mountains in opment of human society (e.g., Vorosmarty et al., 2010).
    [Show full text]